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Abstract

Background Different regions of the brain’s grey matter are connected by a
complex structural network of white matter fibres, which are responsible for
the propagation of action potentials and the transport of trophic and other
molecules. In neurodegenerative disease, these connections constrain the way
in which grey matter volume loss progresses. Here, we investigated whether
connectome architecture also shapes the spatial pattern of longitudinal grey
matter volume changes attributable to illness and antipsychotic medication in
first episode psychosis (FEP).

Methods We conducted a triple-blind randomised placebo-control MRI
study where 62 young adults with first episode psychosis received either an
atypical antipsychotic or placebo over 6-months. A healthy control group was
also recruited. Anatomical MRI scans were acquired at baseline, 3-months and
12-months. Deformation-based morphometry was used to estimate illness-related
and antipsychotic-related grey matter volume changes over time. Representa-
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tive functional and structural brain connectivity patterns were derived from
an independent healthy control group using resting-state functional MRI and
diffusion-weighted imaging. We used neighbourhood deformation models to
predict the extent of brain change in a given area by the changes observed in
areas to which it is either structurally connected or functionally coupled.

Results At baseline, we found that empirical illness-related regional volume
differences were strongly correlated with predicted differences using a model
constrained by structural connectivity weights (r = .541; p < .001). At 3-months
and 12-months, we also found a strong correlation between longitudinal regional
illness-related (r > .516; p < .001) and antipsychotic-related volume change (r >
.591; p < .001) with volumetric changes in structurally connected areas. These
correlations were significantly greater than those observed across various null
models accounting for lower-order spatial and network properties of the data.
Associations between empirical and predicted volume change estimates were
much lower for models that only considered binary structural connectivity (all r
< .376), or which were constrained by inter-regional functional coupling (all r
< .436). Finally, we found that potential epicentres of volume change emerged
posteriorly early in the illness and shifted to the prefrontal cortex by later illness
stages.

Conclusion Psychosis- and antipsychotic-related grey matter volume changes
are strongly shaped by anatomical brain connectivity. This result is consistent
with findings in other neurological disorders and implies that such connections
may constrain pathological processes causing brain dysfunction in FEP.

Introduction

Psychotic disorders such as schizophrenia are characterised by anatomically
widespread differences in grey matter volume (GMV)1-7, with many of these
differences showing evidence of progression as the illness evolves8-13. Meta-
and mega-analyses indicate that some of the most robust cross-sectional GMV
differences are found in cingulate, frontal and temporal cortices, as well as
medial temporal lobe, striatum and thalamus3-7,14-16, with longitudinal changes
identified in frontal, temporal and parietal cortices9,11. However, despite a large
literature describing the location and nature of these brain changes, the specific
mechanisms that give rise to their characteristic spatial pattern remain unknown.

The human brain is an intricate network of functionally specialised regions
linked by a complex web of axonal fibres, referred to as a connectome17. These
fibres enable the wide-spread coordination of neuronal dynamics and the transport
of trophic and other biological molecules throughout the brain. They can also act
as conduits for the spread of pathology, such that illness processes originating in
one area can propagate to affect distributed systems via multiple mechanisms18,19.
This principle has been powerfully demonstrated in dementia20-22, with evidence
that GMV reductions in different neurodegenerative conditions appear to spread
through the brain in a way that is constrained by the underlying architecture of
the brain’s white matter pathways.
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Recent work suggests that a network-based spreading process may also be
involved in psychosis. Cross-sectional grey matter alterations correlate with
increased fractional anisotropy in regionally adjacent white matter23 and grey
matter differences in patients are often correlated across spatially distributed
regions24-26. In recent work, Shafiei, et al.27 developed a simple neighbourhood-
deformation model (NDM) in a sample of people with established schizophrenia
that predicted the level of cross-sectional GMV reduction in an area based on the
average reductions observed in other areas to which it was structurally connected.
The analysis further revealed that transmodal frontal and cingulate cortices
were putative epicentres of pathology, being regions associated with relatively
large GMV reductions that were also connected to other areas showing large
reductions.

