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Abstract 

Common in-lab, marker-based gait analyses may not represent daily, real-world gait. 

Real-world gait analyses may be feasible using inertial measurement units (IMUs), 

especially with recent advancements in open-source methods (e.g., OpenSense). Before 

using OpenSense to study real-world gait, we must determine whether these methods: 

(1) estimate joint kinematics similarly to traditional marker-based motion capture 

(MoCap) and (2) differentiate groups with clinically different gait mechanics. Healthy 

young and older adults and older adults with knee osteoarthritis completed this study. 

We captured MoCap and IMU data during overground walking at participants’ self-

selected and faster speeds. MoCap and IMU kinematics were computed with 

appropriate OpenSim workflows. We tested whether sagittal kinematics differed 

between MoCap- and IMU-derived data, whether tools detected between-group 

differences similarly, and whether kinematics differed between tools by speed. MoCap 

data showed more flexion than IMU data (hip: 0-47 and 65-100% stride, knee: 0-38 and 

58-91% stride, ankle: 18-100% stride). Group kinematics differed at the hip (young 

extension > knee osteoarthritis at 30-47% stride) and ankle (young plantar flexion > 

older healthy at 62-65% stride). Group-by-tool interactions occurred at the hip (61-63% 

stride). Significant tool-by-speed interactions were found, with hip and knee flexion 

increasing more for MoCap than IMU data with speed (hip: 12-15% stride, knee: 60-

63% stride). While MoCap- and IMU-derived kinematics differed, our results suggested 

that the tools similarly detected clinically meaningful differences in gait. Results of the 

current study suggest that IMU-derived kinematics with OpenSense may enable the 

valid and reliable evaluation of gait in real-world, unobserved settings. 
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1. Introduction 

Gait analyses are a common research tool in biomechanics to detect changes or 

differences in gait kinematics, which are used as markers of pathology, rehabilitation 

status, or function (Rodda et al. 2004; Boyer et al. 2012; Curran et al. 2018). While 

typical laboratory-based gait analyses provide precise, controlled kinematic 

measurements, they may not accurately represent how people move in uncontrolled, 

free-living (i.e., real-world) environments. In real-world settings, individuals often walk 

slower and with shorter stride lengths compared to laboratory settings (Foucher et al. 

2010; Hutchinson et al. 2019; Takayanagi et al. 2019; Kim et al. 2020). A mismatch 

between laboratory-measured gait and real-world gait could lead to incomplete or even 

spurious conclusions about disease status, intervention success, or function. Thus, 

accurately and reliably evaluating gait kinematics in real-world, daily life settings is 

critical. 

While traditional, marker-based optical motion capture (MoCap) is challenging 

to perform in real-world settings (i.e., outside of a lab, without researcher supervision), 

collecting gait data in free-living environments may be feasible using wearable devices 

such as inertial measurement units (IMUs). IMUs can be worn by participants as they 

engage in real-world, daily activities, and many have battery and data storage 

capabilities that allow for days of continuous data collection. However, the use of IMUs 

for gait analyses outside the lab is challenging, and therefore few studies exist that 

assess gait in free-living settings. The challenge of real-world IMU gait analysis is 

partially because the processing needed to transform IMU data (e.g., sensor-frame 

angular velocity, linear acceleration, and magnetic heading) into familiar kinematic 

outcomes (e.g., joint angles) requires data processing methods that are substantially 

different from those of MoCap gait analyses [e.g., (Seel et al. 2014; Vitali et al. 2017; 
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Dorschky et al. 2019)]. Consequently, many studies use commercially available 

automated software packages that estimate spatiotemporal outcomes and joint 

kinematics from IMU data [e.g., (Monda et al. 2015; Nüesch et al. 2017; Washabaugh et 

al. 2017; Al-Amri et al. 2018)]. While these systems are relatively easy to use, the 

algorithms are proprietary, and thus a study using one system cannot be replicated or 

compared against a study using a different system. Additionally, requirements for 

specific sensor placement and calibration poses of many proprietary systems preclude 

their use outside of structured, researcher-observed data collection. 

