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Abstract 

Background: Polygenic risk scores (PRSs), which sum the effects of SNPs throughout the 

genome to measure risk afforded by common genetic variants, have improved our ability to 

estimate disorder risk for Attention-Deficit/Hyperactivity Disorder (ADHD) but the accuracy of 

risk prediction is rarely investigated. 

Methods: With the goal of improving risk prediction, we performed gene set analysis of GWAS 

data to select gene sets associated with ADHD within a training subset. For each selected gene 

set, we generated gene set polygenic risk scores (gsPRSs), which sum the effects of SNPs for 

each selected gene set.  We created gsPRS for ADHD and for phenotypes having a high 

genetic correlation with ADHD. These gsPRS were added to the standard PRS as input to 

machine learning models predicting ADHD. We used feature importance scores to select 

gsPRS for a final model and to generate a ranking of the most consistently predictive gsPRS. 

Results: For a test subset that had not been used for training or validation, a random forest 

(RF) model using PRSs from ADHD and genetically correlated phenotypes and an optimized 

group of 20 gsPRS had an area under the receiving operating characteristic curve (AUC) of 

0.72 (95% CI: 0.70 – 0.74). This AUC was a statistically significant improvement over logistic 

regression models and RF models using only PRS from ADHD and genetically correlated 

phenotypes.  

Conclusions: Summing risk at the gene set level and incorporating genetic risk from disorders 

with high genetic correlations with ADHD improved the accuracy of predicting ADHD. Learning 

curves suggest that additional improvements would be expected with larger study sizes. Our 

study suggests that better accounting of genetic risk and the genetic context of allelic 

differences results in more predictive models. 
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Introduction 

The field of psychiatric genomics has made great strides discovering genetic loci that are 

significantly associated with psychiatric disorders [1-3]. These discoveries have generated new 

hypotheses about the genomic architecture complex pathogenesis of many of these disorders. 

The combination of risk conferring alleles has improved the prediction of psychopathology [4]. 

A multi-site ADHD GWAS found that 12 genome-wide-significant loci captured a small amount 

of the heritability of ADHD while risk profiles using all loci captured a significantly larger amount 

of heritability, which proved the usefulness of loci that are, individually, are not significantly 

different between cases and controls [1]. Even in this study of over 20,000 people with ADHD, 

the complex genetic architecture of the disorder makes predicting generalizable risk and 

establishing significance at each common variant difficult.  

Previous work has shown that ADHD has significant genetic overlaps with other psychiatric and 

non-psychiatric disorders [5-10]. This supports the theory that ADHD risk comprises traits that 

are also present in the phenotypes with which it is genetically correlated. The risk estimation of 

SNPs in genetically correlated disorders could be more predictive in ADHD relative to the risk 

estimation of SNPs in ADHD GWASs due to larger sample sizes being better for estimating risk. 

In addition, when dealing with disorders with high heterogeneity like ADHD it is possible that 

other less heterogeneous phenotypes better estimate risk for genetic loci for some clusters of 

patients. Therefore, using the genetic overlap with other disorders could be useful in improving 

the predictive modeling of ADHD. 

A review of twin-studies of ADHD found that the mean heritability of ADHD across 37 studies 

was 74% [11]. The high heritability of ADHD suggests that predicting ADHD using genetic and 

environmental data is achievable. However, reports on predictive models of ADHD using 

genetic data is limited. Significant improvements in prediction and our understanding of the 
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disorder must be made before genetic information can be used in the clinic as part of future 

objective diagnoses and personalized medicine plans that aim to improve outcomes in ADHD. 

One potential area of improvement is balancing the flexibility of models to detect robust risk 

patterns with complexity and generalizability. Combining the risk at SNPs across the genome 

into a single polygenic risk score (PRS) has proven to be a successful way to create a more 

useful and generalizable feature than any individual SNP[12]. However, summing all SNPs into 

a single value per individual limits any modelling method’s capacity to learn more complicated 

patterns and interactions. On the other end of the complexity spectrum, using individual SNPs 

as input into machine learning models of complex and heterogenous disorders like ADHD leads 

to concerns of overfitting and lack of generalizability [13]. Combining risk at the gene set level 

could be an effective middle ground between these two extremes. While research using 

features combining risk at the gene set level to predict a disorder is limited, gene set association 

analyses have shown that this middle ground can be useful.   

While machine learning classification models of ADHD using genomic data have not been 

reported, many researchers have used such models to predict diagnoses for other heritable 

complex disorders[14-18]. Collectively, these studies have shown the potential of machine 

learning to predict many disorders but concerns of how well these models would perform on 

unseen external data sets remain. In addition, many machine learning methods generate “black-

box” models that are uninterpretable. Since most models lack the performance necessary for 

clinical application, interpretable models may provide additional useful results apart from the 

model that would otherwise only be an intermediate to eventual models that will be useful 

clinically. Interpretable genomic models could yield biological insights by finding new loci of 

interest or new groups of loci that together improve models. These models also could 

incorporate further model validation by relating the output to our understanding of the biology 

behind the disorder. 
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Here, we balance these issues by summing risk across gene sets to create gene set polygenic 

risk scores (gsPRSs) that may be used alongside PRS to improve predictive accuracy by 

providing the model with information about gene sets associated with ADHD. We hypothesized 

that including gsPRSs as input into machine learning models would improve prediction 

performance compared to models that use only traditional PRS.  We also supplemented the 

model with summary statistics from phenotypes with high genetic correlations with ADHD as 

additional features to test if these information are useful to improve ADHD prediction.  