Together, these findings support the hypothesis that the spatial patterning
of GMV differences in psychotic illness is indeed constrained by connectome
architecture. However, all studies addressing this question have been cross-
sectional, precluding an opportunity to track how coordinated grey matter
changes evolve through time. Moreover, the reliance on samples of patients taking
antipsychotic medication makes it difficult to determine whether coupled grey
matter changes are driven by treatments for the illness or the illness processes.
These effects can only be disentangled through a longitudinal, randomised
placebo-controlled study of antipsychotic-naive patients. We recently used such
a design to demonstrate that antipsychotic-medicated and non-medicated patients
with First Episode Psychosis (FEP) show different trajectories of GMV change28

and functional coupling29 within the first 3- and 12-months of treatment. Here,
we use this cohort to investigate whether patterns of illness- and antipsychotic-
related GMV changes are constrained by the structural connectome and whether
the strength of functional and/or structural coupling modulates this relationship.
Using the NDM27, we show that coordinated patterns of GMV change in FEP
are more tightly constrained by the extent of structural coupling (SC) than
functional coupling (FC) between regions. Critically, the same pattern holds for
both illness-related and antipsychotic-related longitudinal brain changes. We
also track the dynamic progression of putative epicentres of illness-related GMV
loss, showing that they emerge posteriorly early in the illness and shift to the
prefrontal cortex by later illness stages. This pattern contrasts epicentres of
antipsychotic-related GMV expansion, which are situated in primary visual and
auditory cortices.

Methods

Overview
Our overall analysis strategy is outlined schematically in Fig. 1. Briefly,

we used structural MRI images from a sample of FEP patients recruited to a
placebo-controlled clinical trial of second-generation antipsychotics to estimate
brain-wide, voxelwise illness-related and antipsychotic-related GMV changes at
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baseline, 3- and 12-months (Fig. 1A). We parcellated the brain into discrete
regions-of-interest30,31 and estimated volume changes as the mean test-statistic
of all voxels within that area. We used diffusion and functional MRI to generate
group-level representative SC and FC matrices in an independent sample of
healthy adults (Fig. 1B). These matrices were then used in three variants
of the Neighbourhood Deformation Model (NDM) to evaluate the extent to
which GMV differences in one area are coupled to the GMV differences observed
in its structurally connected neighbours27. In the first variant, all neighbours
make an equal contribution to predicting an index area’s GMV. In the second
and third variants, the contribution of each neighbour is scaled by either the
weight of its structural or functional coupling to the index area, as determined
by the representative SC and FC matrices, respectively. Model performance
was evaluated using the Spearman correlation (ρ) between region-wise estimates
of observed and predicted volume changes (Fig. 1C). Finally, performance of
each of the three NDM models was compared to three benchmark null models to
ensure that our findings are not driven by lower order properties of the spatial
maps or connectome architecture (Fig. 1D).

Fig 1. Analysis workflow for the Network Deformation Model. (A)
We derived voxelwise GMV estimates using Deformation-based morphometry
(DBM). Five separate contrasts were specified using a robust marginal model
to infer baseline GMV differences and longitudinal GMV changes associated
with illness and antipsychotic medication at 3-months and 12-months. (B) The
contrast statistics were mapped to a brain parcellation comprising 332 regions,
and diffusion and functional MRI data from an independent healthy sample
were used to generate sample-averaged functional coupling (FC) and structural
connectivity (SC) matrices. These matrices were used to model average volume
changes in structurally connected neighbours. Under the NDM, the predicted
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deformation of a node, d̂i, is modelled as a weighted sum of the deformation
values observed its structurally connected neighbours (shown as light blue nodes
in the example graphs). The weights are given by the adjacency matrix, Aij .
Three different matrices were used, yielding three NDM variants; (1) A model
denoted as NDMSC, in which Aij=1 if two regions share a connection and
Aij=0 otherwise; (2) a model denoted as NDMSCw in which the elements of Aij

correspond precisely to the weighted SC matrix, such that the contribution of
each neighbour is weighted by the strength of its structural connectivity to the
index node; and (3) a model denoted NDMFCw, in which the elements of Aij

correspond precisely to the weighted FC matrix, such that the contribution of
each neighbour is weighted by its level of FC with the index node. (C) Model
performance was evaluated using the Spearman correlation between regional
estimates of observed and predicted GMV differences. (D) We also compared
model performance to three benchmark null models accounting for spatial auto-
correlations in the deformation maps (Spatialmodel and Spatialspin) and basic
topological properties of the connectome (see Model evaluation).

