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Abstract 15 

Background 16 

Onchocerciasis is a neglected tropical and filarial disease transmitted by the bites of blackflies, 17 

causing blindness and severe skin lesions. The change in focus for onchocerciasis management 18 

from control to elimination requires thorough mapping of pre-control endemicity to identify 19 

areas requiring interventions and to monitor progress. Onchocerca volvulus infection prevalence 20 

in sub-Saharan Africa is spatially continuous and heterogeneous, and highly endemic areas may 21 

contribute to transmission in areas of low endemicity or vice-versa. Ethiopia is one such 22 

onchocerciasis-endemic country with heterogeneous O. volvulus infection prevalence, and many 23 

districts are still unmapped despite their potential for O. volvulus infection transmission.  24 

Methodology/Principle findings 25 

A Bayesian geostatistical model was fitted for retrospective pre-intervention nodule prevalence 26 

data collected from 916 unique sites and 35,077 people across Ethiopia. We used multiple 27 

environmental, socio-demographic, and climate variables to estimate the pre-intervention 28 

prevalence of O. volvulus infection across Ethiopia and to explore their relationship with 29 

prevalence. Prevalence was high in southern and northwestern Ethiopia and low in Ethiopia's 30 

central and eastern parts. Distance to the nearest river (-0.015, 95% BCI: -0.025 – -0.005), 31 

precipitation seasonality (-0.017, 95% BCI: -0.032 – -0.001), and flow accumulation (-0.042, 32 

95% BCI: -0.07 – -0.019) were negatively associated with O. volvulus infection prevalence, 33 

while soil moisture (0.0216, 95% BCI: 0.014 – 0.03) was positively associated.  34 

Conclusions/Significance 35 
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Infection distribution was correlated with habitat suitability for vector breeding and associated 36 

biting behavior. The modeled pre-intervention prevalence can be used as a guide for determining 37 

priority for intervention in regions of Ethiopia that are currently unmapped, most of which have 38 

comparatively low infection prevalence. 39 

Author's summary 40 

Areas with unknown onchocerciasis endemicity may pose a threat to the goal of eliminating 41 

transmission: they may re-introduce onchocerciasis to areas where interventions have been 42 

successful. Additionally, because the vectors (and thus Onchocerca volvulus transmission) have 43 

specific ecological requirements for growth and development, changes in these ecological factors 44 

due to human activities (deforestation, modification of river flows by dam construction, climate 45 

change) might change patterns of parasite transmission and endemicity. To estimate the impact 46 

of these environmental changes, we must first identify ecological factors that determine 47 

transmission and prevalence. We have employed Bayesian geostatistical modeling to create a 48 

nationwide O. volvulus infection prevalence map for Ethiopia based on pre-intervention nodule 49 

prevalence and have explored the effect of environmental variables on O. volvulus infection 50 

prevalence. We have also identified areas that need additional data to increase the prediction 51 

accuracy of the map. We found that hydrological variables such as distance to the nearest river, 52 

precipitation seasonality, soil moisture, and flow accumulation are associated significantly with 53 

O. volvulus infection prevalence. We show that the pre-intervention prevalence can be estimated 54 

based on the ecological data and that predicted prevalence can be used as a guide to prioritize 55 

pre-intervention mapping.  56 
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Introduction 57 

Mapping infection prevalence is fundamental for control and elimination because it is used to 58 

estimate the disease burden and to design and monitor the impacts of interventions. Often the 59 

prevalence data are present in the form of point data at different locations and time points, and 60 

are aggregated at different administrative levels (1). However, disease risk is a spatially 61 

continuous phenomenon that extends across and beyond administrative borders (2). In addition, 62 

mapping strategies change depending on the intended endpoint of the intervention (3): when 63 

elimination of transmission is the goal, the spatial heterogeneity in disease prevalence has to be 64 

quantified accurately so that appropriate interventions can be implemented and, where possible, 65 

implementation and monitoring can be informed by the spatial distribution of infection rather 66 

than simply along local administrative organizational boundaries. When resources or 67 

accessibility to an endemic region are limited, as is the case for many neglected tropical diseases, 68 

such thorough data collection may not be possible and methods to extrapolate likely prevalence 69 

would be useful.  70 

Using geostatistical modeling techniques, point prevalence data can be transformed into a 71 

continuous spatial prevalence map of varying endemicity (2, 4), rather than reporting binary 72 

categorization of areas as endemic or non-endemic (5). These continuous maps can extrapolate 73 

the prevalence measures to previously unmapped regions based on the spatial autocorrelation 74 

between the prevalence measures and the influence of known ecological and socio-demographic 75 

factors. In addition, geostatistical models provide unbiased quantification of the uncertainty 76 

associated with the prevalence estimates. 77 

Onchocerciasis is a neglected tropical disease caused by infection with a filarial nematode, 78 