Methods 

Data Preprocessing and Splitting 

Quality control and imputation were done using the RICOPILI pipeline[19]. After quality control, 

2455 ADHD cases and 8432 controls across 9 cohorts aggregated by the PGC were available 

for analysis [1].  We excluded SNPs with a minor allele frequency < 0.01, missing genotype rate 

> 0.05, and deviating from Hardy-Weinberg equilibrium in controls at p < 1 x 10-5. The 

participants were randomly split into a training subset containing 1673 cases and 5818 controls, 

a validation subset containing 406 cases and 1329 controls, and a test subset containing 376 

cases and 1285 controls.  The training subset was used to teach the model to differentiate 

different cases and controls by optimizing the parameters within the model. The validation 

subset was used to estimate the model performance outside examples used to train the model 

and to optimize model hyper-parameters. The test subset was used for reporting the results of 

our final models on an unseen sample.  

Gene Set Association Analysis 

Using the SNP association p-values generated in the SNP association analysis, we used 

MAGMA to compare allele frequencies between cases and controls at the gene and gene sets 

level [20]. Both analyses used an extended gene window starting 35 kilobases upstream and 
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ending 10 kilobases downstream of each gene to account for cis regulatory elements. The 

complete MsigDB gene ontology gene sets collection was used as input into the analysis. The 

gene sets most associated with this study sample have been previously reported [1]. 

Polygenic Risk Scoring 

From the associations collected from gene set analysis, we selected the most associated gene 

sets based on their p-values. To avoid including the same risk signal multiple times within a 

score, we adjusted SNPs tagging each gene set for linkage disequilibrium using PRS-CS, a tool 

that infers posterior effect sizes of each SNP after removing overlaps due to linkage 

disequilibrium. From these adjusted SNPs, we used polygenic weighted scoring to generate a 

risk profile for each gene set in each subject using Plink. We calculated genome-wide polygenic 

risk profiles using the same combination of PRS-CS and Plink scoring. For comparison, we also 

generated PRS using the clumping and thresholding method.  

Correlated Trait/Disorder Polygenic Risk Scoring 

We calculated additional risk profiles using SNP effects estimated from GWASs of disorders 

and traits with the highest genetic correlation with ADHD and heritability over 0.1 found using 

GWAS Atlas[21]. After excluding similar phenotypes based on study size, the included 

phenotypes were age at first sexual intercourse[21], opioid use[22], college completion[23], 

childhood IQ[24], childhood extreme obesity[25], autism spectrum disorder[26], time spent 

watching television[21], psychiatric cross-disorder risk[27], intracranial volume[28], age at 

menopause[21], and myopia[21]. We calculated the gsPRS for genetically correlated disorders 

on the gene sets most associated with ADHD diagnosis by using the SNP effects from the 

summary statistics for each trait in additional MAGMA gene set analyses. We included PRS and 

100 gsPRS for each trait/disorder in machine learning feature selection.  
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Machine Learning Preprocessing and Feature Selection 

We adjusted each polygenic risk score for ancestry by extracting the top 5 principal components 

from a principal components analysis (PCA) of the training subset and using those 5 principal 

components in a generalized linear model predicting each polygenic risk score. We replaced the 

unadjusted polygenic risk score with the residual of each prediction using the 5 principal 

components. We normalized each score between 0 and 1 using min-max normalization and 

balanced cases and controls in each subset by random case up-sampling with replacement.  

For gsPRS only models, we started by selecting gsPRS from the 40 gene sets most associated 

with ADHD within the training subset. We optimized the hyperparameters of a random forest 

based on this initial set of features. Then, we performed a random iterative feature selection 

process in which we kept and recorded the most important features, based on the permutation 

feature importance calculated from the mean difference in Gini impurity, and randomly replaced 

the less important features with a different gsPRS feature until the model found a set of gsPRS 

that outperformed the previous best set. We reoptimized the random forest hyperparameters at 

regular intervals and repeated the random replacement process such that each feature would 

likely be included in multiple iterations of the newly optimized model. At the end of this process, 

we selected the best group of 20 gsPRS for model performance evaluation. 

In the models that included gsPRS and PRS-CS, we used the same random iterative feature 

selection approach used in the gsPRS only model, but also included the genome-wide PRS-CS 

scores calculated from the training subset and summary statistics from GWAS of related 

disorders in every model.  

Machine Learning Model Optimization  

Within Scikit-learn, we used grid search optimization to select the best hyperparameters for all 

models using the AUC in the validation subset [29]. We optimized multiple types of models to 
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better compare the performance of different methods within the validation subset and select the 

best model for this application.  Exploring multiple models is essential given that for any given 

problem, one algorithm may be ideal but it is not possible, in advance, to know what algorithm 

will be best [30].  For random forest (RF) models, we optimized number of trees in the forest, 

maximum depth of the tree, and the number of features to consider when looking for the best 

split.  For support vector machine (SVM) models, we optimized C, which balances 

misclassification against simplicity, and gamma, which determines the effect of a single training 

example on the model. For k-nearest neighbor (kNN) models, we optimized number of 

neighbors, leaf size, weight function, and the power parameter for the Minkowski metric. For the 

PRS and PRS-CS models, we fit logistic regression models to compare performance with our 

more complex models using the glm package in R. We fit the lasso model using all PRS-CS and 

all gsPRS as input using the glmnet package in R. 

 

Model Performance Evaluation and Feature Importance Tracking 

To measure the performance of the models selected with grid search optimization we used area 

under the receiver operating characteristic curve (AUC) in the test subset. Data leakage is a 

common issue in machine learning research normally caused by inadvertently learning 

information about the test data that improves performance in those specific data. One way data 

leakage can occur is through testing many models on the test data, which increases the chance 

of selecting a model that is randomly configured in a way that is more optimal for the test data 

but not generalizable. With the goal of minimizing data leakage that might bias our results 

towards the test data, we tested model performance in the test subset only on the model with 

the highest AUC in the validation subset for each analysis. We estimated the known genetic 

variance explained by each of the models using a formula developed for the genetic 

interpretation of AUCs using 0.75 as the heritability estimate and 0.05 as the prevalence 
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estimate[31]. We compared AUCs from different models using DeLong’s test for two correlated 

ROC curves. We also tested the probability of achieving the AUC in the best gsPRS grouping 

by comparing the AUC in the test subset with the distribution of AUCs from 10,000 models with 

random gsPRS groups of the same size. All models included the PRS for all correlated 

phenotype summary statistics. We used learning curves to model whether additional training 

examples would improve model performance and to compare models. 