Sample characteristics
Clinical trial sample

We recruited 62 people aged 15-25 years (46% female) who were experiencing
FEP. All patients had minimal previous exposure to antipsychotic medication
(<7 days of use or lifetime 1750mg chlorpromazine equivalent exposure) and a
duration of untreated psychosis of fewer than 6-months. At baseline, patients were
randomised to one of two groups: one given antipsychotic medication (risperidone
or paliperidone) plus intensive psychosocial therapy and the other given placebo
plus intensive psychosocial therapy. For both groups, the treatment period
spanned 6-months. MRI was conducted at baseline, 3-months, and 12-months
post-intake. The randomisation phase of the study terminated at 6 months,
so patients in either the antipsychotic or placebo group could have received
antipsychotic medication and ongoing psychosocial interventions in between the
6- and 12-months into the study. A matched healthy control group comprising 27
individuals (63% female) with no history of psychiatric or neurological diagnosis
was also recruited and scanned alongside the patient groups. Demographic
details of this sample are provided in Table 1. Further sample characteristics
and details about research and safety protocols can be found elsewhere32,33.
Ethical approval for the study was granted by the Melbourne Health Human
Research Ethics Committee (MHREC:2007.616 ).

Independent healthy control sample
A total of 119 healthy participants (66% female) were recruited as part of a

larger study conducted at Monash University. The participants were selected
from a large cohort of 439 people as those with high-quality functional and
diffusion MRI scans available and with an age that was within the range of the
clinical trial sample. Participants were all right-handed, of European ancestry,
and had no personal history of neurological or psychiatric disorders, had never
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suffered loss of consciousness or memory due to head injury, and did not have a
history of drug abuse (for further details, see Sabaroedin, et al.34). The study
was conducted in accordance with the Monash University Human Research
Ethics Committee (MUHREC: 2012001562 ).

Table 1. Sample characteristics of clinical trial and healthy control
sample. Abbreviations: NOS = not otherwise specified; BPRS = Brief Psychi-
atric Rating Scale version 4; SOFAS = Social and Occupational Functioning
Assessment Scale.

MRI acquisition
Clinical trial sample

High resolution structural T1-weighted (T1w) scans were acquired using
a 3-T Siemens Trio Tim scanner with a 32-channel head coil at the Royal
Children’s Hospital in Melbourne, Australia. Image acquisition parameters
at each timepoint were as follow: 176 sagittal slices, with a 1mm3 voxel size,
bandwidth 236 Hz/pixel, field of view (FOV) =256×256 mm, matrix 256×256,
2300ms repetition time (TR), and 2.98 echo time (TE) and a 9° flip angle.
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Independent healthy control sample
Structural, diffusion and functional MRI data were acquired using a Siemens

Skyra 3T scanner with a 32-channel head coil at Monash Biomedical Imaging in
Melbourne, Australia. T1w structural scans were acquired using: 1mm3 isotropic
voxels, TR = 2300ms, TE = 2.07ms, TI = 900ms, and a FOV of 256 mm.

Diffusion data were acquired using an interleaved acquisition with the follow-
ing parameters: 2.5 mm3 voxel size, TR = 8800ms, TE = 110ms, FOV 240 mm,
60 directions with b = 3000 s/mm2, and seven b = 0 s/mm2 vol. In addition,
a single b = 0 s/mm2 was obtained with reversed phase encoding direction for
susceptibility field estimation.

Multiband T2*-weighted whole-brain echo-planar images were acquired with
a total of 620 functional volumes with 42 slices each were acquired per participant
using an interleaved acquisition with the following parameters: TR = 754ms,
TE = 21 milliseconds, flip angle of 50°, multiband acceleration factor of 3, FOV
= 190mm, slice thickness of 3mm, and 3mm isotropic voxels. Participants
were instructed to lie still in the scanner with eyes closed while maintaining
wakefulness.

