
 1

Network-based spreading of grey matter changes across different stages of psychosis 1 
 2 

Sidhant Chopra1,2,3, Ashlea Segal1,2,  Stuart Oldham1,2, Alexander Holmes1,2, Kristina 3 
Sabaroedin1,2,12, Edwina R. Orchard1,2,4, Shona M. Francey5,6, Brian O’Donoghue5,6, Vanessa 4 
Cropley7, Barnaby Nelson5,6, Jessica Graham5,6, Lara Baldwin5,6, Jeggan Tiego1,2, Hok Pan 5 

Yuen5,6, Kelly Allott5,6, Mario Alvarez-Jimenez5,6, Susy Harrigan5,6,8, Ben D. Fulcher9, Kevin 6 
Aquino9,10, Christos Pantelis7,13, Stephen J Wood5,6,11, Mark Bellgrove1, Patrick McGorry5,6, 7 

Alex Fornito1,2 8 
 9 
 10 
 11 

1. Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash 12 
University, Clayton, Australia 13 

2. Monash Biomedical Imaging, Monash University, Clayton, Australia 14 
3. Department of Psychology, Yale University, New Haven, USA 15 

4. Child Study Centre, Yale University, New Haven, USA 16 
5. Orygen, Parkville, Australia 17 

6. Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia 18 
7. Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne 19 

8. Centre for Mental Health, Melbourne School of Global and Population Health, The 20 
University of Melbourne, Parkville, Australian 21 

9. School of Physics, University of Sydney, New South Wales, Australia 22 
10. Centre for Complex Systems, University of Sydney, New South Wales, Australia 23 

11. School of Psychology, University of Birmingham, Edgbaston, UK 24 
12. Departments of Radiology and Paediatrics, Hotchkiss Brain Institute and Alberta 25 

Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada 26 
13. NorthWestern Mental Health, Royal Melbourne Hospital & Western Hospital Sunshine, 27 

St Albans, Victoria, Australia 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
Corresponding Author:  41 
Sidhant Chopra (sidhant.chopra@yale.edu) 42 
Yale University 43 
Department of Psychology 44 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 1, 2023. ; https://doi.org/10.1101/2022.01.11.22268989doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.01.11.22268989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2

Key points (max 100 words) 45 
 46 
Question Are grey matter changes across the psychosis continuum constrained by brain 47 
network architecture and are certain regions epicentres of volume loss?  48 
 49 
Findings Across four independent samples spanning different stages of psychotic illness, 50 
grey matter alterations are strongly constrained by the underlying architecture of the brain’s 51 
axonal pathways and the hippocampus is consistently identified as a putative source from 52 
which volume-loss may spread to connected regions.  53 
 54 
Meaning White matter fibres may act as conduits for the spread of pathology across all 55 
stages of psychotic illness and medial temporal regions play a critical role in the origins of 56 
grey matter reductions. 57 
 58 
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Abstract (350 words) 76 

Importance: Psychotic illness is associated with anatomically distributed grey matter reductions that 77 
can worsen with illness progression, but the mechanisms underlying the specific spatial patterning of 78 
these changes is unknown. 79 
 80 
Objective: To test the hypothesis that brain network architecture constrains cross-sectional and 81 
longitudinal grey matter alterations across different stages of psychotic illness and to identify whether 82 
certain brain regions act as putative epicentres from which volume loss spreads.  83 
 84 
Design, Settings, Participants: This study included 534 individuals from 4 cohorts, spanning early 85 
and late stages of psychotic illness. Early-stage cohorts included patients with antipsychotic-naïve 86 
first episode psychosis (N=59) and a group of medicated patients within 3 years of psychosis onset 87 
(N=121). Late-stage cohorts comprised two independent samples of people with established 88 
schizophrenia (N=136 in total). Each patient group had a corresponding matched control group 89 
(N=218 in total). A further independent sample of healthy adults (N=346) was used to derive 90 
representative structural and functional brain networks for modelling of network-based spreading 91 
processes. We additionally examined longitudinal illness-related and antipsychotic-related grey matter 92 
changes over 3 and 12 months using a triple-blind randomised placebo-control MRI study of the 93 
antipsychotic-naïve patients. All data were collected between April 2008 and January 2020, and 94 
analyses were performed between March 2021 and January 2023.  95 
 96 
Main Outcomes and Measures: We used coordinated deformation models to predict the extent of 97 
grey matter volume change in each of 332 parcellated areas by the volume changes observed in areas 98 
to which they were structurally or functionally coupled. To identify putative epicentres of volume 99 
loss, we used a network diffusion model to simulate the spread of pathology from different seed 100 
regions. Correlations between predicted and empirical spatial patterns of grey matter volume 101 
alterations were used to quantify model performance. 102 
 103 
Results: In both early and late stages of illness, spatial patterns of cross-sectional volume differences 104 
between patients and controls were more accurately predicted by coordinated deformation models 105 
constrained by structural, rather than functional, network architecture (. 46 < 𝑟 <  .57;  p <  .001). 106 
The same model also robustly predicted longitudinal volume changes related to illness (𝑟 >  52; 𝑝 <107  .001) and antipsychotic exposure (𝑟 >  .50;  𝑝 <  .001). Diffusion modelling consistently identified, 108 
across all four datasets, the anterior hippocampus as a putative epicentre of pathological spread in 109 
psychosis (𝑎𝑙𝑙 𝑝 <  .05). Epicentres of longitudinal grey matter loss were apparent posteriorly early 110 
in the illness and shifted anteriorly to prefrontal cortex with illness progression. 111 
 112 
Conclusion and Relevance:  Our findings highlight a robust and central role for white matter fibres 113 
as conduits for the spread of pathology across different stages of psychotic illness, mirroring findings 114 
reported in neurodegenerative conditions. The structural connectome thus represents a fundamental 115 
constraint on brain changes in psychosis, regardless of whether these changes are caused by illness or 116 
medication. Moreover, the anterior hippocampus represents a putative epicentre of early brain 117 
pathology from which dysfunction may spread to affect connected areas.  118 
 119 
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Introduction 124 