To calculate a more generalizable importance score for each gsPRS outside of the best group 

of gsPRS, we estimated feature importance for each gsPRS and PRS-CS feature in RF models 

with a random group of gsPRS calculated from gene sets associated with ADHD and tracked 

the permutation feature importance that measures the decrease in model performance when a 

single feature value is randomly shuffled. We calculated the mean feature importance of each 

gsPRS across 10,000 models that used 40 random gsPRSs each.  We did not use feature 

importance scores calculated from the test subset for feature selection or any optimization. 

Testing Biological Relevance of gsPRS Feature Importance 

To further validate our methods by testing for correlations with the known neurobiology of ADHD 

, we computed correlations between tissue-specific gene expression and feature importance 

[32, 33]. For ADHD, we would expect that most gene sets truly associated with the disorder 

would be more relevant to the brain and less relevant to other tissues. Therefore, if the 

importance of the gsPRS generated in our analysis are correlated with brain expression relative 

to all other tissues, we can be more confident that gsPRSs are collectively picking up a real 

generalizable risk feature instead of modelling random noise.  We used a dataset containing 

gene expression data for 54 tissue types from the genotype-tissue expression (GTEx) project. 

We combined this gene expression data into gene set expression data for the same gene sets 

used in the gsPRSs. We estimated relative gene set expression in the brain using the 

Preferential Expression Measure formula which estimates how different the expression of a 
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gene is relative to the expected expression level. We fit a linear model predicting gene set 

expression in brain tissues relative to non-brain tissues using the MAGMA gene set association 

p-value to establish a baseline. We fit a linear model using the base model with gsPRS feature 

importance as a second predictor to test for association of gene set expression with gsPRS 

importance score after controlling for MAGMA gene set associations. We fit linear models with 

the same dependent and independent variables using only gene sets calculated from the ADHD 

training subset or from the group of correlated phenotypes to test whether each group was 

independently associated with gene set expression. To test whether the association between 

mean importance score and relative gene set brain expression in the brain was dependent on 

whether the gsPRS was calculated from the ADHD training subset, we estimated predictive 

margins using STATA16’s margins command, which computes the average probability for each 

observation at a fixed level of a selected variable. In our analyses, these predictive margins 

estimate the average relative gene set expression in the brain for each gsPRS while fixing the 

ADHD vs non-ADHD variable to each value. A meta-analysis on subcortical brain volume 

differences in ADHD found that the volumes of the accumbens, amygdala, caudate, 

hippocampus, and putamen were smaller in participants with ADHD [34]. We fit linear models 

predicting gene expression in these brain regions implicated in ADHD relative to all other brain 

regions with gene set expression as the dependent variable and MAGMA gene set association 

p-value and gsPRS feature importance.  

Results 

Model performance 

To establish baseline performance, we measured the prediction performance in the test subset 

of a logistic regression with the PRS calculated from the training subset. This PRS only logistic 

regression had an AUC of 0.62 (95% CI: 0.60 – 0.64) in the test subset and explained 5.0% of 

the known genetic variance. Replacing PRS with PRS-CS in another logistic regression model 
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led to an AUC of 0.66 (Figure 1; 95% CI: 0.64 – 0.68) and explained 9.0% of the known genetic 

variance. We then measured the performance of logistic regression and random forest models 

containing the PRS-CS from the training subset and PRS-CS calculated from summary 

statistics from phenotypes with a heritability above 0.1 with the highest genetic correlation to 

ADHD (Table 1). The logistic regression model had an AUC of 0.66 (95% CI: 0.64 – 0.68) while 

a random forest model using the same input had an AUC of 0.69 (Figure 1; 95% CI: 0.67 – 

0.71) in the test subset and explained 12.8% of the known genetic variance.  

After using our feature selection method to select the best group of 20 gsPRS, we trained a 

random forest model using the selected group and all PRS-CS. In the test subset, this model 

had an AUC of 0.72 (Figure 1; 95% CI: 0.70 – 0.74) and explained 17.4% of the known genetic 

variance. This was a significant improvement in comparison to the RF that included only the 

PRS-CS from each trait (p = 0.0057, DeLong’s test for two correlated ROC curves). The RF 

model with all PRS-CS and the best group of 20 gsPRS also had a significantly higher AUC (p = 

1.2 x 10-6, Delong’s test for two correlated ROC curves). compared to a lasso model fit with all 

PRS-CS and gsPRS as input, which had an AUC of 0.65 (95% CI: 0.63 – 0.67). The AUC of the 

best group model was greater than 99.6% of the 10,000 random group models. The mean AUC 

of the random group models was 0.69. All the gene sets used in the random groups were 

associated with ADHD in the training subset with a p-value of less than 0.05 without correction 

for multiple testing. SVM and kNN models were less predictive than RF models in the validation 

subset, so we did not test them on the test subset. 

We trained and optimized another random forest model using only gsPRS. The model had an 

AUC of 0.61 (95% CI: 0.59 – 0.63) in the test subset. The AUC of the best group model was 

greater than 99.1% of the 10,000 random group models. 
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Random Forest Learning Curve and Feature Importance Analyses 

For the best random forest model, we generated a learning curve (Figure 2) that plots the AUC 

against the number of training examples[35]. We also optimized a random forest model using 

only PRS-CS and generated a learning curve (Figure 3) for comparison. 

Using the optimized random forest model, we generated feature importance scores in the test 

subset for all the features used in the model. The most important features and their importance 

scores are listed in Table 2. In addition, we calculated the average feature importance in the test 

subset across 10,000 random group of 40 gsPRS only models (princTable 1).  