Structural MRI processing
Prior to processing, raw T1w scans were visually examined for artefacts and

then subjected to an automated quality control procedure35. Three patient
scans did not pass image quality control and were excluded due to image
artefacts. The remaining scans were processed using the longitudinal deformation-
based morphometry (DBM) pipeline of the Computational Anatomy Toolbox
(version r1113)36 for the Statistical Parametric Mapping 1237 software running in
Matlab version 2015a. For detailed information about DBM processing, see the
Supplement. We used DBM to quantify volume changes because it requires less
spatial smoothing38 than voxel-based morphometry (VBM) and to be comparable
to previous work using the NDM27. We also replicated our primary findings
using VBM, which has been used more extensively to quantify GMV in the
literature (see Robustness analyses).

Quantifying baseline and longitudinal grey matter changes in patients
To estimate group-level baseline and longitudinal spatial patterns of volume

change, we used a robust marginal model implemented in Sandwich Estimator
Toolbox39, which combines ordinary least squares estimates of parameters of
interest with estimates of variance/covariance based on a robust sandwich
estimator, thus accounting for within-subject correlations across time. This
method is asymptotically robust against misspecification of the covariance model
and does not depend on the assumptions of common longitudinal variance
structure across the whole brain. All contrasts were adjusted for age, sex and
handedness.

We conducted three categories of contrasts (Fig. 1A): (1) illness-related
differences at baseline, which compared all patients to healthy controls; (2) illness-
related change over time, which compared GMV changes in the placebo group to
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healthy controls; and (3) antipsychotic-related changes, which compared GMV
changes in the medication group to both the placebo group and healthy controls
(see also13). Longitudinal contrasts were assessed from baseline to 3-months, as
well as from baseline to 12-months, with a linear polynomial contrast being used
for the latter. The resulting t-statistics were converted to z-statistics. Contrasts
were specified such that positive values in the resulting voxelwise z-statistic maps
indicate lower volume in patients compared to controls at baseline contrast, and
a greater longitudinal GMV decline in patients compared to controls in the
longitudinal contrasts.

Brain Parcellation
In order to evaluate network-based models of grey matter changes, we parcel-

lated the brain into 300 discrete cortical regions of approximately equal size31,
in addition to 32 subcortical areas30, using previously published atlases. The
deformation value for each region was estimated as the mean t-statistic of all
voxels corresponding to that region. The regions comprise the nodes of a network,
which can then be directly related to measures of inter-regional SC and FC.

Healthy structural network
We derived a group-level healthy structural connectome from diffusion-

weighted imaging (DWI) data from an independent sample of 119 adults (Fig.
1B). First, the DWI data for each individual were corrected using current best
practise40 for eddy-induced current distortions, susceptibility-induced distor-
tions, intervolume head motion, outliers in the diffusion signal41, within-volume
motion42, and B1 field inhomogeneities. Probabilistic tractography was con-
ducted using a standardised and reproducible pipeline43 and a state-of-the-art
optimisation procedure was used to reduce false positive connections and improve
biological interpretability of connection strength44. For a detailed overview of
DWI processing and optimisation, see the Supplement. This procedure resulted
in a single 332 × 332 weighted group-average SC matrix.

Healthy functional network
We derived a group-level healthy functional connectome from resting-state

fMRI data from the same independent sample of adults (Fig. 1B). The fMRI
data for each subject were processed using FSL FEAT45 and denoised using
ICA-FIX46,47. Detailed information on fMRI processing can be found in the
Supplement. Given an ongoing controversy around the application of global
signal regression48,49, we evaluated how this step affected our findings (see
Robustness analyses). After processing and denoising, we computed a whole
brain 332 × 332 FC matrix for each subject using pair-wise Pearson correlations
between the timeseries from each of the 332 regions, and finally took a mean FC
matrix across the sample.
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Neighbourhood Deformation Model
We evaluated network constraints on baseline and longitudinal GMV changes

using the NDM introduced by Shafiei, et al.27. The model is given by

d̂i = 1
Ni

Ni∑
j=1,j ̸=i

djAij (1)

where d̂i is the predicted deformation in node i, Ni is the number of structurally
connected neighbours of i, dj is the deformation observed in the jth neighbour
of node i, and Aij defines the connectivity between nodes i and j.