Recently, developers at OpenSim released an open-source, freely available 

software package (OpenSense) to estimate kinematics from IMU data (Seth et al. 2018; 

Al Borno et al. 2022). OpenSense combines sensor orientation estimates from IMU data 

with global optimization methods [i.e., inverse kinematics (Lu and O’Connor 1999)] 

and musculoskeletal models with anatomical constraints to solve for traditional 

kinematic data like joint and segment angles. This approach may provide the IMU 

community an accessible, standardized way to report gait kinematics for data collected 

in non-traditional environments. In contrast to proprietary IMU analysis programs, the 

parameters and procedures used to process IMU data in OpenSense are published and 

openly available, therefore the effect of any model assumption on kinematic results can 

be independently evaluated. Recent studies using OpenSense showed reasonable 

agreement between IMU and MoCap data for young adult participants (Bailey et al. 

2021; Slade et al. 2021; Al Borno et al. 2022). 

However, before OpenSense can be used to estimate gait kinematics for clinical 

populations in real-world settings, we must first demonstrate its ability to detect valid 

and clinically meaningful (e.g., ≥5°) differences similarly to standard marker-based 

optical motion capture. Early proof-of-concept studies of OpenSense suggest validity 
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and sensitivity, but only tested healthy young adults (Bailey et al. 2021; Al Borno et al. 

2022). Whether this workflow accurately detects true gait differences between 

populations (e.g., the aged or those with joint pathology) is unknown. Additionally, 

OpenSense has only been demonstrated in experimental settings where calibration 

procedures are tightly controlled. Because IMUs do not inherently provide data in 

reference to anatomy, calibration entails the nontrivial task of transforming data from 

arbitrary to meaningful reference frames. Existing OpenSense demonstrations either 

used MoCap measurements in IMU calibration procedures (Al Borno et al. 2022) or 

adjusted for IMU vs. MoCap model offsets in kinematics results (Bailey et al. 2021). 

One demonstration did not correct IMU kinematics against MoCap data, but only 

collected data on a treadmill for young adults (Slade et al. 2021). In order to determine 

whether OpenSense can give clinically useable estimates of gait kinematics in 

unobserved, real-world settings, we must evaluate OpenSense kinematics in populations 

beyond young adults without using calibration procedures that rely on MoCap data.  

The aim of this study was threefold. The first aim was to compare IMU- and 

MoCap-based gait kinematics as calculated using inverse kinematics with the 

OpenSense toolbox in OpenSim. In keeping with the goal of using OpenSense to 

estimate kinematics from unobserved, real-world IMU data, we applied IMU calibration 

procedures without adjusting for differences between IMU model poses and MoCap 

model poses. Because this approach will ultimately be applied to monitor clinically 

relevant differences or changes in gait kinematics, we also sought to determine whether 

OpenSense identified clinically relevant differences across cohorts similarly to optical 

motion capture methods. Thus, the second aim was to determine whether kinematics 

calculated from IMU-based and MoCap-based kinematics differed between young 

adults, older adults, and older adults with knee osteoarthritis (i.e., whether there was a 
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tool-by-group interaction). Finally, because IMU kinematics may be more sensitive to 

increased speed than MoCap data (Potter et al. 2019), the third aim was to compare 

kinematics between preferred and faster-than-preferred walking speeds by testing for a 

tool-by-speed interaction. 

2. Methods 

The current study was a secondary analysis from a previous study (Hafer et al. 2020). 

These data were used as a convenience sample during a time when human subjects data 

collection was not feasible (COVID-19 pandemic). Our previous analyses evaluated the 

validity and reliability of IMU kinematics derived using custom Matlab algorithms. 

Those custom algorithms, however, may not be accessible to or easily reproduced by 

other gait biomechanists, and so in the current study we tested the validity of an open-

source, reproducible IMU workflow. Due to the statistical analyses in the current work 

that required equal numbers of participants per group, we excluded one participant each 

from the initial study in the young and asymptomatic older adult cohorts. 

2.1 Protocol summary 

Participants included 9 young adults (28.7±4.2 yr), 9 asymptomatic older adults 

(72.1±3.4 yr), and 9 older adults with knee osteoarthritis (69.2±4.6 yr). Each group 

included 4 females and 5 males. Participants had BMI <30 kg/m2; were able to walk for 

30 min without assistive devices; and had no history of major traumatic injury, surgery, 

or chronic pain in the back or lower extremities (except the knee for the osteoarthritis 

cohort). Participants with knee osteoarthritis had at least one knee of Kellgren-

Lawrence grade II-IV (Kellgren and Lawrence 1957); no surgery within the previous 

year; and no changes to treatment or joint injections in the previous three months. All 

participants completed IRB-approved informed consent procedures before completing 
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any study tasks. While the goal of the current work was to demonstrate feasibility for 

IMU gait analyses outside of lab settings, this proof-of-concept was conducted using 

overground walking trials collected in a laboratory to be able to compare with 

simultaneous traditional MoCap data.  