Psychotic disorders such as schizophrenia are characterised by anatomically distributed reductions in 125 
grey-matter volume (GMV)1-7, many of which show evidence of progression over time and across 126 
different stages of illness8-14. Meta- and mega-analyses indicate that some of the most robust cross-127 
sectional GMV reductions are found in frontal, cingulate and temporal cortices, as well as medial 128 
temporal lobe and thalamus3-7,15-17, with longitudinal reductions identified in frontal, temporal and 129 
parietal cortices9,11. However, despite a large literature describing the location and nature of these 130 
brain changes, the specific mechanisms that give rise to their characteristic spatial pattern remain 131 
unknown.  132 
 133 
The human brain is an intricate network of functionally specialised regions linked by a complex web 134 
of axonal fibres, referred to as a connectome18. These fibres enable the widespread coordination of 135 
neuronal dynamics and the transport of trophic and other biological molecules throughout the brain. 136 
They can also act as conduits for the spread of pathology, such that illness processes originating in 137 
one area can propagate to affect distributed systems via multiple mechanisms19,20. This principle has 138 
been powerfully demonstrated in dementia, where GMV reductions in different neurodegenerative 139 
conditions have been shown to spread through the brain in a way that is constrained by the underlying 140 
architecture of the brain’s white-matter pathways21-24. 141 
 142 
Recent work suggests that a network-based spreading process may also be involved in psychosis. 143 
Cross-sectional grey-matter reductions in patients correlate with increased fractional anisotropy in 144 
regionally adjacent white matter25,  are often correlated across spatially distributed regions26-28, and 145 
correspond with normative connectome organisation29,30. In recent work, Shafiei, et al. 31 developed a 146 
coordinated-deformation model (CDM) in a sample of people with established schizophrenia that 147 
predicted the level of cross-sectional GMV reduction in an area based on the average reductions 148 
observed in other areas to which it was structurally connected.  149 
 150 
Together, these findings support the hypothesis that the spatial patterning of GMV loss in psychotic 151 
illness is constrained by connectome architecture. However, the few studies addressing this question 152 
have been cross-sectional and only examined patients with chronic illness, precluding an opportunity 153 
to track how coordinated grey-matter changes evolve through time and across illness stages. It thus 154 
remains unclear whether longitudinal GMV changes are actually constrained by brain network 155 
architecture, as would be expected for a network-based spreading process. Moreover, the reliance on 156 
samples of patients taking antipsychotic medication makes it difficult to determine whether coupled 157 
grey-matter changes are driven by treatments for the illness or the illness process itself.  158 
 159 
Here, we used multiple cohorts spanning different stages of psychosis to comprehensively evaluate 160 
network constraints on cross-sectional and longitudinal GMV changes. Specifically, we evaluated the 161 
capacity of different CDM variants, constrained by distinct aspects of connectome structure or 162 
function, to model cross-sectional GMV differences in two samples of patients at early illness stages 163 
and two samples of patients at later stages, allowing for independent replication of our findings at 164 
each stage. The early-stage samples comprised a group of antipsychotic-naïve first episode psychosis 165 
patients and a group of medicated patients within 3 years of illness onset. The late-stage samples 166 
comprised two independent samples of people with established schizophrenia. We additionally 167 
leveraged longitudinal data acquired within the context of a longitudinal, randomised placebo-168 
controlled study in the antipsychotic-naïve FEP group32,33 to evaluate the degree to which the CDMs 169 
predicted longitudinal GMV changes attributable to either antipsychotic medication or the illness 170 
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process itself, as observed over 3- and 12-month intervals. We then used a network-based diffusion 171 
model to simulate the dynamic progression of GMV loss from different seed areas to determine 172 
whether specific brain regions act as putative sources or epicentres of network-based spread. This 173 
approach thus allowed us to robustly investigate the degree to which brain network architecture 174 
constrains a diverse array of cross-sectional and longitudinal GMV pathology across different stages 175 
of psychosis and to identify possible focal points of early brain volume loss. 176 
 177 

Methods 178 

Sample characteristics 179 

This study used data from four independent datasets sampling different stages of the psychotic-illness 180 
continuum: the STAGES clinical trial13,33 (first episode psychosis; FEP), Human Connectome Project 181 
Early Psychosis34 (early psychosis; EP), BrainGluSchi35 (schizophrenia; SCZ-BGS), and COBRE36 182 
(schizophrenia; SCZ-COBRE). Hereafter, these cohorts will be referred to as FEP, EP, SCZ-BGS and 183 
SCZ-COBRE, respectively. We also derived representative structural and functional connectomes 184 
using a large independent healthy control sample. The final number of included subjects, 185 
demographic and diagnostic characteristics are described in Table 1 and additional details about each 186 
dataset are provided in the Supplement1A. 187 
 188 
 189 
 190 
   First episode psychosis 