Three different matrices were substituted for Aij , yielding three variants of
the NDM. For the first model, denoted NDMSC, Aij=1 if nodes i and j are
connected in the group-average SC matrix and zero otherwise. As such, under
this model, all j structurally connected neighbours make an equal contribution
to predicting the extent of deformation observed in node i.

For the second and third models, denoted NDMSCw and NDMFCw, Aij

corresponded to the weighted SC or FC matrices, respectively. Therefore, under
these models, the contributions of node i ’s neighbours were weighted by either
inter-regional SC (NDMSCw) or FC (NDMFCw) estimates, such that neighbours
of node i with a more strongly weighted connection made a stronger contribution
to predicting node i ’s volume (Fig 1B).

Model evaluation
Model performance was evaluated using the Spearman correlation (ρ) between

region-wise estimates of observed and predicted deformation (Fig. 1C). We also
compared the performance of the NDMSC, NDMSCw and NDMFCw models to
three benchmark null models.

The first (Fig. 1D; Spatialmodel) and second (Fig. 1D; Spatialspin) null
models evaluated whether the observed findings were specific to the empirically
observed pattern of grey matter deformations or were a generic property of the
intrinsic spatial structure of the deformation maps. Specifically, we generated
surrogate deformation maps with similar spatial structure to the empirical data
in two ways. First, we used spatial variogram modelling to generate 1000 random
spatial maps with a similar spatial autocorrelation to the observed deformation
map, as implemented in the freely available toolbox BrainSMASH50; and with
parameters (ns=500; knn=2300; pv=70 ) which resulted in nulls maps with
variograms as close as possible to the empirical variogram. Second, we used a
spin test to rotate region-level cortical t-values 1000 times51. The rotation was
applied to one hemisphere and then mirrored for the other hemisphere. The
primary advantage of the model-based method is that it can be applied to both
cortical and subcortical data, however, it is not guaranteed to match the precise
spatial autocorrelation of the empirical data. The spin test exactly preserves the
empirical values and their spatial autocorrelation but is only applicable to cortex.
The 1000 surrogate values were used for inference on the observed performance
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metrics, with p-values quantified as the fraction of null values exceeding the
observed correlation.

The third null model (Fig. 1D; Connectome) involved rewiring the structural
connectome while preserving the degree sequence and length-weight relationship,
and approximately preserving the edge-length distribution52. We used 10 distance
bins and 50,000 edge swaps to generate 1000 rewired networks. These surrogate
networks were used to test the hypothesis that any apparent network-based
prediction of local grey matter change is specific to the actual topology of the
connectome itself, and cannot be explained by basic network properties, such
as regional variations in node degree or the spatial dependence of inter-regional
connectivity.

Mapping epicentres of illness- and antipsychotic-related volume change
We next sought to identify putative epicentres of illness- and antipsychotic-

related volume changes. As per Shafiei, et al.27, we defined such epicentres as
areas showing high deformation that were also connected to regions showing
high deformation (Fig. 5A). To identify such regions, for each region and each
contrast, we took the mean of two values: (1) that region’s extent of deformation;
and (2) the mean of that region’s neighbours’ deformation, weighted by SC as in
the NDMSCw model, given the superior performance of this model (see Results).
Higher positive values on the resulting epicentre score represent regions with
high atrophy that are also connected to regions with high atrophy; lower negative
epicentre scores represent regions with high expansion that are also connected
to regions with high expansion (Fig. 5A). We then obtained a null ensemble of
1000 regional epicentre scores by repeating the same procedure after rotating the
regional deformation maps relative to the structural connectome and retaining
the absolute maximum null epicentre score detected across the brain. These
1000 null values were then used to quantify two-tailed family-wise error corrected
statistical significance of each region’s epicentre score as the fraction of null
values exceeding the observed absolute epicentre score for a given regions53.