Onchocerca volvulus, that is transmitted by the bites of blackflies (Simulium spp.). The vectors 79 
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have a specific ecological niche: they breed around fast-flowing rivers, requiring high aeration 80 

and oxygen content for larval development (6). The flies show diurnal activity and bite humans 81 

living in communities near these rivers (7-9). If the biting blackfly carries the infective stage of 82 

the parasite (the 3rd stage larvae, or iL3), the larva leaves the blackfly and enters the human host. 83 

Inside the human body, the larva develops into an adult worm and forms a nodule, generally 84 

localized subcutaneously. People living with onchocerciasis show a range of chronic clinical 85 

manifestations, including onchodermatitis, severe itching, rashes, and visual impairment that 86 

may culminate in blindness (10). More recently, it has also been linked with epilepsy and 87 

nodding syndrome in children (11, 12).  88 

Onchocerciasis is currently targeted for elimination via community-directed mass drug 89 

administration with ivermectin (MDAi), either annually, semi-annually, or, in some areas, up to 90 

four times a year (13). Onchocerca volvulus infection prevalence is measured using counts of 91 

microfilariae (mf) in a small of skin biopsy (skin snipping), physical examination for the 92 

presence of nodules (nodule palpitation), or antibody tests that detect the presence of antibodies 93 

against the parasite Ov16 antigen (14). Rapid Epidemiological Mapping of Onchocerciasis 94 

(REMO) uses nodule palpation in combination with geographic information system mapping, 95 

and was used by the African Programme for Onchocerciasis Control (APOC) to map prevalence 96 

in twenty countries from 1996 to 2012 (15, 16). REMO revealed that the prevalence of 97 

O. volvulus infection was patchy and heterogenous across Africa (17) and identified areas for 98 

ivermectin intervention (3, 15) using a threshold for treatment set at a nodule prevalence of 20%. 99 

Onchocerciasis-endemic communities were divided into hypoendemic (nodule prevalence: < 100 

20%), meso-endemic (nodule prevalence: 20–45%), and hyperendemic (nodule prevalence: > 101 
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45%) (17, 18) based on nodule prevalence. However, there are still many areas that are 102 

unmapped and in which the infection prevalence is not known (19). 103 

In onchocerciasis-endemic Ethiopia, mapping of prevalence has been focused on the western 104 

districts based on the high incidence of onchocerciasis and because environmental factors favor 105 

blackfly breeding in these regions (20). In contrast, eastern Ethiopia has been assumed to be free 106 

of O. volvulus infection, which has generally proven true (21). However, a recent continent-level 107 

mapping (19) found that most of the implementation units that were predicted to be suitable for 108 

onchocerciasis in Ethiopia were not mapped, posing a risk to elimination goals. In addition, there 109 

is high spatial variability of onchocerciasis endemicity in Ethiopia, ranging from 0% in some 110 

areas to as high as 84% in some areas of southwest Ethiopia (21, 22). 111 

MDAi started in some Ethiopian hyperendemic foci in 2002 (20) and, to our knowledge, there 112 

has not been coordinated vector control in Ethiopia. The shift to onchocerciasis elimination 113 

officially began in 2013 with a goal to eliminate transmission by 2020 (20, 22): the program 114 

moved from annual to biannual treatment strategy in all the known endemic areas and scaled up 115 

treatment to other additional endemic areas which were not treated previously (22). Cross-border 116 

coordination of MDAi between transmission foci in northwestern Ethiopia and bordering Sudan 117 

is ongoing (13). In some cases, transmission decline without intervention has also been reported 118 

(23) but onchocerciasis persists in some areas despite MDAi for a variety of reasons, including 119 

challenges with treatment compliance (24-26), civil unrest (27, 28), and lately the COVID-19 120 

pandemic (29). In addition, there has been variation in the history and the frequency of MDAi. 121 

Most of the hyper- and mesoendemic districts have been treated over two decades, while in 122 

hypoendemic districts, MDAi started around 2014 following the policy shift from control to 123 

elimination (22). 124 
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There is no national-level baseline endemicity map of O. volvulus infection prevalence for 125 

Ethiopia, which has created difficulty in quantifying the effect of MDAi on a national scale. 126 