(FEP) 
N=86 

Early psychosis 
(EP) 
N=178 

Schizophrenia 
(SCZ-COBRE) 
N=138 

 Schizophrenia  
(SCZ-BGS) 
N=132 

 Independent 
healthy control
N=356 

   Placebo Antipsychotic Matched 
control  

Patient  Matched 
control  

Patient Matched 
control 

 Patient Matched 
control 

 Independent 
healthy control 

N  
Bl =30; 
3m=21; 
12m=22 

Bl =29; 
3m = 20; 
12m =14 

Bl =27; 
3m = 21; 
12m =21 

121 57 66 72  70 62  356 

Baseline age, 
years ± SD  

  
18.8±2.7 

  
19.5±2.9 

  
21.9±1.9 23.3± 3.9 23.4±3.9 38.0±14.1 35.9±11.7  36.6±13.4 38.22±12.4   23.7±5.4 

  
Baseline Females, 
N (%)  

  
14 (46.6) 

  
13 (44.8) 

 
17 (62.9) 47 (38.9) 30 (35.0) 12 (18.8) 23 (31.9)  10 (14.2) 14 (22.6)   198 (55.6) 

  
Diagnosis, N              
  Major depression 
w/ psychosis  7 5 - 5 - 0  -  0 -  - 

Schizophreniform 
disorder  5 5 - 8 - 0 -  0 -  - 

   Psychotic 
disorder NOS  8 7 - 0 - 0 -  0 -  - 

  Substance-
induced psychotic 
disorder  4 2 - 0 - 0 -  0 -  - 

   Delusional 
disorder  1 4 - 0 - 0 -  0 -  - 

  Schizoaffective 
disorder     13 - 6 -  0 -  - 

  Schizophrenia 5 5 - 61 - 60 - 70 - - 
 
  Bipolar Disorder 
w/ psychosis  0 0 - 25 - 0 -  0 -  - 

 Missing diagnosis 0 1 - 0 - 0 - 0 - - 
  
Illness Duration 
(Years)   <0.5   <0.5  -  1.8 (1.4) - 16.0 

(12.2) -  
18.2 
(12.9) -   - 
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Symptom 
severity, scale; 
mean ± SD 

 

Baseline 
BPRS Total; 
59.4 ±9.64 

Baseline 
BPRS Total; 
55.8 ±10.10 

 - 
PANSS 
Total; 
49.7±11.0

- 
PANSS 
Total; 
58.4±13.6

-  
PANSS; 
60.7±16.9 

-   - 

Functional 
outcome, scale; 
mean ± SD 

 