We collected gait data from participants’ right leg (for young and asymptomatic 

older adults) or the leg with the greater radiographic osteoarthritis severity (for older 

adults with knee osteoarthritis). We recorded 10 trials of MoCap and IMU data 

simultaneously as participants walked overground at preferred and faster-than-preferred 

(verbal instruction: “walking to catch the bus” (Brinkerhoff et al. 2019)) speeds. 

Participant characteristics and basic spatiotemporal measures are shown in Table 1. 

Table 1. Participant characteristics and walking speeds 

 

2.2 Inertial Measurement Unit Methods 

We affixed IMU sensors (Opal v2, APDM Inc., Portland, OR, USA) to each 

participant’s sacrum, midpoint of the lateral thigh, midpoint of the lateral shank, and 

dorsal foot. Thigh and shank sensors were placed on participants’ skin with double-

sided tape and then secured with elastic wrap.  

IMU sensors captured data at 128 Hz. Sensors were synchronized to each other 

and collected data continuously for the duration of the session. IMU data collection 

occurred simultaneously with MoCap data capture, but the two systems were not 

synchronized in real time. We recorded the beginning and end of walking trials using an 

Mean SD Mean SD Mean SD
n (male/female) 9 (5/4) 9 (5/4) 9 (5/4)

Age (years) 28.7 4.2 72.1 3.4 69.2 4.6
Height (m) 1.70 0.08 1.70 0.08 1.73 0.12

Bodymass (kg) 71.1 8.3 70.8 9.1 74.8 12.1
Preferred walking speed (m/s) 1.36 0.17 1.33 0.15 1.18 0.08

Faster walking speed (m/s) 1.83 0.31 1.85 0.19 1.78 0.23

Young Older healthy Older with knee 
osteoarthritis
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IMU event trigger (one trial = one walk across the MoCap volume). Using trigger 

events, we split continuous IMU data into walking trials in MATLAB. We extracted 

one stride from each walking trial based on gait events identified using a one-

dimensional continuous wavelet transform of the foot vertical acceleration data 

(Baroudi et al. 2020; Hafer et al. 2020). Finally, we used a Kalman filter to estimate 

sensor orientations in a global reference frame from raw linear acceleration, angular 

velocity, and magnetometer signals (Holmstrom 2016 Oct 26) and exported the IMU 

orientation data in quaternion format. 

We used the OpenSim “gait2354” model (Delp et al. 2007) to calculate 

kinematics. The model had virtual IMU sensors placed such that the axes for each 

sensor approximated the orientation of the native axes of each sensor when a participant 

stood in a neutral posture. For each walking trial, we created a new calibrated model 

from a frame of static, neutral posture data that immediately preceded the walking trial. 

In accordance with our goal to evaluate the potential for this workflow in unobserved 

setting, the calibration frame was identified from raw sacrum sensor accelerometer and 

gyroscope signals alone. The OpenSense calibration procedure registers the relative 

orientation of a sensor’s data in the global reference frame to an assumed model pose, 

effectively giving a sensor-to-model offset. In the current study, participants were 

assumed to be in a neutral posture immediately before beginning to walk.  

For each trial of IMU data, we used the calibrated model (i.e., one model per 

trial for IMU data) to calculate the generalized coordinates using the inverse kinematics 

algorithm in OpenSim (Lu and O’Connor 1999). We used equal tracking weights for all 

segments and did not use heading correction. Analyses focused on sagittal plane 

variables, and as such extracted the pelvic tilt segment angle, and hip flexion, knee 
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flexion, and ankle flexion joint angles from the inverse kinematics analyses for each 

trial. All kinematic data were time-normalized to 0-100% of the gait cycle. 