Testing Biological Relevance of gsPRS Feature Importance 

The base linear model we fit with relative gene set expression as the dependent variable and 

MAGMA gene set association p-value as the independent variable showed a significant 

negative correlation between the two variables (p = 1 x 10-5). The model adding mean gsPRS 

importance score as an independent variable showed a significant positive correlation between 

mean gsPRS importance score and relative gene set expression after controlling for MAGMA 

gene set association p-value (p = 2 x 10-4). We found no significant differences in gene 

expression between brain regions implicated in ADHD and other brain regions.   

The base + mean gsPRS feature importance model we fit using only gsPRS calculated from the 

ADHD training subset showed a significant positive correlation between mean gsPRS 

importance score and relative gene set expression in the brain (p = 0.008). The same model fit 

using only gsPRS calculated from the correlated phenotypes also showed a significant positive 

correlation between mean gsPRS importance score and relative gene set expression in the 

brain (p = 0.003). An additional linear model we fit adding an independent variable specifying 

whether the gsPRS was calculated in the ADHD training subset or a correlated phenotype and 

that variable's interaction with importance score showed that the correlation of gene set 
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expression in the brain with mean gsPRS importance was negatively dependent on whether the 

gsPRS was calculated in the ADHD training subset (p = 5 x 10-4). As illustrated in Figure 4, our 

predictive margins analysis of this interaction estimated a significant positive association with a 

slope of 4.7 (p < 0.001) when the variable indicating development in the ADHD training subset 

was fixed to 0, meaning the gsPRS was developed using one of the correlated phenotypes, and 

a significant positive association with a slope of 0.60 (p = 0.015) when the same variable was 

fixed to 1, meaning the gsPRS was developed using the ADHD training subset. 

Discussion 

This study is the first to produce gene set specific risk profiles predicting the presence/absence 

of a psychiatric disorder with machine learning. The addition of optimized groups of gsPRS to 

genome wide PRS-CS significantly improves prediction performance compared to both models 

without gsPRS and models with random groups of gsPRS. We further validated these results by 

testing for biological correlation of the random forest importance scores, which showed that 

importance scores were significantly positively associated with increased relative gene set 

expression in the brain. 

Compared to simpler models that rely on a single PRS value per individual and more complex 

models that rely on “black-box” dimension reduction methods, gsPRS models have the potential 

of offering more interpretability and have the possibility to shed light on mechanisms involved in 

risk prediction and test specific gene set hypotheses. To improve interpretation of our models, 

we generated two sets of feature importance measurements that capture similar, but distinct 

information regarding the predictiveness of gsPRS. The feature importance measurements from 

the best group of gsPRS (Table 2) show how useful each gsPRS and PRS-CS were in that 

specific model. Unsurprisingly, the ranking is led by the PRS-CS from a cross-disorder GWAS 

that studied the shared risk across multiple psychiatric disorders including ADHD and the PRS-

CS calculated from the training subset. Those PRS-CS are followed by a group of gsPRS that 
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collectively led to significant improvements in prediction. It is likely that this group contains less 

overlapping risk information relative to other groupings since such overlaps would increase 

model complexity without adding value for prediction. However, overlapping gsPRS could still 

be important individually or in different groupings. Therefore, we calculated average gsPRS 

feature importance in 10,000 models that each used 40 gsPRS as input. This average 

represents how often and how strongly each gsPRS was able to improve prediction.  

With this list of gsPRSs and their feature importance, we sought to further validate our methods 

by testing for correlations with what is known about the neurobiology of ADHD [32, 33]. Our 

baseline regression analysis found a significant negative correlation between relative gene set 

expression in the brain and MAGMA gene set association p-value. This met our expectation 

since MAGMA is a widely used tool and we would expect that gene sets more associated with 

ADHD and correlated phenotypes would be correlated with increased relative expression of that 

gene set in the brain, which is consistent with the report of Demontis et al [1]. Our analysis 

adding mean gsPRS importance score to the baseline regression analysis found that, even after 

correcting for MAGMA gene set association, mean gsPRS importance score was significantly 

positively correlated with relative gene set expression in the brain. This suggests that the mean 

gsPRS importance scores can be used to select biologically relevant gene sets beyond their 

association with ADHD as calculated using MAGMA.  This finding suggests that combining 

MAGMA and mean gsPRS importance scores could provide a better way to prioritize gene sets 

for future study compared with using MAGMA alone.  

We were also interested to test whether the correlations between relative gene set expression in 

the brain and mean gsPRS importance scores were dependent on whether the gsPRS was 

calculated using the ADHD training subset or from summary statistics of the correlated 

phenotypes. In both groups (ADHD and correlated phenotypes), the correlation between gene 

set expression and importance scores remained significant but the correlation of relative gene 
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set expression in the brain and gsPRS importance score was stronger when the gsPRS was 

developed using summary statistics from correlated phenotypes (see Figure 4). This finding 

may seem counterintuitive, considering that most of the gsPRS from other phenotypes had low 

gsPRS importance scores relative to the gsPRS calculated using the ADHD training subset. 

However, when a gsPRS from a correlated phenotype is predictive in ADHD that gene set has 

shown an association and importance in its initial study, the ADHD training subset in our study, 

and the ADHD test subset in our study. We find it unsurprising that gsPRSs calculated from 

such generalizable gene sets would be more likely to represent true risk signals and therefore 

be more likely to have increased relative gene set expression values in the brain.  