Baseline 
SOFAS;  
52.9 ±14.0 

Baseline 
SOFAS; 
51.7±10.6 

 - 
GAF; 
66.4± 
16.6 

- 
CGI; 
3.7±0.6 

-  
CGI; 3.9± 
0.8 

-   - 

Table 1 - Sample characteristics of included datasets.   191 
Abbreviations: NOS = not otherwise specified; BPRS = Brief Psychiatric Rating Scale version 4; SOFAS = 192 
Social and Occupational Functioning Assessment Scale; Bl = baseline, 3m = 3-months, 12m = 12months; 193 
PANSS = Positive and Negative Syndrome Scale, GAF = Global Assessment of Functioning Scale (average of 194 
the social and occupational rating items); CGI: The Clinical Global Impressions Scale.  195 
 196 
 197 
Structural MRI processing 198 
Acquisition parameters for structural MRI can be found in Supplement1B. Prior to processing, raw 199 
T1w scans were visually examined for artefacts and then subjected to an automated quality control 200 
procedure37. In the FEP, EP, SCZ-BGS and SCZ-COBRE datasets, three, eight, six and four patient 201 
scans did not pass image quality control, respectively, and were excluded due to artefacts (see 202 
Supplement). The remaining scans were processed using the deformation-based morphometry (DBM) 203 
pipeline of the Computational Anatomy Toolbox (version r1113)38 for the Statistical Parametric 204 
Mapping 1239 software running in MATLAB version 2019a (details in the Supplement1C). We used 205 
DBM to quantify volume changes because it does not require tissue segmentation, requires less spatial 206 
smoothing40 than voxel-based morphometry (VBM) and to be comparable to previous work24,31. 207 
However, we replicated our primary findings using VBM (see Robustness analyses). 208 
 209 
Quantifying cross-sectional and longitudinal grey matter changes in patients 210 
To map spatial patterns of group-level cross-sectional and longitudinal volume change, we used a 211 
robust marginal model implemented in the Sandwich Estimator Toolbox41, which combines ordinary 212 
least squares estimates of parameters of interest with estimates of variance/covariance based on a 213 
robust sandwich estimator, thus accounting for within-subject correlations in longitudinal studies. 214 
This method is asymptotically robust to misspecification of the covariance model and does not depend 215 
on the assumptions of common longitudinal variance structure across the whole brain. All contrasts 216 
were adjusted for age, sex, and handedness, with site additionally included for the EP dataset.  217 
 218 
We conducted cross-sectional contrasts in each of the four patient datasets to capture cross-sectional 219 
GMV differences between patients and controls (Fig1A). Longitudinal GMV changes were mapped in 220 
the FEP dataset (Fig1A) to isolate: (1) illness-related change over time, by comparing GMV changes 221 
overt time in the placebo group to matched healthy controls; and (2) antipsychotic-related changes 222 
over time, which compared GMV changes in the medication group to both the placebo group and 223 
matched healthy controls (see also13). Longitudinal contrasts were assessed from baseline to 3 months 224 
and baseline to 12 months, with a linear contrast being used for the latter. Contrasts were specified 225 
such that positive values in the resulting voxel-wise t-statistic maps indicate lower volume in patients 226 
compared to controls at cross-sectional contrast, and a greater longitudinal GMV decline in patients 227 
compared to controls in the longitudinal contrasts.  The t-statistics were converted to z-scores, and we 228 
applied the CDM to unthresholded z-maps encoding regional GMV changes, as we are interested in 229 
capturing the spatial patterning of GMV differences across the entire brain, not just the changes which 230 
survive a statistical threshold. Renderings of the unthresholded t-maps can be found in Fig1A-C and 231 
Fig2A-B. FDR-corrected and uncorrected voxel-level t-statistic maps for each contrast are provided in 232 
the Supplements1F-1G.  233 
 234 
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Brain Parcellation 235 
To relate grey-matter alterations to connectome architecture, we parcellated the brain into 300 discrete 236 
cortical regions of approximately equal size42, in addition to 32 subcortical areas43, using previously 237 
validated atlases. The volume change for each region was estimated as the mean z-statistic of all 238 
voxels corresponding to that region. The regions comprise the nodes of a network, which can then be 239 
directly related to measures of inter-regional SC and FC. 240 
 241 
Healthy reference connectomes 242 
We derived a group-level healthy structural connectome from diffusion-weighted imaging (DWI) data 243 
from an independent sample of 356 adults (Fig1B; Table 1), which served as a reference connectome 244 
for computational modelling. Acquisition parameters and detailed overview of DWI processing and 245 
optimisation can be found in Supplement1D. This procedure resulted in a single 332  332 weighted 246 
group-average SC matrix.  247 
 248 
We also derived a group-level healthy functional connectome from resting-state fMRI data acquired 249 
in the same independent sample of adults (Fig1B). Acquisition parameters for functional MRI and 250 
detailed information on fMRI processing can be found in Supplement1E. Given ongoing controversy 251 
around the application of global signal regression44,45, we evaluated how this step affected our 252 
findings (see Robustness analyses). After processing and denoising, we computed a whole-brain 253 
332  332 FC matrix for each subject using pair-wise Pearson correlations between the timeseries of 254 
each of the 332 regions and finally took a mean FC matrix across the sample.  255 
 256 

 257 
Fig1. - Analysis workflow for the Coordinated Deformation Model. (A) We derived voxel-wise GMV 258 
estimates using Deformation-based morphometry (DBM). Five separate contrasts were specified using a robust 259 
marginal model to infer baseline GMV differences and longitudinal GMV changes associated with illness and 260 
antipsychotic medication at 3 months and 12 months. (B) The contrast statistics were mapped to a brain 261 
parcellation comprising 332 regions, and diffusion and functional MRI data from an independent healthy sample 262 
were used to generate sample-averaged functional coupling (FC) and structural connectivity (SC) matrices. 263 
These matrices were used to model average volume changes in structurally connected neighbours. Under the 264 
CDM, the predicted deformation of a node, 𝑑 , is modelled as a weighted sum of the deformation values 265 
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observed its structurally connected neighbours (shown as light blue nodes in the example graphs). The weights 266 
are given by the adjacency matrix, 𝐴 . Three different matrices were used, yielding three CDM variants; (1) A 267 
model denoted as CDMSC, in which 𝐴 = 1 if two regions share a connection and 𝐴 = 0 otherwise; (2) a 268 
model denoted as CDMSCw in which the elements of 𝐴  correspond precisely to the weighted SC matrix, such 269 
that the contribution of each neighbour is weighted by the strength of its structural connectivity to the index 270 
node; and (3) a model denoted CDMFCw, in which the elements of 𝐴  correspond precisely to the weighted FC 271 
matrix, such that the contribution of each neighbour is weighted by its FC with the index node. (C) Model 272 
performance was evaluated using the Pearson correlation between regional estimates of observed and predicted 273 
GMV differences. (D) We also compared model performance to three benchmark null models accounting for 274 
spatial autocorrelations in the deformation maps (Nullsmash and Nullspin) and basic topological properties of the 275 
connectome (Nullrewire; see CDM evaluation). 276 