2.3. Optical Motion Capture Methods 

To compare IMU data to MoCap data, we used a standard marker set to model the 

pelvis and leg. The marker set included anatomical markers on the right and left anterior 

and posterior superior iliac spines, right and left greater trochanters, medial and lateral 

femoral epicondyles and malleoli, first and fifth metatarsal heads, and lateral and medial 

heel (note—foot markers were placed on shoes). Rigid clusters of four non-collinear 

markers each were affixed to both the thigh and shank. We collected MoCap data with 

15 cameras (Vicon, Oxford UK) capturing at 120 Hz and 2 force plates (AMTI, 

Watertown MA) capturing at 1200 Hz.  

We used Visual3D (c-motion, Germantown, MD USA) to perform initial 

processing of MoCap data. We first low-pass filtered marker data at 8 Hz and then 

identified gait events (e.g., heel strike and toe off) automatically using force plate 

contact. Subsequently, we exported marker and force data for a static calibration trial 

and any walking trial containing a stride of data with clean force plate contact (at least 4 

strides per condition for each participant). After exporting from Visual3D, we used a 

MATLAB pipeline to rotate the data to match the OpenSim coordinate system 

convention and convert files to the OpenSim format. 

After converting marker data to OpenSim format, we scaled the gait2354 model 

(Delp et al. 2007) for each participant using participant body mass and the marker data 

from the static calibration trial. We then modified each scaled model by locking the 

subtalar joint, such that the only degree-of-freedom at the ankle was flexion. The pelvis, 

thigh, shank, and foot were scaled based on anatomical markers on these segments (i.e., 
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bilateral ASIS and PSIS markers, greater trochanter, medial and lateral femoral 

epicondyles, medial and lateral malleoli, 1st and 5th metatarsal heads and calcaneus). 

For each trial, we used the subject-scaled model (one model per subject for all 

marker data) to calculate the generalized coordinates using the inverse kinematics 

algorithm. We then extracted the same sagittal-plane coordinates (pelvic tilt, hip 

flexion, knee flexion, and ankle flexion angles) for comparison with the IMU data. All 

kinematic data were time-normalized to 0-100% of the gait cycle. 

2.4 Statistical Analysis 

Due to different gait event identification methods by tool (i.e., force plate detection for 

MoCap versus acceleration-based detection for IMU), we expected small offsets in the 

relative timing of MoCap and IMU data. To remove this processing artifact from our 

comparisons, we corrected for inter-tool timing differences for each speed condition 

before running statistical analyses. To do this, we first assumed that the timing of the 

peak knee flexion angle during the gait cycle should be the same regardless of tool. We 

identified the difference in the timing of the peak knee flexion angle between MoCap 

and IMU trials. Then, we time-shifted IMU data forward or backward such that the peak 

knee flexion angle occurred at the same percentage of the gait cycle for both IMU and 

MoCap data. Data were then averaged within each tool and speed for each participant, 

such that statistical analyses included four time series per participant per joint (i.e., 

MoCap and IMU at preferred and faster speeds). Subject means were used for statistical 

comparisons, because the statistical method use required the same number of trials for 

each subject and condition. We compared time-series waveforms for pelvic tilt and hip, 

knee, and ankle flexion across tools (MoCap vs. IMU), groups (young, healthy older, 

vs. older with knee osteoarthritis), and walking speeds (preferred vs. faster) with a 

continuous 3-way ANOVA implemented using statistical parametric mapping [SPM, 
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(Pataky 2010)]. When we found significant group effects or significant interactions, we 

used t-tests implemented in SPM for post-hoc comparisons. 

3. Results  

MoCap data showed more anterior pelvic tilt than IMU data (0-100% gait cycle, 

p<0.001) and more flexion than IMU data across joints (hip: 0-38 and 60-100% gait 

cycle; knee: 0-38 and 57-89% gait cycle; ankle: 6-99% gait cycle; all differences 

p<0.001) (Figure 1, Table 2). Young adults had greater hip extension than the knee 

osteoarthritis group during midstance (24-48% gait cycle, p<0.001, Figure 2). Critically, 

group by tool interactions were minimal (56-65% gait cycle at hip, p=0.024) and did not 