Baseline/pre-control endemicity is an important indicator of morbidity and a predictor for the 127 

time required for elimination (18, 30-32). In addition, the prevalence measures before 128 

intervention provide an unbiased relationship between the infection prevalence and 129 

environmental variables. Prevalence and onchocerciasis suitability mapping for Ethiopia in 130 

previous studies (17, 19) have been done as part of continental-scale research, although Zouré et 131 

al.(17) did not consider environmental factors, and Cromwell et al. (19) used presence-absence 132 

data which do not capture the magnitude of the prevalence. Although these studies helped to 133 

place O. volvulus infection prevalence or risk in a broader ecological and epidemiological 134 

context, we have focused on a spatial scale which offers us greater flexibility to explore 135 

ecological patterns unique to Ethiopia by incorporating both the magnitude of prevalence and 136 

associated ecological variables (33). We develop a geostatistical model for the distribution of 137 

pre-intervention nodule prevalence of O. volvulus infection prevalence in Ethiopia using this 138 

approach that considers spatial variation in environmental and socio-demographic variables. 139 

Furthermore, we identify the most important environmental and socio-demographic variables 140 

contributing to O. volvulus infection prevalence, and present estimates of uncertainty in the 141 

predicted prevalence that can be used to target areas for further mapping efforts. 142 
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Methods 143 

Prevalence data 144 

Onchocerca volvulus infection prevalence data with site-specific coordinates for Ethiopia were 145 

obtained from the publicly available Expanded Special Project for Elimination of Neglected 146 

Tropical Diseases (ESPEN) database (34). Nodule prevalence data were collected as part of 147 

REMO mapping before the initiation of MDAi, from the year 2001 to 2012, examining the 148 

presence of palpable onchocercal nodules in 30 to 50 adults randomly selected from each 149 

surveyed village (15, 20). The protocols for the REMO assessment are available in the published 150 

guidelines (35). There were 927 geopositioned coordinates for nodule prevalence in 36,010 151 

people. Any observations from the same geographic coordinates at different times were 152 

aggregated by adding the number of cases observed and the number of total tests done before 153 

calculating the prevalence. 154 

Although the database contains both nodule prevalence data and skin mf prevalence data, in this 155 

analysis, only nodule prevalence data were considered for the geospatial analysis because of the 156 

limited number of skin mf sampled (n = 126) before MDAi, which limits its utility for 157 

identifying associations between prevalence and environmental variables. That said, skin mf data 158 

were used to assess the correlation between skin mf as a measure of O. volvulus infection and the 159 

nodule prevalence measure, which revealed two outlier observations with very high nodule 160 

prevalence but with low skin mf prevalence. These were excluded from the dataset because the 161 

low skin mf prevalence could not be attributed to a reasonable cause, such as MDAi, as the data 162 

were collected before ivermectin distribution. Thus, the final dataset contained nodule 163 

prevalence data from 916 unique sites and 35,077 people (Fig 1). 164 
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 165 

Fig 1. Sites and the nodule prevalence measured during Rapid Epidemiological Mapping of166 
Onchocerciasis (REMO) in Ethiopia. The grey boundary on the map represents administrative167 
regions. The inset figure shows the histogram of the prevalence. 168 

Environmental, climate, and socio-demographic variables 169 

Variables relevant to O. volvulus infection prevalence and Simulium ecology based on published170 

literature were assembled from different sources and were exported as a raster layer at a171 

resolution of 1 km using Google Earth Engine (6, 36-39) (S1 Table). Raster layers with higher172 

resolution were downsampled using a mean aggregation method, whereas the raster layers with173 

lower resolution were resampled to align with 1 km resolution (40) to prepare a raster stack of174 

uniform resolution. Raster data were processed using the raster package in R version 4.1.0 (41-175 

43). Downloaded raster variables were reprojected to a standard projection, World Geodetic176 

System 1984 (WGS84). The raster covariates were cropped to the boundary of Ethiopia (S1 Fig),177 

and a raster stack of covariates was prepared. The measurement of different covariates at each178 

sample site was extracted from the raster stack.  179 
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Variable selection 180 

Thirty-two variables were grouped into six major categories: elevation, temperature, 181 

precipitation, socio-demographic, hydrological, and vegetation (S1 Table), and the initial 182 

selection of covariates was conducted separately for each category. During the initial rounds of 183 

variable selection, multi-collinearity was assessed among the variables by calculating the 184 