 277 
Coordinated Deformation Model (CDM) – Network Constraints 278 
We evaluated network constraints on cross-sectional and longitudinal GMV changes using the CDM 279 
introduced by Shafiei, et al. 31. The model is given by 280 
 281 𝑑 =   ∑  𝐴 𝑑,  , 282 
 283 
where 𝑑  is the predicted GMV change in node 𝑖, 𝑁  is the number of structurally connected 284 
neighbours of 𝑖, 𝑑  is the deformation observed in the 𝑗-th neighbour of node 𝑖, and 𝐴  defines the 285 
connectivity between nodes 𝑖 and 𝑗. 286 
 287 
Three different matrices were substituted for 𝐴 , yielding three variants of the CDM (Fig1B). For the 288 
first model, denoted CDMSC, 𝐴 =1 if nodes 𝑖 and 𝑗 are connected in the group-average SC matrix and 289 
zero otherwise. Therefore, all 𝑗 structurally connected neighbours make an equal contribution to 290 
predicting the extent of deformation observed in node 𝑖. 291 
 292 
For the second and third models, denoted CDMSCw and CDMFCw,  𝐴  corresponded to the weighted 293 
SC or FC matrices, respectively. Therefore, under these models, the contributions of node 𝑖’s 294 
neighbours were weighted by either inter-regional SC (CDMSCw) or FC (CDMFCw) estimates, such that 295 
neighbours of node 𝑖 with a more strongly weighted connection made a stronger contribution to 296 
predicting node 𝑖’s volume change (Fig1B). In all models, only edges that had a corresponding 297 
structural connection were included and SC and FC edge weights were taken from the healthy 298 
reference connectome, unless otherwise specified.  299 
 300 
CDM evaluation  301 
Model performance was evaluated using the product-moment correlation (𝑟) between region-wise 302 
estimates of observed and predicted deformation (Fig1C). We also compared the performance of the 303 
CDMSC, CDMSCw and CDMFCw models to three benchmark null models. The first (Fig1D; Nullsmash) 304 
and second (Fig1D; Nullspin) null models evaluated whether the observed findings were specific to the 305 
empirically observed pattern of grey-matter deformations or were a generic property of the intrinsic 306 
spatial correlation structure of the deformation maps. The third null model (Fig1D; Nullrewire) tests the 307 
hypothesis that any network-based prediction of local grey-matter change is specific to the actual 308 
topology of the connectome itself and cannot be explained by basic network properties, such as 309 
regional variations in node degree or the spatial dependence of inter-regional connectivity46. Further 310 
details about benchmark null models can be found in the Supplement1H. 311 
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 312 
Network Diffusion Model (NDM) – Epicentre Identification 313 
The CDM evaluates the degree to which spatial patterns of GMV change are shaped by connectome 314 
properties. A close coupling between GMV change and network architecture implies that volume loss 315 
spreads through the connectome, but the CDM offers limited insight into the dynamics of the 316 
spreading process, nor is it able to identify regions from which the spreading may initiate. We 317 
therefore used a NDM to directly test whether GMV loss spreads through the brain via a process of 318 
diffusion and whether certain brain regions act as sources, or epicentres, of pathological spread 319 
through the brain (Fig4)47. The NDM simulates the dynamic spread of pathology between the nodes 320 
of a weighted network via a process of diffusion (Fig4A), defined as 321 
 322 𝑓(𝑡) =  𝑒 𝑓  , 323 
 324 
where 𝑡 is the model diffusion time, which has arbitrary units (a.u.), and  𝑓(𝑡) is a vector 325 
characterizing the amount of diffusion in each region at time 𝑡. The strength of the diffusion process 326 
is controlled by a constant (𝛼) and 𝐻 is the Laplacian of the weighted SC matrix. 𝑓  represents the 327 
initial distribution of pathology. We repeatedly initialized the model using each of the 332 regions as 328 
the starting seed, such that the initial state was set to 1 for the seed region, and 0 for all other regions. 329 
At each initialization, using a constant of 𝛼 = 1, the NDM was used to estimate the diffusion at all 330 
other regions at time 𝑡 =  0 to 50. In this way, we were able to determine whether a diffusion process 331 
seeded from each region resulted in a spatial distribution of volume loss that matched the empirically 332 
observed patterns. Further information about the NDM can be found in the Supplement1I.  333 
 334 
NDM evaluation  335 
Consistent with prior work 47,48, model performance was evaluated as the Pearson correlation between 336 
the predicted diffusion and observed volume abnormalities at each time step and for each seed, with 337 
the maximum correlation (Fig4A; 𝑟 ) across all time steps being retained. The observed regional t-338 
statistics were rescaled to a more interpretable non-negative quantity via a log-transformation, 339 
yielding values in the range [0,1]47-49. The seed region was excluded when correlating predicted and 340 
observed volume abnormalities to ensure that our analysis was not influenced by large volume 341 
abnormalities in the seeds. The performance of the NDM in capturing the empirical maps of GMV 342 
change was compared to its performance in capturing surrogate maps generated using the Nullsmash and 343 
Nullrewire benchmark models (Fig4A). The Nullspin benchmark was not used to evaluate the NDM as it 344 
does not include subcortical regions. Further details about benchmark null models used to evaluate the 345 
NDM can be found in the Supplement1I.  346 
 347 
To aid comparison with previous research31, we also implemented a data-driven approach to epicentre 348 
identification that defines epicentres as regions with high volume loss that are also connected to other 349 
regions with high volume loss (FigS2; see Supplement1J for details). The spatial locations of 350 
epicentres identified by this approach closely aligned with the results of the NDM epicentre analysis.  351 
 352 