overlap with main effects of group.  
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Figure 1. Sagittal pelvis, hip, ankle, and knee angles across tools (mean±SD). Shaded 
grey rectangles indicate difference between tools (p<0.05) by statistical parametric 
mapping. 
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Figure 2. Sagittal pelvis, hip, ankle, and knee angles across groups (mean±SD). Shaded 
grey rectangles indicate significant main effect of group (p<0.05) by statistical 
parametric mapping with accompanying text indicating post-hoc group differences. 
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Figure 3. Sagittal pelvis, hip, ankle, and knee angles across speeds (mean±SD). Shaded 
grey rectangles indicate significant main effect of speed (p<0.05) by statistical 
parametric mapping.
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Table 2. Statistical results for all comparisons. RMSD in tool comparison indicates mean and range root mean squared difference between 
MoCap and IMU data for each joint. Percentages (%s) indicate ranges of the gait cycle found to be significantly different via SPM. Post-hocs 
indicate direction of main effect or interaction effect differences. Not sig. indicates a main, interaction, or post-hoc effect was not significant. n/a 
indicates a post-hoc comparison was not run because a main or interaction effect was not significant. 

  

 

All variables in ° Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Pelvis Average tilt 1.1 3.1 -4.6 4.0 0.1 2.7 -2.5 3.0 -2.8 2.4 -1.1 2.1 -2.4 2.2

Peak extension 14.8 3.3 11.9 7.7 15.0 3.0 14.6 4.6 10.1 4.0 12.2 14.6 14.0 17.0
ROM 41.9 6.0 44.8 7.3 42.8 4.6 44.7 5.0 39.8 6.5 39.1 3.4 44.6 4.3

Peak flexion 54.3 7.6 69.9 4.7 62.5 4.2 63.3 4.3 60.5 6.3 61.4 21.0 62.9 20.8
ROM 60.5 6.1 70.3 6.8 66.2 4.9 66.9 6.7 62.5 6.0 64.2 5.4 65.6 3.6

Peak plantar flexion 25.3 6.9 12.3 7.0 23.9 4.0 16.0 4.5 15.0 7.2 17.4 7.9 20.2 8.1
ROM 32.6 6.9 24.5 4.9 31.9 2.8 26.1 4.4 25.5 6.6 27.3 3.2 28.4 3.1

Tool

Hip

Knee

Ankle

IMU Marker
Group

Young Older Healthy Knee Osteoarthritis
Speed

Preferred Faster
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Table 3. Representative discrete kinematics by tool, group, and speed. All results reported in degrees and absolute value, except pelvis tilt where 
positive values indicate posterior tilt and negative values indicate anterior tilt. 

Tool Speed
Main post-hoc Main post-hoc Main post-hoc

Pelvic tilt 0-100% (p<0.001) not sig. n/a
3-53% (p<0.001)

59-94% (p=0.003)
not sig. n/a

0-5% (p=0.048)
28-100% (p<0.001)

not sig.

Hip angle
0-47% (p<0.001)

65-100% (p<0.001)
30-47% (p=0.005)

Y<OA 30-47% 
(p<0.001)

0-22% (p<0.001)
37-52% (p=0.01)

60-100% (p<0.001)
61-63% (p=0.046) not sig. 12-34% (p=0.002)

MoCap F>P 12-15% (p=0.04)
IMU not sig.

Knee angle
0-38% (p<0.001)

58-91% (p<0.001)
not sig. n/a

5-21% (p=0.003)
52-71% (p=0.001)
81-92% (p=0.014)

not sig. n/a
16-18% (p=0.046)
60-63% (p=0.045)
85-90% (p=0.037)

MoCap F>P 60-63% (p=0.007) 
and 88-90% (p=0.048)

IMU F>N 60-63% (p=0.028)

Ankle ange 18-100% (p<0.001) 62-65% (p=0.039)
Y<OH 61-65% 

(p=0.023)

1-30% (p<0.001)
42-64% (p<0.001)

67-100% (p<0.001)
not sig. n/a 11% (p=0.05) not sig.

Group Tool×Group Tool×Speed
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As expected [e.g., (Fukuchi et al. 2019)], there were significant effects of speed 

on kinematics (Figure 3, Table 2). At the faster walking speed, the pelvis was more 

anteriorly tilted (1-94% gait cycle, p<0.001) and the hip was more flexed at 0-22 and 

60-100% gait cycle (p<0.01) and more extended at 36-52% gait cycle (p<0.01). At the 

faster speed, the knee was more flexed from 2-21 and 51-71% gait cycle (p=0.001) and 

more extended from 81-91% gait cycle (p=0.018). Compared to preferred speed, at the 

faster speed, ankle dorsiflexion was greater from 1-3, 6-31, and 67-100% gait cycle 

(p<0.05) and ankle plantar flexion was greater from 43-63% gait cycle (p<0.001). There 

were significant tool-by-speed interactions at the pelvis and all three joints, with faster 

speed causing greater increases in hip flexion for marker data than IMU data (12-15% 

gait cycle, p=0.04). There were no significant group-by-tool-by-speed interactions. Full 

statistical results can be found in Table 3. 