Results

Spatial distribution of illness- and antipsychotic-related volume deformations
We first mapped the spatial distribution of illness- and antipsychotic-related

volume deformations using five separate contrasts (Fig. 1A). After mapping the
voxelwise t-statistics to parcellated areas (Fig. 2A-C), we observed at baseline
that patients showed relatively lower GMV primarily in the occipital cortex and
left frontal pole, coupled with higher volume in the left middle frontal cortex (Fig.
2A). Illness-related decreases at 3-months (Fig. 2B) and 12-months (Fig. 2C)
were largely consistent and most evident in frontal, temporal, cingulate, striatal
and medial temporal regions, whereas increases were most evident within the
thalamus, occipital and medial parietal cortex. Antipsychotic-related decreases
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at 3-months were most evident in superior parietal and temporal cortex, whereas
increases were most evident in occipital cortex (Fig. 3A). At 12-months,
antipsychotic-related decreases were most evident in superior parietal regions
and increases were most evident in left cingulate and superior temporal cortex
(Fig. 3B).

Structural connectivity shapes illness-related cross-sectional and longitudinal grey
matter changes

We initially evaluated the performance of the three NDMs in capturing base-
line differences in regional grey matter deformations. We observed the strongest
correlation between predicted and observed estimates for the NDMSCw model
(ρ= .541; Fig. 2G), which was nearly double the strength of the correlations ob-
served for the NDMSC and NDMFCw models (ρ=0.320 and ρ=0.377, respectively;
Fig. 2D). The performance of the NDMSCw was also significantly better than
all three benchmark models (all p< 0.004), whereas the NDMSC and NDMFCw
models were only superior to the Spatialmodel (p< 0.003), but not Spatialspin or
connectome, benchmarks (all p>0.05).

We observed the same pattern of findings for longitudinal illness-related
changes at 3-months and 12-months, with the NDMSCw predictions correlating
with empirical estimates at ρ=0.516 (Fig. 2H) and ρ=0.550 (Fig. 2I), respec-
tively. The NDMSCw again showed significantly better performance than all
three benchmark models (all p< 0.034). By comparison, correlations for the
NDMSC and NDMFCw did not exceed ρ=0.369 and only showed significantly
better performance than the Spatialmodel (Fig. 2E-F), but not Spatialspin or
connectome, benchmarks (all p> 0.05).
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Fig 2. Baseline and longitudinal illness-related GMV changes are con-
strained by connectome anatomy. A-C) The contrast statistics for three
illness-related contrasts mapped to a brain parcellation comprising 332 regions.
D-F) Performance of the NDMSC, NDMSCw and NDMFCw models relative to
the Spatialmodel, Spatialspin and connectome null. Black circles indicate the
observed correlations between predicted and actual regional deformation values
for each model at each timepoint, with red borders indicating statistical signifi-
cance (p<0.05). Note that the observed value used for comparison against the
Spatialspin models is different because the subcortex was excluded. G-I) Scatter-
plots of the association between observed and predicted regional deformation
values for the best performing NDMSCw model at each timepoint.

Structural connectivity shapes longitudinal antipsychotic-related volume changes
As with illness-related changes, we found that the strongest correlation

between observed and predicted antipsychotic-related grey matter changes was
found using the NDMSCw model at both 3-months (ρ=0.591; Fig.3E) and 12-
months (ρ=0.604; Fig.3F). This association was statistically significant when
compared to all three null models (all p< 0.007; Fig.3C-D). For comparison,
associations at 3-months and 12-months were smaller for the NDMSC (ρ=.376 and
ρ= .174, respectively) and NDMFCw models (ρ=.436 and ρ= .267, respectively).
At 3-months, the NDMSC and NDMFCw models only showed significantly better
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performance than the Spatialmodel and Spatialspin (p< 0.007) benchmarks. At
12-months, the NDMFCw model only showed significantly better performance
than the Spatialmodel benchmark (p< 0.014).