The learning curves suggest that the performance improvements from gsPRS should increase 

with increasing sample size. More complex models generally require more data to train, as 

demonstrated by the early stages of the learning curve that show perfect training subset 

performance and no predictability in the validation subset as the model is complex enough and 

sample size is low enough to memorize the training data instead of learning patterns among 

those data. In both learning curves, it is evident that the model is better at predicting the training 

data compared to the validation data even after selecting hyperparameters that specifically 

maximize prediction in the validation subset. This further illustrates the importance of testing 

performance on data the model does not learn from during training to get an accurate 

representation of model performance and generalization.  As training size increases, the model 

can no longer rely on memorization and starts to learn patterns that generalize to the validation 

subset. The continued validation subset prediction improvements at the highest training sizes 

suggest that the model could still benefit from more training data. In comparison, the learning 

curve of a random forest model using only PRS-CS shows a quick plateau to optimal 

performance and additional training size does not further improve performance.  
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Our study has several limitations that could limit performance. To best estimate model 

performance and reduce overfitting, we split our data into several subsets, thereby limiting the 

number of study participants available to train the models. We also adjusted for the effects of 

the top 5 principal components in a PCA of the training subset to control for ancestry. This 

adjustment could inadvertently remove non-confounding information that might have improved 

performance and likely does not remove all ancestry information. A better method of selectively 

removing known confounders like ancestry would likely further improve both the performance 

and generalizability of these models. The gene sets we used to sum sets of SNPs into gsPRS, 

although capture the biological functions and pathways, may not be ideally suited for prediction 

tasks. A more data-driven approach to develop sets of SNPs that best collectively predict 

diagnosis may be necessary to maximize prediction performance.  

More advanced machine learning methods and architectures may also lead to more predictive 

models. Including data beyond genotype information like clinical data and data that captures at 

least a portion of the environmental component of ADHD pathology could help machine learning 

models better estimate ADHD risk and better separate ADHD cases and controls. With the right 

set of interpretation tools, models that can accurately discriminate ADHD cases and controls 

would be useful in improving our understanding of the disorder and allow for testing specific 

hypotheses. 
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Figure 1. Model ROC Comparison. The logistic regression model using traditional PRS 
methods had an AUC of 0.62 (95% CI: 0.60 – 0.64). The logistic regression model using PRS-
CS methods had an AUC of 0.66 (95% CI: 0.64 – 0.68). The random forest model using PRS-
CS and an optimized group of 20 gsPRS had an AUC of 0.72 (95% CI: 0.70 – 0.74).  
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Figure 2. Learning Curves for gsPRS + PRS-CS Random Forest Model. The learning curve 
analysis of the random forest model containing all PRS-CS and the best group of 20 gsPRS. 
Each point represents the accuracy of the model when trained with a set number of training 
examples.  
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Figure 3. Learning Curves for PRS-CS only Random Forest Model. The learning curve 
analysis of the random forest model containing all PRS-CS. Each point represents the accuracy 
of the model when trained with a set number of training examples. 
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Figure 4. Predictive Margins Analysis of Interaction between Importance Score and 
Relative Gene Set Expression. When the variable indicating gsPRS development in the ADHD 
training subset was fixed to 0 (developed in a correlated disorder) there was a significant 
positive association with a slope of 4.7 (p < 0.001). When the variable was fixed to 1 (developed 
in the ADHD training subset) there was a significant positive association with a slope of 0.60 (p 
= 0.015). 
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Table 1. Summary statistics from genetically correlated phenotypes that were used to 
generate additional genetic risk features. 

Trait  rg N SNP.h2 
Age at first sexual intercourse  -0.584 339614 0.1132 
Opioid use  0.565 78808 0.146 
College completion  -0.524 95427 0.105 
Childhood IQ  -0.461 12441 0.2744 
Extreme obesity (childhood)  0.436 7916 0.5078 
Autism spectrum disorder  0.384 46350 0.1944 
Time spent watching television (TV)  0.372 365236 0.1023 
PGC cross disorder  0.262 61220 0.1715 
Intracranial Volume  -0.248 26577 0.2467 
Myopia  -0.217 78647 0.1532 
 

Table 2. Top feature importance scores for the best group of gsPRS and PRS random forest model.  

Feature Phenotype Importance 
Genome Wide Polygenic Risk Score pgc cross disorder 0.0324 

Genome Wide Polygenic Risk Score training subset 0.0250 

GO_CELLULAR_RESPONSE_TO_ENDOGENOUS_STIMULUS training subset 0.0055 

GO_POSITIVE_REGULATION_OF_PROTEIN_MODIFICATION_PROCESS training subset 0.0044 

GO_RESPONSE_TO_TOXIC_SUBSTANCE training subset 0.0032 

GO_REGULATION_OF_PRESYNAPSE_ORGANIZATION training subset 0.0027 

GO_REGULATION_OF_PLASMA_LIPOPROTEIN_PARTICLE_LEVELS training subset 0.0026 

GO_POSITIVE_REGULATION_OF_TRANSFERASE_ACTIVITY training subset 0.0026 

GO_PRESYNAPSE_ORGANIZATION training subset 0.0025 

GO_SYNAPTIC_SIGNALING pgc cross disorder 0.0024 

Genome Wide Polygenic Risk Score age first had sexual 
intercourse 

0.0022 

GO_REGULATION_OF_VASCULAR_PERMEABILITY training subset 0.0019 

GO_PRIMARY_ALCOHOL_BIOSYNTHETIC_PROCESS training subset 0.0018 

GO_HEAD_DEVELOPMENT pgc cross disorder 0.0017 

GO_LIPASE_ACTIVITY training subset 0.0017 

GO_REGULATION_OF_NEURON_DIFFERENTIATION pgc cross disorder 0.0014 

GO_MICROTUBULE_PLUS_END_BINDING training subset 0.0013 

GO_NEURON_DIFFERENTIATION pgc cross disorder 0.0012 

GO_CEREBELLAR_GRANULAR_LAYER_FORMATION training subset 0.0011 

GO_SOMATODENDRITIC_COMPARTMENT pgc cross disorder 0.0009 

GO_POSITIVE_REGULATION_OF_EXCITATORY_POSTSYNAPTIC_POTENTIAL training subset 0.0008 

GO_REGULATION_OF_MEMBRANE_POTENTIAL pgc cross disorder 0.0008 
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Gene Set Mean PEM Predicted PEM MAGMA p-value Average RF Importance Number of SNPs Number of Genes