Results 353 

Structural connectivity shapes cross-sectional grey matter differences across illness stages 354 
We first evaluated the performance of the three CDMs in capturing cross-sectional differences in 355 
regional GMV. In all datasets, the CDMSCw model yielded more accurate predictions of cross-356 
sectional empirical GMV case-control differences (. 46 < 𝑟 <  .57; Fig2E-H) when compared with 357 
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the CDMSC and CDMFCw models (𝑎𝑙𝑙 𝑟 < .35 ; Fig2E-H). For all data sets, the performance of the 358 
CDMSCw was also significantly better than all three benchmark models (all 𝑝 <  0.01). The CDMSC 359 
and CDMFCw generally did not surpass the performance of the benchmark models.  360 
 361 
 362 

 363 

Fig2. – Baseline and longitudinal illness-related GMV changes are constrained by connectome 364 
anatomy. (A-D) The contrast statistics for four cross-sectional contrasts mapped to a brain 365 
parcellation comprising 332 regions. (E-H) Performance of the equally weighted (CDMSC), structural 366 
connectivity-weighted (CDMSCw), and functional coupling-weighted (CDMFCw) models relative to the 367 
Nullsmash, Nullspin, and Nullrewire benchmarks. Black circles indicate the observed rank correlations 368 
between predicted and actual regional deformation values for each model at each timepoint, with red 369 
borders indicating statistical significance. Note that the observed value used for comparison against 370 
the Nullspin models is different because the subcortex was excluded. (I–L) Scatterplots of the 371 
association between observed and predicted regional volume deformation values for the best 372 
performing CDMSCw model at each timepoint.  373 

 374 
Structural connectivity shapes longitudinal GMV changes  375 
Having robustly demonstrated that cross-sectional grey matter differences at different illness stages 376 
are related to connectome structure, we next tested the implicit assumption of the CDM––that 377 
longitudinal GMV changes spread across axonal pathways––by considering longitudinal illness-378 
related and medication-related changes in the FEP sample.  379 
 380 
Predictions of the CDMSCw model for illness-related grey matter changes at 3 and 12 months were 381 
correlated with empirical changes at 𝑟 = .58 (Fig3E) and 𝑟 = .52 (Fig3F), respectively, and both 382 
were significantly better than all three benchmark models (all 𝑝 <  .001). By comparison, correlations 383 
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for the CDMSC and CDMFCw did not exceed 𝑟 = .38 and only showed significantly better performance 384 
compared to the Nullsmash and the Nullspin at 3 months, but not connectome benchmarks (all 𝑝 >385  0.05; Fig2E F). 386 
 387 
Predictions of the CDMSCw model for antipsychotic-related grey-matter changes were correlated with 388 
the empirical maps at 𝑟 = .51 (Fig3E) for 3 months and 𝑟 = .25 (Fig3F) for 12 months. This 389 
association was statistically significant when compared to all three null models (all 𝑝 <  0.01; Fig3C-390 
D). Associations at 3 months and 12 months were smaller for the CDMSC (𝑟 = .34 and 𝑟 =  .24, 391 
respectively) and CDMFCw models (𝑟 = .38 and 𝑟 =  .31, respectively). At 3 months, the CDMSC and 392 
CDMFCw models only showed significantly better performance than the Nullsmash and Nullspin (𝑝 <393  .01) benchmarks. At 12 months, the CDMSC model showed significantly better performance than the 394 
Nullsmash and Nullrewire benchmarks and the CDMSC model showed significantly better performance 395 
than the Nullsmash and Nullspin benchmarks (𝑝 <  .05). Thus, connectome structure represents a generic 396 
constraint on both illness-related and medication-related longitudinal GMV changes in psychosis. 397 
 398 

 399 
Fig3 – Longitudinal illness-related and antipsychotic-related GMV changes are constrained by 400 
connectome anatomy. (A-D) The contrast statistics for illness-related and antipsychotic-related 401 
contrasts mapped to a brain parcellation comprising 332 regions. (E-H) Performance of the equally 402 
weighted (CDMSC), structural connectivity-weighted (CDMSCw) and functional coupling-weighted 403 
(CDMFCw) models relative to the Nullsmash, Nullspin, and Nullrewire benchmarks. Black circles indicate 404 
the observed rank correlations between predicted and actual regional deformation values for each 405 
model at each timepoint, with red borders indicating statistical significance. Note that the observed 406 
value used for comparison against the Nullspin models is different because the subcortex was excluded. 407 
(I-L) Scatterplots of the association between observed and predicted regional deformation values for 408 
the best performing CDMSCw model at each timepoint.  409 
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 410 
Epicentres of grey matter volume loss 411 
We next used the NDM to simulate the dynamic spread of GMV loss from each individual brain 412 
region. Results using the Nullsmash benchmark are presented below (Fig4C-J) and results using the 413 
Nullrewire benchmark are presented in the Supplement (FigS4). Across all cross-sectional comparisons, 414 
medial temporal lobe regions emerged as statistically significant epicentres (Fig4C-F). In particular, 415 
the anterior hippocampus was consistently implicated across all datasets (𝑝 < 0.05), surviving 416 
multiple comparison correction (𝑝 < 0.05) in the two schizophrenia samples. In the FEP dataset, 417 
additional epicentres were identified in bilateral occipital and temporal cortex, as well as 418 
hippocampus, amygdala, and posterior thalamic regions (Fig4C). In the EP dataset, additional 419 
epicentres were identified in temporal and posterior cingulate cortex, (Fig4D). In both schizophrenia 420 
samples, additional epicentres were identified in temporal cortex, amygdala, and posterior thalamic 421 
regions (Fig4E-F). Consistent results were obtained using the Nullrewire benchmark (FigS4). 422 
 423 
In the FEP sample, epicentres of longitudinal illness-related loss were identified in medial frontal 424 
regions at 3 months and progressed to include much of the frontal cortex, as well as striatal and 425 
thalamic regions, by 12 months (Fig4G-H). Comparison with the connectome-based null benchmarks 426 
were more conservative, but also implicated prefrontal regions (FigS4).  427 
 428 
Epicentres of longitudinal antipsychotic-related GMV loss in FEP were identified in sensorimotor, 429 
cingulate and insula cortices, as well as thalamic and amygdala regions at 3 months, with the same 430 
cortical epicentres also identified at 12 months (Fig4I-J). These results were largely consistent when 431 
using the Nullrewire models (FigS4). Scatter plots of observed and predicted volume abnormalities for 432 
all contrasts are provided in the Supplement (FigS3).  433 
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 434 