Spearman's rank correlation matrix and a variable inflation factor (VIF) for the linear model, 185 

including the variables, using the GGally and car packages in R (44, 45). Next, any variables with 186 

an absolute correlation coefficient less than 0.8 with other variables within the group were 187 

selected (46). For the set of covariates with a correlation coefficient greater than 0.8 and a VIF 188 

greater than 10, only one of the covariates was selected (33, 47). The VIF measures how easily a 189 

given predictor can be predicted from a linear regression based on other predictors. The predictor 190 

with the lowest VIF score was selected among the set of correlated covariates. The final 191 

covariates yielded a correlation matrix of less than 0.8 (S2 Fig) and a VIF factor of less than 10 192 

(S2 Table). Based on this initial round of analysis, a set of 16 covariates were selected. 193 

Model fit was assessed based on the Deviance Information Criterion (DIC) and Widely 194 

Applicable Information Criterion (WAIC) scores (48). We ran a univariate regression model and 195 

calculated the DIC and WAIC scores for the respective univariate models. A covariate yielding 196 

the least DIC and WAIC scores from each category was selected. Combinations of other 197 

variables were further explored if their inclusion further optimized the model fit scores. Eight 198 

covariates from the pool of 16 possible were selected for downstream geostatistical analysis (S3 199 

Table). 200 
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Geo-statistical modelling framework 201 

A Bayesian geostatistical model was implemented using the Integrated Nested Laplace 202 

Approximation (INLA) approach, which has been reported to be computationally efficient for 203 

posterior distribution calculation and has been employed in recent large-scale geostatistical 204 

models (33, 46, 49, 50). Geostatistical approaches assume a positive spatial correlation between 205 

observations; i.e., the observations nearer to each other are more related than the farther ones. 206 

Information from neighboring pixels can then be utilized to allow smoothing of extreme values 207 

due to small sample sizes and give reliable and robust estimates from sparse data (33, 51). 208 

Further, the hierarchical structure of the model permits the estimation of covariate effects, spatial 209 

covariance structure, and the prediction of missing data (33). These models incorporate both 210 

fixed and random effects. The fixed effects determine the influence of covariates on O. volvulus 211 

infection prevalence, while the random effects account for the spatial variation that determines 212 

anomalous regions of high and low prevalence (46). This model can thus identify the relationship 213 

between infection prevalence data and several predictors and quantify spatial dependence via the 214 

covariance matrix of a Gaussian process facilitated by adding random effects to the observed 215 

locations (49). 216 

Model fitting 217 

Conditional on the true prevalence ����� at location �� � 1,2,3… . �, the number of cases (
�) 218 

observed out of the total number of people tested (��) were assumed to follow a binomial 219 

distribution. 220 


�|����� � ����������� , ������ 

The log odds of prevalence is modeled as 221 
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������������ � �� � ���� � ����� 

where �� is the intercept, ���� are the vectors of covariates and their coefficients. ����� is a 222 

spatial random effect with zero-mean Gaussian process following the Matérn covariance 223 

function which is defined by the equation: 224 

Cov#�����, �����$ � %�
2���&�'� �(|)�� * ��)|��+��(|)�� * ��)|� 

Here, +� is the modified Bessel function of the second kind and order ' , 0, ' is the smoothness 225 

parameter, and %� is the marginal variance (46). ( , 0 is the scaling parameter related to the 226 

practical range ., the distance at which the correlation between two points is approximately zero. 227 

However, if . � 8'(, at this range, the spatial correlation is close to 0.1 (9, 46). Default priors 228 

were used for the intercept parameter, effect parameters for the covariates, and the 229 

hyperparameters in the model as defined in Moraga, p. 35–37 (2). 230 

Accounting for excess zero prevalence 231 

The binomial distribution is governed by only a single parameter which does not address 232 

overdispersion. To account for the excess zero prevalence in the data (Fig 1), zero-inflated 233 

binomial models (ZIB) Type 0 and Type 1 were also considered. There are structural zeros 234 

(prevalence reported to be zero based on reality) and sample zeros (prevalence reported to be 235 

zero based on chance) in any probability distribution (48, 52). Type 0 model considers only the 236 

structural zeros, while Type 1 considers both the structural and sample zeros. With ZIB Type 0 237 

model, the probability density function for the observed cases is 238 

0�
�|�����, ��� � ��1�
� � 0� � �1 * ���1�
� , 0�2��
� 3 �����
	��1 * ������
��	� 
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Here, �� is the proportion of structural zeros, �1 * ��� is the proportion of sample zeros, and 239 