4. Discussion 

The ability to reliably measure kinematics outside the lab with IMUs would expand 

understanding of how age, pathology, or interventions affect real-world gait. Thus, the 

current study aimed to determine whether lower extremity sagittal kinematics differed 

when derived from traditional MoCap or IMUs using a workflow that could 

theoretically be applied outside the lab, and whether differences across young adults, 

older healthy adults, and older adults with knee osteoarthritis could be detected 

similarly with both tools. We found that lower extremity kinematics were significantly 

different between MoCap- and IMU-derived data, but between-group differences were 

similar for both tools (i.e., minimal group × tool interaction). These results suggest that, 

while the absolute kinematics derived from these two systems differ, the relative 

differences in kinematics derived using IMU data with OpenSense may enable detection 

and tracking of clinically relevant gait differences. 
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When comparing MoCap and IMU kinematics, we saw apparent offsets between 

tools (Figure 1) as well as potential differences in the dynamic tracking between tools 

(i.e., different range of motion between tools in Table 3). Our findings differ from other 

recent studies that found minimal differences in kinematics between MoCap and IMU 

data using an OpenSim workflow (Bailey et al. 2021; Slade et al. 2021; Al Borno et al. 

2022). We found slightly larger differences between MoCap and IMU kinematics 

(average joint RMSD 6-9°, Table 2) than previous studies that used OpenSense (RMSD 

3-7°) (Bailey et al. 2021; Slade et al. 2021; Al Borno et al. 2022). These between-study 

differences are likely largely due to different model calibration procedures (i.e., 

apparent offset between MoCap and IMU data in Figure 1). In the current study, we 

used periods of static data as calibration time points, assuming that participants were 

standing in a neutral posture at these times. Any differences in participant posture from 

neutral or between assumed IMU alignment and actual anatomical reference frames 

would therefore be carried forward into inverse kinematics results. In contrast, Al Borno 

et al. and Bailey et al. corrected for differences between MoCap and IMU model 

postures and Slade et al. carefully controlled participant posture during calibration data 

capture (Bailey et al. 2021; Slade et al. 2021; Al Borno et al. 2022). Compared to a 

measured or visually verified IMU calibration posture, the assumed IMU calibration 

postures would likely introduce some differences between IMU and MoCap-derived 

kinematics. However, if researchers or clinicians plan to implement an OpenSense 

workflow in unobserved, real-world data collections, measured or carefully controlled 

calibration postures would not be available. Thus, the current results provide a more 

realistic estimate of the validity of OpenSense kinematics in unobserved data 

collections. 
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The between-group hip extension differences in the current study align with age- 

or knee osteoarthritis-related differences in previous studies. Similar to previous 

findings in older adults and adults with knee osteoarthritis (Astephen et al. 2008; Boyer 

et al. 2017), in the current study, older adults with knee osteoarthritis had ~5° less peak 

hip extension and 2° less hip range of motion compared to young adults (Table 3). 

Qualitatively, discrete knee and ankle kinematics suggest that the knee osteoarthritis 

group had less knee range of motion compared to the healthy groups (62.7±6.5° for OA 

vs. 66.8±4.3° and 67.0±6.7°) and that both older groups had less peak ankle plantar 

flexion compared to the young group (16.2±5.1° and 15.6±6.8° vs. 23.1±3.9°; Table 3). 

The agreement between the group differences in the current study and in previous 

studies—despite absolute differences between IMU and MoCap kinematics—support 

the use of IMU-derived data for detecting or tracking clinically meaningful differences 

in sagittal plane gait kinematics. 