 435 
Fig4 – Regional epicentres of grey matter loss. (A) Epicentres were defined as potential sources of pathological 436 
volume loss from which GMV reductions spread (Blue) to affect structurally connected areas. To identify such 437 
regions, we simulated a spreading process using a Network Diffusion Model (NDM), (B) using each of the 332 438 
parcellated regions as a seed, we retained the maximum correlation between the simulated and observed GMV 439 
abnormalities (𝑟 ). For each contrast, we then compared 𝑟  values for each region to distribution of 440 𝑟 values from two benchmark null models accounting for spatial autocorrelations in the deformation maps 441 
(Nullsmash) and basic topological properties of the connectome (see Model evaluation (NDM)). Regional 442 
epicentres with significantly greater 𝑟  than a spatially constrained null model (Orange = 𝑝 < 0.05; Red =443  𝑝 < 0.05) are shown for cross-sectional (C-F) and longitudinal (G-J) effects. Results using Nullrewire 444 
benchmark models, and scatter plots of observed and predicted volume abnormalities are provided in 445 
Supplement (FigS3).  446 
 447 
 448 
 449 
 450 
 451 
 452 
 453 
 454 
 455 
 456 
 457 
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Robustness analyses 458 
The magnitude and pattern of results remained consistent with our original findings after only 459 
considering individuals diagnosed with schizophrenia or schizophreniform disorder, indicating that 460 
diagnostic heterogeneity of the FEP and EP samples did not substantially impact our findings (FigS6). 461 
 462 
To ensure that the wide-spread changes in white-matter integrity often reported in patients50-53 did not 463 
affect model estimates of the network-based spread of pathology, we replicated our findings using 464 
structural and functional connectomes derived from the FEP patient sample rather than the 465 
independent healthy control sample (FigS7). We also replicated the results using a representative 466 
structural connectome derived from the healthy control sample in the FEP study (FigS8). 467 
 468 
Finally, our findings were consistent when using VBM instead of DBM (FigS9), and when applying 469 
global signal regression (GSR) on subject-level FC matrices before computing the group average FC 470 
matrix (FigS10). 471 

Discussion  472 

The mechanisms driving spatially patterned grey matter volume (GMV) changes in psychotic illness 473 
have thus far been unclear. We have used a simple coordinated deformation model (CDM) to confirm 474 
that, across both early and later stages of illness, cross-sectional GMV changes are shaped by the 475 
topology and strength of structural, but not functional, connectivity between brain regions. We further 476 
found that both illness-related and antipsychotic-related longitudinal changes are constrained by 477 
structural connectivity, indicating that the temporal evolution of brain changes in the illness is also 478 
constrained by the brain’s axonal pathways. Moreover, using a network diffusion model (NDM) to 479 
simulate the spread of pathology from different brain regions, we identified the anterior hippocampus 480 
as a putative epicentre of volume loss across all illness stages and further showed a dynamic 481 
progression of epicentres of dynamic grey matter loss from posterior to anterior areas, suggesting that 482 
the pathological burden within temporal and prefrontal systems increases as the illness progresses. 483 
 484 
Structural connectivity constrains GMV changes in psychotic illness 485 
The strength and topology of the structural connectome shaped the spatial pattern of volume 486 
abnormalities across both early and late stages of illness. Our findings in established schizophrenia 487 
align with previous research using the CDM to show that structural connectivity constrains the spatial 488 
patterning of cross-sectional GMV differences in people with established schizophrenia31. This earlier 489 
result was observed using the CDMSC model considered here. In our analysis, we found that the 490 
strength of structural connectivity between regions modulates coupled GMV differences within 491 
structurally connected neighbourhoods, given that the CDMSCw showed clearly superior performance 492 
to the CDMSC and CDMFCw models in all datasets. This result indicates that GMV differences are 493 
more tightly coupled between areas with high structural connectivity. Critically, our findings show 494 
that network constraints on cross-sectional GMV differences cannot be explained by antipsychotic 495 
medication, as our FEP sample was antipsychotic-naïve at the baseline scan. Moving beyond cross-496 
sectional differences, our longitudinal analysis further demonstrates that both illness-related and 497 
antipsychotic-related changes in GMV are constrained by connectome architecture. 498 
 499 
These results are in line with a spreading process in which pathology propagates across axonal 500 
connections. The precise mechanisms driving this process remain unclear. While there is limited 501 
evidence for visible deposits of aggregated pathological proteins in psychotic illness, more subtle 502 
changes in protein homeostasis54 may occur in subsets of patients and spread to synaptically 503 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 1, 2023. ; https://doi.org/10.1101/2022.01.11.22268989doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.11.22268989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15