Fig 3. Longitudinal antipsychotic-related GMV changes are con-
strained by connectome anatomy. A-B) The contrast statistics for two
antipsychotic-related contrasts mapped to a brain parcellation comprising 332
regions. C-D) Performance of the NDMSC, NDMSCw and NDMFCw models rela-
tive to the Spatialmodel, Spatialspin and connectome null. Black circles indicate
the observed correlations between predicted and actual regional deformation
values for each model at each timepoint, with red borders indicating statisti-
cal significance (p<0.05). Note that the observed value used for comparison
against the Spatialspin models is different because the subcortex was excluded.
E-F) Scatterplots of the association between observed and predicted regional
deformation values for the best performing NDMSCw model at each timepoint.
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Illness-related epicentres
We next investigated regional epicentres of grey matter change, corresponding

to areas that are connected to other areas showing a high degree of volume
change patients in addition to showing large changes themselves. At baseline,
21 areas with statistically significant atrophy epicentre scores were identified in
bilateral visual and left medial orbito-frontal cortex (Fig. 4D). At 3-months,
areas with statistically significant atrophy epicentre scores were located within
the left temporal pole and bilateral pre-frontal and orbitofrontal cortices (Fig.
4E). Areas with significant expansion epicentre scores were largely located in
the visual cortex (Fig. 4E). At 12-months, the areas with significant regional
epicentres extended across larger areas of anterior frontal cortex (Fig. 4F).

Fig 4. Regional epicentres of illness-related and medication-related
GMV change. A) Epicentres were defined as areas showing high deformation
that are also connected to regions showing high deformation. To identify such re-
gions, for each region and each contrast, we computed a region-specific epicentre
score as the mean of that area’s deformation and the average of its neighbours’
deformation, weighted by structural coupling strength. Regions showing epicen-
tre scores significantly greater (pFWE<0.05) than a spatially constrained null
model are shown for antipsychotic-related (A-B) and illness-related (D-F) effects.

Antipsychotic-related epicentres
At 3-months, we identified expansion-related epicentres in bilateral visual

cortex (Fig 4B). At 12-months, additional expansion epicentres were located
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within the right superior temporal cortex and left temporal pole, along with a
significant atrophy epicentre within the left occipital pole (Fig 4C).

Robustness analyses
To ensure that our findings were not specific to the structural connectome

derived from the large independent healthy control sample, we replicated our
primary NDM analyses using a representative structural connectome derived
from the matched healthy control sample which was part of the clinical trial.
The magnitude and pattern of results remained consistent with our original
illness and antipsychotic-related (Fig. S1) findings.

Next, we assessed whether our findings were specific to volume estimates
derived using DBM by repeating our primary analyses using volume estimates
from VBM. We found that the patterns of results for our primary analyses
remained the same (Fig S2).

There can be several orders of magnitude difference between the deformation
values and SC/FC values. We therefore repeated the analyses after z-scoring the
deformation values and connectivity weights and again found comparable results
to our original findings (Fig. S3).

Finally, we assessed the impact of implementing global signal regression
(GSR) on subject-level FC matrices before computing the group average FC
matrix. We found that implementing GSR did not alter the patterns of results,
with the NDMSCw model still showing the best performance (Fig. S4).

Discussion

Using a simple neighbourhood deformation model (NDM), we showed that
the spatial pattern of both cross-sectional and longitudinal GMV changes in
psychosis is shaped by brain network architecture, particularly by the strength
of structural connectivity between regions. A similar relationship is apparent for
GMV changes that are attributable either to psychotic illness or antipsychotic
medication, indicating that the connectome represents a generic constraint on
diverse processes driving coordinated grey matter variations. We also show a
dynamic progression of regional epicentres of GMV change from posterior to
anterior areas, suggesting that the pathological burden within prefrontal systems
increases as the illness evolves.

Network constraints on Illness-related volumes changes in FEP
Our baseline findings in FEP align with the results of Shafiei, et al.27, who also

used an NDM to show that structural connectivity constrains the spatial pattern-
ing of cross-sectional GMV differences in people with established schizophrenia.
This earlier result was observed using the NDMSC model considered here. In
our analysis, we found that the strength of structural connectivity between
regions modulates coupled GMV differences within structurally connected neigh-
bourhoods, given that the NDMSCw showed clearly superior performance to

15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 3, 2022. ; https://doi.org/10.1101/2022.01.11.22268989doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.11.22268989
http://creativecommons.org/licenses/by-nc-nd/4.0/


the NDMSC and NDMFCw models. This result indicates that GMV differences
are more tightly coupled between areas with high structural connectivity. This
modulatory effect of the strength of structural connectivity may be especially
pronounced early in the illness, as the performance of the binary NDMSC model
in Shafiei, et al.27 analysis of patients with established schizophrenia was superior
to NDMSC model performance in our sample. Critically, our findings show that
network constraints on GMV differences cannot be explained by antipsychotic
medication, as our FEP sample was antipsychotic-naïve at the baseline scan.