Unsurprisingly, sagittal plane kinematics differed between preferred- and faster-

than-preferred walking speeds. The current study, however, was focused on whether 

speed affected kinematics differently for MoCap and IMU data. Integrated IMU data 

(e.g., linear velocity and displacement and angular orientation) are susceptible to greater 

error when noise increases at greater movement speed. While this error is generally low 

at walking speeds (Potter et al. 2019), OpenSense does not directly implement error-

reducing procedures such as linear drift correction or stride-by-stride integration 

resetting. We did find significant tool × speed interactions at every joint (Table 2), but 

hose interactions appeared to have little clinical relevance as post-hoc comparisons of 

the effect of speed on MoCap or IMU data revealed that MoCap resulted in greater hip 

flexion than IMU for only 4% of the gait cycle at faster speeds. Thus, IMU data 
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appeared—overall—to detect similar speed-related differences in kinematics as MoCap 

data overall. 

To date, many validations of IMU kinematic data have relied on proprietary 

commercial software packages, which have RMSD of 3-10° between MoCap and IMU 

sagittal kinematics during controlled, in-lab data collection (Nüesch et al. 2017; Kobsar 

et al. 2020). While proprietary software may provide internally reliable and accurate 

estimates of kinematics, the analysis methods within those software packages are 

unknown, making comparison across studies or replication of results with different 

systems difficult or impossible. Our results suggest that the open-source OpenSense 

analysis tool may enable kinematic measurement with similar accuracy to proprietary 

software, even without strict calibration procedure. This type of open-source software 

package provides an opportunity to standardize IMU kinematic processing across 

different studies and increases accessibility of IMU analyses to researchers and 

clinicians who do not have the expertise or resources to develop customized data 

processing algorithms.  

The current study has a couple potential limitations that could be expanded upon 

in future work. Most importantly, demonstration of the validity of this IMU approach in 

a lab setting does not guarantee similar validity in real-world, unobserved settings. 

While we attempted to mimic some aspects of unobserved data collection (e.g., 

selecting calibration time points based on IMU signal characteristics rather than known, 

controlled postures; identifying gait events from IMU signals), we were able to control 

for other unobserved data challenges, including detection of walking activity or sensor 

placement variation. While many methods exist for activity classification and gait event 

detection [e.g., (Attal et al. 2015; Benson et al. 2019; Gurchiek et al. 2020)], the impact 

of variations in sensor placement remains a relatively understudied area. As part of the 
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development of this study, we examined the effect of variation in sensor placement on 

IMU kinematic outcomes. We found that differences in sensor placement (i.e., ~2-4 cm 

superior/inferior position or ~90° medial rotated position) could impart differences in 

peak sagittal joint angles of up to 10° (Supplemental material). This finding may 

support the use of additional IMU data alignment techniques prior to inputting data to 

OpenSense to minimize the effect of day-to-day or inter-participant sensor placement 

differences.  

The assumptions and constraints of the chosen musculoskeletal model in the 

current study may have impacted the ability to detect some expected group differences. 

In our previous analysis of these data (Hafer et al. 2020), we found significant 

differences in knee range of motion between the young and knee osteoarthritis cohorts 

that were not seen in the current work. For simplicity in the current study, we used a 

model with one degree of freedom knee joint rotation (Yamaguchi and Zajac 1989). In 

combination with a sagittal-only ankle joint, this model may have compensated for true 

frontal or transverse plane static offsets or gait patterns in unexpected ways. In our 

previous work, where we used a functional alignment method to calibrate IMU data 

with no assumptions of linked segments, we found no significant differences in knee 

range of motion calculated using MoCap or IMU data (Hafer et al. 2020). In the current 

study, knee and ankle range of motion estimates differed between MoCap and IMU 

kinematics by 10 and 7°, respectively. Examining the sensitivity of kinematics to 

modelling choices and static vs. functional IMU data alignment may help elucidate 

ways to minimize these inter-tool differences.  

Overall, this study demonstrates that an open-source, freely available IMU 

inverse kinematics approach (OpenSense) can provide estimates of gait kinematics that 

can differentiate between clinically relevant groups in controlled collection settings. 
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This work is a foundational step in determining whether an inverse kinematics approach 

sufficiently detects or tracks meaningful decrements or improvements in real-world gait 

function. Real-world demonstration of these methods will be essential to verify that 

these in-lab findings translate to unobserved data collections. 

Data Availability:  

Sample data and code are available at https://simtk.org/projects/knee-oa-age-imu  

Supplemental Material: 

A supplemental file demonstrating an analysis of the effect of differences in IMU sensor 

placement on inverse kinematics results is included with this article. 
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