connected distant brain regions55. Alternatively, and given the commonly reported finding of 504 
functional brain alterations in psychotic disorders, dysfunction of one region may trigger abnormal 505 
activity in connected sites which, over time, may trigger structural changes as a result of aberrant 506 
neurotransmission or a loss of trophic support20. This process may be exacerbated by a breakdown of 507 
white-matter fibre integrity, which may further disrupt the inter-regional transport of trophic factors. 508 
Accordingly, widespread but subtle alterations in white matter have been repeatedly demonstrated in 509 
psychosis populations56, are anticorrelated with cortical thickness25, and may predate the transition to 510 
psychosis in high-risk samples50,51. Although our analyses suggest that using a structural connectome 511 
derived from a patient sample did not change the overall pattern of our findings, further work may 512 
investigate how coordinated GMV changes interact with white-matter pathology in patients.  513 
 514 
An alternative explanation for our findings is that regions sharing a strong anatomical connection 515 
have a more similar molecular and cytoarchitectonic profile, resulting in a shared vulnerability to 516 
illness- or treatment-related changes57-60. Future research should examine associations between the 517 
strength of structural connectivity and shared molecular features such as receptor profiles, gene 518 
expression, and synaptic density in patient populations. 519 
 520 
The medial temporal lobe as an epicentre of grey matter differences in psychosis 521 
 522 
Our NDM analysis indicated that the medial temporal lobe, and the anterior hippocampus in 523 
particular, is a putative source of GMV loss in psychosis. The hippocampus has repeatedly been 524 
implicated in the pathogenesis of psychosis. It has been linked to early neurodevelopmental 525 
aberrations61-63 and often shows lower levels of mRNA and protein markers of synaptic and dendritic 526 
function post-mortem64,65. Recent in vivo PET imaging studies have also identified a loss of synaptic 527 
vesicle proteins66,67. Multiple animal models and human studies have indicated that a primary 528 
dysfunction occurring within the hippocampus68,69, such as a loss of pyramidal cell inhibition, results 529 
in downstream brain abnormalities including disinhibition of striatal dopamine release70,71 and 530 
aberrant corticostriatothalamic functioning72. Other evidence suggests that dysregulation of glutamate 531 
neurotransmission beginning in the CA1 region73,74 initiates the transition to psychotic illness and 532 
eventuates in an atrophic process in which neuropil and interneurons are reduced in other medial 533 
temporal and structurally connected regions.  534 
 535 
Regional epicentres of longitudinal grey matter change dynamically evolve with illness progression 536 
 537 
While the hippocampus was robustly implicated as a putative epicentre for cross-sectional GMV 538 
differences at different illness stages, our analysis of longitudinal changes in the FEP group identified 539 
putative epicentres in striatal and prefrontal areas. This contrasts the largely posterior focus of cortical 540 
epicentres for baseline GMV differences in this group, suggesting that the most pronounced 541 
longitudinal GMV changes occurring early in the illness affect the prefrontal cortex, which aligns 542 
with the greater involvement of striatal and prefrontal areas at the 12 compared to 3-month follow-up. 543 
These findings also accord with longitudinal studies in early-onset schizophrenia demonstrating a 544 
dynamic wave of volume contraction progressing from posterior to anterior regions,75,76 and other 545 
evidence of pronounced prefrontal GMV reductions in the earliest stages of illness8,77-83, which may 546 
reflect an exaggeration of normal neurodevelopmental processes84,85. Notably, these regional 547 
epicentres of illness-related GMV loss were distinct from epicentres of antipsychotic-related GMV 548 
loss, which were identified in somatosensory, motor, and posterior cingulate regions.   549 
 550 
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Limitations and conclusions  551 
Our findings depend on group-level summary metrics of brain volume and may not be representative 552 
of volume changes at the individual patient level, which can show substantial heterogeneity86-88. 553 
Subsequent work could look at whether using individual-level measures of brain volume and 554 
connectivity can improve model predictions. Moreover, given the complexity and practical challenges 555 
of conducting a prospective triple-blind randomised control MRI study in antipsychotic-naïve 556 
patients, the sample size of the longitudinal FEP sample is small (see also89,90 for a discussion of the 557 
representativeness of this sample). Replication of our longitudinal analysis in larger samples is thus 558 
warranted. 559 
 560 
In summary, we identify a robust and central role for axonal connectivity as a conduit for the spread 561 
of pathology across early and late stages of psychotic illness, mirroring findings reported in 562 
neurodegenerative conditions. Our findings also align with animal models to suggest that medial 563 
temporal regions may play a critical role in the origins of brain dysfunction and indicate that the 564 
structural connectome represents a fundamental constraint on brain changes in psychosis, regardless 565 
of whether they are caused by illness or medication. 566 
 567 
 568 
 569 
 570 
 571 
 572 
 573 
 574 
 575 
 576 
 577 
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