Moving beyond cross-sectional differences, our longitudinal analysis further
demonstrates that both illness-related and antipsychotic-related changes in GMV
are also constrained by connectome architecture. These results are in line
with a spreading process, in which some pathological process propagates across
axonal connections. The precise mechanisms driving this process remain unclear,
but given the absence of evidence indicating an accumulation of pathological
proteins in psychotic illness, it seems likely that the dysfunction of one region
may trigger abnormal activity in connected sites which, over time, may trigger
structural changes as a result of aberrant neurotransmission or a loss of trophic
support19. This process may be exacerbated by a breakdown of white matter
fibre integrity, which may further disrupt the inter-regional transport of trophic
factors. Accordingly, widespread but subtle alterations in white matter have been
repeatedly demonstrated in FEP populations55, are anticorrelated with cortical
thickness23, and may predate the transition to psychosis in high-risk samples56,57.
Further work may investigate how coordinated GMV changes relate to white
matter pathology in patients. Given that we found that antipsychotic-related
longitudinal changes in GMV are also constrained by connectome architecture, it
is possible that neuronal signalling and/or neurotransmitter modulation induced
by antipsychotics in one region may propagate to connected regions via structural
connections.

Regional epicentres of grey matter change dynamically evolve with illness pro-
gression

Shafiei, et al.’s27 cross-sectional analysis of patients with established schizophre-
nia identified cingulate and prefrontal areas as putative epicentres of GMV
reduction. Our analysis indicates that the involvement of prefrontal areas dy-
namically emerges as the illness progresses, shifting from an early posterior focus
at the outset of illness. Progressively more prefrontal areas were identified as
significant epicentres at 12-month compared to 3-month follow-up, suggesting
that prefrontal circuits become increasingly compromised with ongoing illness.
These findings align with longitudinal studies in early-onset schizophrenia demon-
strating a dynamic wave of volume contraction progressing from posterior to
anterior regions58,59, which may reflect an exaggeration of normal neurodevel-
opmental processes60. The findings also align with evidence for pronounced
prefrontal GMV reductions in the earliest stages of illness8,61-66. Notably, these
regional epicentres of illness-related GMV reduction localized to regions that were
distinct from epicentres of antipsychotic-related GMV expansion, which were
identified in primary visual and superior temporal cortex. The involvement of
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these regions may be related to antipsychotic-related improvements of perceptual
abnormalities in patients67-69.

Limitations and conclusions
Given the complexity and practical challenges of conducting a prospective

triple-blind randomised control MRI study in antipsychotic-naïve patients, the
sample sizes within the patient groups are small. Relatedly, given the ethical
and safety requirements of the study, patients who were recruited posed low
risk of harm to self or others, lived in stable accommodation, had adequate
social support and a short duration of untreated illness. While it’s possible that
these requirements may have resulted in a patient group with a less severe form
of psychotic illness, the symptom severity and functioning of our patients (see
Table 1) are comparable to epidemiologically representative cohorts of FEP
patients70,71.

The structural and functional connectomes used in this study were derived
from healthy populations, in order to examine how normative network structure
constrains the progression of GMV changes in FEP. Future studies should
examine how altered structural connectivity in patients impacts our findings.
Moreover, our findings are dependent on group-level summary metrics of brain
volume and may not be representative of volume changes at the individual
patient level, which show substantial heterogeneity72,73. Subsequent work could
look at whether using individual-level measures of brain volume and connectivity
can improve model predictions.

In summary, we show that longitudinal GMV changes in early psychosis
are strongly constrained by the structural connectivity of the brain, but not its
inter-regional functional coupling, regardless of whether those changes are driven
by illness or antipsychotic medication. Our findings thus highlight a central role
for axonal connectivity for shaping dynamic brain changes in the illness and
suggest an increasing disruption of prefrontal systems with ongoing illness.
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