GO_NEURON_PROJECTION 0.155 0.175 8.22E-05 0.021 44788 1177

GO_NEUROGENESIS 0.122 0.162 3.34E-04 0.018 52201 1462

GO_SYNAPSE 0.173 0.162 3.30E-07 0.018 47230 1197

GO_SYNAPTIC_SIGNALING 0.199 0.160 4.48E-05 0.017 26641 672

GO_NEURON_DIFFERENTIATION 0.128 0.150 1.84E-04 0.015 45854 1225

GO_POSITIVE_REGULATION_OF_NUCLEOBASE_CONTAINING_COMPOUND_METABOLIC_PROCESS 0.048 0.139 1.17E-03 0.013 36750 1668

GO_POSTSYNAPSE 0.196 0.134 2.00E-08 0.012 24875 552

GO_REGULATION_OF_NEURON_DIFFERENTIATION 0.136 0.133 1.81E-03 0.012 23279 589

GO_SOMATODENDRITIC_COMPARTMENT 0.164 0.133 6.08E-05 0.011 26955 742

GO_DENDRITIC_TREE 0.171 0.131 2.43E-04 0.011 20277 537

GO_CENTRAL_NERVOUS_SYSTEM_DEVELOPMENT 0.121 0.130 4.78E-04 0.011 30812 878

GO_TRANSPORTER_COMPLEX 0.189 0.129 1.56E-04 0.010 13731 296

GO_NEURON_DEVELOPMENT 0.131 0.128 8.65E-04 0.010 40088 1006

GO_POSITIVE_REGULATION_OF_RNA_METABOLIC_PROCESS 0.048 0.122 1.33E-03 0.009 33699 1531

GO_RNA_BINDING 0.033 0.122 1.27E-03 0.009 26160 1439

GO_CELLULAR_RESPONSE_TO_ENDOGENOUS_STIMULUS 0.067 0.119 1.19E-03 0.057 33746 1313

GO_NEGATIVE_REGULATION_OF_NUCLEOBASE_CONTAINING_COMPOUND_METABOLIC_PROCESS 0.046 0.118 1.84E-04 0.008 26086 1270

GO_CHROMOSOME 0.046 0.118 4.21E-05 0.008 29296 1518

GO_REGULATION_OF_PROTEIN_MODIFICATION_PROCESS 0.060 0.117 1.27E-02 0.069 40580 1663

GO_AXON 0.173 0.116 2.82E-04 0.007 21993 559

GO_POSITIVE_REGULATION_OF_PROTEIN_METABOLIC_PROCESS 0.053 0.116 1.29E-02 0.066 36597 1538

GO_NEGATIVE_REGULATION_OF_BIOSYNTHETIC_PROCESS 0.047 0.115 4.51E-04 0.007 28004 1373

GO_HEAD_DEVELOPMENT 0.117 0.114 3.91E-04 0.007 23700 687

GO_REGULATION_OF_TRANSFERASE_ACTIVITY 0.061 0.114 1.58E-03 0.049 21424 872

GO_RESPONSE_TO_ENDOGENOUS_STIMULUS 0.066 0.114 3.77E-03 0.052 38639 1555

GO_POSITIVE_REGULATION_OF_TRANSFERASE_ACTIVITY 0.062 0.113 7.18E-04 0.046 15661 595

GO_RESPONSE_TO_HORMONE 0.061 0.113 5.64E-03 0.052 21031 918

GO_CELLULAR_RESPONSE_TO_NITROGEN_COMPOUND 0.076 0.113 4.39E-04 0.046 16495 640

GO_NEURON_TO_NEURON_SYNAPSE 0.212 0.112 2.18E-05 0.006 16050 325

GO_RESPONSE_TO_OXYGEN_CONTAINING_COMPOUND 0.063 0.111 1.15E-03 0.045 35199 1539

GO_NUCLEAR_CHROMOSOME 0.052 0.111 1.61E-05 0.006 21387 1111

GO_CELLULAR_RESPONSE_TO_OXYGEN_CONTAINING_COMPOUND 0.064 0.110 2.97E-03 0.046 25840 1086

GO_CATION_CHANNEL_COMPLEX 0.215 0.110 5.54E-05 0.006 11063 200

GO_REGULATION_OF_KINASE_ACTIVITY 0.063 0.110 1.43E-03 0.043 19777 779

GO_DOUBLE_STRANDED_DNA_BINDING 0.051 0.109 4.80E-06 0.006 17968 866

GO_CELLULAR_RESPONSE_TO_HORMONE_STIMULUS 0.061 0.109 2.51E-03 0.043 16003 649

GO_PROTEIN_MODIFICATION_BY_SMALL_PROTEIN_CONJUGATION_OR_REMOVAL 0.045 0.109 8.42E-04 0.006 19940 958

GO_REGULATION_OF_MEMBRANE_POTENTIAL 0.172 0.109 8.97E-04 0.006 15905 385

GO_DNA_BINDING_TRANSCRIPTION_FACTOR_ACTIVITY_RNA_POLYMERASE_II_SPECIFIC 0.060 0.108 1.33E-03 0.006 19603 964

GO_POSITIVE_REGULATION_OF_KINASE_ACTIVITY 0.067 0.108 6.42E-04 0.039 14412 525

GO_INTRINSIC_COMPONENT_OF_SYNAPTIC_MEMBRANE 0.263 0.108 8.55E-05 0.006 8077 153

GO_NEGATIVE_REGULATION_OF_RNA_BIOSYNTHETIC_PROCESS 0.048 0.108 2.43E-04 0.006 22829 1106

GO_REGULATION_OF_TRANS_SYNAPTIC_SIGNALING 0.204 0.106 8.09E-03 0.045 17171 412

GO_CHROMATIN 0.053 0.106 3.02E-05 0.005 20269 1061

GO_GLUTAMATERGIC_SYNAPSE 0.199 0.105 1.35E-03 0.006 15563 315

GO_NEGATIVE_REGULATION_OF_TRANSCRIPTION_BY_RNA_POLYMERASE_II 0.048 0.104 9.41E-04 0.005 15842 763

GO_REGULATORY_REGION_NUCLEIC_ACID_BINDING 0.052 0.102 1.14E-06 0.004 17376 851

GO_SEQUENCE_SPECIFIC_DOUBLE_STRANDED_DNA_BINDING 0.053 0.101 3.99E-06 0.004 15772 784

GO_SYNAPTIC_MEMBRANE 0.226 0.101 1.33E-06 0.004 19756 395

GO_INTRINSIC_COMPONENT_OF_POSTSYNAPTIC_MEMBRANE 0.280 0.101 7.87E-05 0.004 6017 112

GO_CHROMOSOME_ORGANIZATION 0.037 0.100 1.78E-04 0.004 21752 1050

GO_MOLECULAR_FUNCTION_REGULATOR 0.071 0.100 2.82E-02 0.060 40366 1635

GO_POSTSYNAPTIC_MEMBRANE 0.234 0.100 1.16E-06 0.004 15750 297

GO_POSITIVE_REGULATION_OF_MOLECULAR_FUNCTION 0.062 0.100 1.51E-02 0.043 43266 1605

GO_POSTSYNAPTIC_SPECIALIZATION_MEMBRANE 0.286 0.099 4.72E-04 0.004 6604 98

GO_SEQUENCE_SPECIFIC_DNA_BINDING 0.054 0.099 6.03E-06 0.003 20120 1046

GO_CELLULAR_RESPONSE_TO_PEPTIDE 0.056 0.099 2.00E-03 0.026 7744 350

GO_ACTION_POTENTIAL 0.149 0.099 5.01E-04 0.004 5293 116

GO_REGULATION_OF_POSTSYNAPTIC_MEMBRANE_POTENTIAL 0.244 0.099 7.07E-03 0.032 6015 129

GO_PROTEIN_MODIFICATION_BY_SMALL_PROTEIN_CONJUGATION 0.045 0.098 1.08E-03 0.004 16670 802

GO_RESPONSE_TO_PEPTIDE 0.055 0.097 1.27E-03 0.022 9833 474

GO_RESPONSE_TO_ANTIBIOTIC 0.063 0.097 1.35E-02 0.037 6719 297

GO_REGULATION_OF_CATION_CHANNEL_ACTIVITY 0.183 0.097 1.19E-03 0.003 7412 161

GO_RESPONSE_TO_NITROGEN_COMPOUND 0.073 0.096 2.24E-02 0.047 24761 1032

GO_EXCITATORY_SYNAPSE_ASSEMBLY 0.247 0.096 1.96E-04 0.018 1831 25

GO_POSITIVE_REGULATION_OF_SYNAPTIC_TRANSMISSION 0.212 0.096 3.01E-04 0.018 6142 155

GO_REGULATION_OF_SYNAPTIC_PLASTICITY 0.233 0.096 1.15E-03 0.019 7063 172

GO_CYTOKINE_MEDIATED_SIGNALING_PATHWAY 0.030 0.096 9.06E-03 0.029 12554 704

GO_CIS_REGULATORY_REGION_BINDING 0.048 0.095 5.95E-04 0.003 10191 542

GO_RESPONSE_TO_OXIDATIVE_STRESS 0.048 0.095 1.56E-02 0.037 8910 405

GO_SECRETION 0.070 0.095 2.02E-02 0.041 35079 1516

GO_POSTSYNAPTIC_SPECIALIZATION_ASSEMBLY 0.285 0.094 1.82E-03 0.017 1795 21

GO_GABA_ERGIC_SYNAPSE 0.274 0.094 1.12E-03 0.016 4259 63

GO_CHROMATIN_ORGANIZATION 0.041 0.094 1.16E-04 0.002 13964 666

GO_CELL_SURFACE_RECEPTOR_SIGNALING_PATHWAY_INVOLVED_IN_CELL_CELL_SIGNALING 0.082 0.093 1.32E-02 0.031 16639 566

GO_RESPONSE_TO_REACTIVE_OXYGEN_SPECIES 0.048 0.093 9.11E-03 0.025 4290 203

GO_T_TUBULE 0.138 0.093 2.36E-04 0.002 2190 50

GO_ANTEROGRADE_AXONAL_TRANSPORT 0.172 0.093 2.26E-04 0.002 1406 45

GO_REGULATION_OF_POSTSYNAPTIC_SPECIALIZATION_ASSEMBLY 0.300 0.092 1.31E-03 0.014 1421 13

GO_CELLULAR_RESPONSE_TO_REACTIVE_OXYGEN_SPECIES 0.048 0.092 3.22E-03 0.016 2838 143

GO_INTRINSIC_COMPONENT_OF_POSTSYNAPTIC_SPECIALIZATION_MEMBRANE 0.291 0.092 5.56E-04 0.002 4410 72

GO_CELLULAR_RESPONSE_TO_PEPTIDE_HORMONE_STIMULUS 0.056 0.092 9.62E-03 0.024 6544 291

GO_TRANSMEMBRANE_RECEPTOR_PROTEIN_TYROSINE_KINASE_SIGNALING_PATHWAY 0.064 0.092 1.92E-02 0.036 19320 651

GO_POSITIVE_REGULATION_OF_CATALYTIC_ACTIVITY 0.060 0.092 2.73E-02 0.046 34892 1289

GO_NEURON_SPINE 0.192 0.092 2.49E-04 0.002 6656 154

GO_NEURON_TO_NEURON_SYNAPSE 0.212 0.092 1.84E-02 0.035 16050 330

GO_POSTSYNAPSE_ASSEMBLY 0.265 0.092 2.55E-03 0.015 2480 28

GO_AXON_CYTOPLASM 0.149 0.092 6.45E-05 0.002 1705 52

GO_NEURON_PROJECTION_CYTOPLASM 0.143 0.092 1.42E-04 0.002 2480 76

GO_DENDRITIC_SPINE_MORPHOGENESIS 0.185 0.091 1.52E-03 0.012 2708 51

GO_REGULATION_OF_EXCITATORY_SYNAPSE_ASSEMBLY 0.279 0.091 3.98E-04 0.010 1432 15

GO_POSITIVE_REGULATION_OF_ENDOTHELIAL_CELL_MIGRATION 0.032 0.091 6.05E-03 0.017 2750 92

GO_CALCIUM_CHANNEL_COMPLEX 0.156 0.091 6.48E-05 0.001 3335 60

GO_NEGATIVE_REGULATION_OF_CATABOLIC_PROCESS 0.050 0.090 1.15E-02 0.023 7134 276

GO_RESPONSE_TO_PEPTIDE_HORMONE 0.055 0.090 1.41E-02 0.026 8333 395

GO_REGULATION_OF_DENDRITE_DEVELOPMENT 0.154 0.090 7.69E-03 0.018 7153 136

GO_REGULATION_OF_DENDRITIC_SPINE_MORPHOGENESIS 0.169 0.090 1.71E-03 0.010 1881 40

GO_POSITIVE_REGULATION_OF_EXCITATORY_POSTSYNAPTIC_POTENTIAL 0.273 0.090 6.93E-04 0.009 1561 25

GO_REGULATION_OF_SYNAPTIC_PLASTICITY 0.233 0.090 1.57E-03 0.002 7063 168

GO_LONG_TERM_SYNAPTIC_POTENTIATION 0.227 0.090 1.75E-03 0.010 3139 82
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Summary Statistics with Source Links 

ID 
 

Accessibi
lity Trait.x rg abs(rg) se z P P.bon PMID Year uniqTrait 

Popul
ation Case Control N SNP.h2 File 

3304 
Free 
download 

Age first 
had sexual 
intercourse 

-
0.584 0.584 0.031 -18.938 0 0 31427789 2019 

Age first had 
sexual 
intercourse 

UKB2 
(EUR) NA NA 339614 0.1132 

https://atlas.ctglab.nl/ukb2_sumstats/f.2139.0.0_res.E
UR.sumstats.MACfilt.txt.gz 

4230 
Free 
download Opioids 0.565 0.565 0.045 12.55 4.09E-36 5.05E-33 31015401 2019 Opioids 

UKB2 
(EUR) 22982 55826 78808 0.146 

http://cnsgenomics.com/data/wu_et_al_2019_nc/23_
medication-taking_GWAS_summary_statistics.tar.gz 

58 
Free 
download 

College 
completion 

-
0.524 0.524 0.052 -10.104 5.30E-24 6.54E-21 23722424 2013 

College 
completion EUR NA NA 95427 0.105 http://ssgac.org/documents/SSGAC_Rietveld2013.zip 

59 
Free 
download 

Childhood 
IQ 

-
0.461 0.461 0.089 -5.163 2.42E-07 0.000299 23358156 2014 Childhood IQ EUR NA NA 12441 0.2744 

http://ssgac.org/documents/CHIC_Summary_Benyam
in2014.txt.gz 

4297 
Free 
download 

Extreme 
obesity 
(childhood) 0.436 0.436 0.071 6.136 8.45E-10 1.04E-06 30677029 2019 

Extreme 
obesity EUR 1456 6460 7916 0.5078 

ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_stati
stics/Riveros-
McKayF_30677029_GCST007241/SCOOP_UKHLS_
ldcorrected.gz 

4037 
Free 
download 

Autism 
spectrum 
disorder 0.384 0.384 0.053 7.193 6.35E-13 7.84E-10 30804558 2019 

Autism 
spectrum 
disorder EUR 18381 27969 46350 0.1944 

https://www.med.unc.edu/pgc/results-and-
downloads/downloads 

3219 
Free 
download 

Time spent 
watching 
television 
(TV) 0.372 0.372 0.032 11.766 5.86E-32 7.24E-29 31427789 2019 

Time spent 
watching 
television 

UKB2 
(EUR) NA NA 365236 0.1023 

https://atlas.ctglab.nl/ukb2_sumstats/f.1070.0.0_res.E
UR.sumstats.MACfilt.txt.gz 

1191 
Free 
download 

PGC cross 
disorder 0.262 0.262 0.053 4.954 7.28E-07 0.000898 23453885 2013 

PGC cross 
disorder EUR 33332 27888 61220 0.1715 https://www.med.unc.edu/pgc/results-and-downloads 

1226 
Free 
download 

Intracranial 
Volume 

-
0.248 0.248 0.058 -4.314 1.60E-05 0.0198 27694991 2016 

Intracranial 
Volume EUR NA NA 26577 0.2467 

http://enigma.ini.usc.edu/research/download-enigma-
gwas-results/ 

3366 
Free 
download 

Age at 
menopaus
e (last 
menstrual 
period) 
(female) 

-
0.226 0.226 0.039 -5.844 5.08E-09 6.27E-06 31427789 2019 

Age at 
menopause 

UKB2 
(EUR) NA NA 119160 0.118 

https://atlas.ctglab.nl/ukb2_sumstats/f.3581.0.0_res.E
UR.sumstats.MACfilt.txt.gz 

3539 
Free 
download 

Reason for 
glasses/co
ntact 
lenses: For 
short-
sightednes
s, i.e. only 
or mainly 
for 
distance 
viewing 
such as 
driving, 
cinema etc 
(called 
'myopia') 

-
0.217 0.217 0.048 -4.523 6.08E-06 0.0075 31427789 2019 

Reason for 
glasses/contact 
lenses: For 
short-
sightedness 

UKB2 
(EUR) 32082 46565 78647 0.1532 

https://atlas.ctglab.nl/ukb2_sumstats/6147_1_logistic.
EUR.sumstats.MACfilt.txt.gz 
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