1�
� � 0� is the indicator variable. When both structural zeros and sample zeros are considered, 240 

i.e., Type 1, the observations follow the probability density function: 241 

0�
�|�����, ��� � ��1�
� � 0� � �1 * ��� 2��
� 3�����
	��1 * ������
��	�  

To determine the best fit model for the nodule prevalence data, model fit statistics (DIC and 242 

WAIC) were calculated for each model, viz. binomial, ZIB Type I, and ZIB Type 0.  243 

Mesh construction 244 

We assume an underlying spatially continuous variable for the observed geostatistical data, 245 

which can be modeled with Gaussian random fields. We used the Stochastic Partial Differential 246 

Equation (SPDE) approach in the INLA package to fit a spatial model and to predict each 247 

variable of interest at an unsampled location (2, 53). An approximate solution to SPDE can be 248 

found using the finite element method. The finite element representation of the Matérn field is 249 

used as a linear combination of basis functions defined on a triangulation of domain D (54). 250 

Domain D is subdivided into a triangulated mesh which is formed first by placing the triangle's 251 

vertices at the sample locations and then adding other vertices around the regions of spatial 252 

prediction.  253 

We constructed the finite element mesh for SPDE approximation to the Gaussian process 254 

regression using the boundary of Ethiopia. Triangulation meshes with different cut-off 255 

parameters and the maximum length for the triangle inside and outside the boundary were tested 256 

for their model fit and computation cost. The mesh that yielded the lowest DIC and WAIC scores 257 

without significantly increasing computational cost was chosen. 258 
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Cross-validation 259 

K-fold cross-validation (with k = 10) was run to observe the differences in the predictive 260 

accuracy of the candidate models. Different measures of predictive accuracy were calculated by 261 

assessing the relationship between the predicted and observed prevalence in the validation 262 

dataset. In 10-fold cross-validation, the dataset is divided into ten random sections (or folds) (39, 263 

46). Then, model validation runs are performed on each fold (10% of the data labeled the 264 

validation dataset) after fitting the data on the remaining nine folds (90% of the data labeled the 265 

training dataset). Thus, ten validation runs are performed for 10-fold cross-validation. During 266 

each validation run, both Spearman's rank correlation coefficient and the Root Mean Square 267 

Error (RMSE) between the observed data and the predicted data for validation samples were 268 

calculated to assess accuracy. 269 

Prediction 270 

The posterior distribution of prevalence was estimated at 5 km resolution, accounting for the 271 

effect of the variables and the spatial covariance structure. The covariate raster stack was 272 

aggregated to 5 km spatial resolution by taking either the mean or sum of the raster cells. The 273 

mean of raster cells was calculated for all continuous covariates except population count, for 274 

which the sum was calculated. Aggregated data were used to ease the computational burden 275 

associated with geospatial prediction at higher resolution. In addition, we calculated the 276 

aggregated mean, and the range of predicted prevalence values within a district/implementation 277 

unit (IUs). The predicted prevalence map was also used to assess the relationship with the 278 

environmental variables fitting the Generalized Additive Model (GAM) curve. 279 

  280 
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Results 281 

We formulated a Bayesian geostatistical model using INLA to estimate the nationwide pre-282 

intervention prevalence of O. volvulus infection in Ethiopia. Nodule prevalence data from 916 283 

unique geopositioned sites were combined with eight different environmental and socio-284 

demographic covariates to construct the geostatistical model. Most of the prevalence data were 285 

from western Ethiopia, as eastern Ethiopia is largely unmapped for O. volvulus infection 286 

prevalence. The mean and the standard deviation of the observed prevalence across the sampling 287 

locations in Ethiopia was 17.24±16.32% ranging from 0 to 81.48%. There were 204 sites with 288 

zero prevalence (Fig 1). 289 

Model selection and fitting 290 

Four different types of model were tested for the nodule prevalence data viz. binomial without 291 

spatial structure, binomial with spatial structure, ZIB type 1 and ZIB type 2, both with spatial 292 

structure. These were done without including any environmental and socio-demographic 293 

variables in the model. The binomial model that did not account for spatial effects showed higher 294 

DIC (9806.988) and WAIC (9816.581) scores (S3 Fig). The addition of spatial effect and 295 

accounting for zero inflation with a Type I zero-inflated binomial model decreased the DIC and 296 

WAIC scores to 5661.098 and 5916.715, respectively. Thus, ZIB Type I with spatial structure 297 

was chosen for modeling the prevalence data. To optimize the SPDE mesh, six different 298 

triangulation meshes with different parameters were tested for their model fit and computation 299 

cost (S4 Fig, S4 Table). The mesh C yielded the best model fit scores (DIC = 4538.12; WAIC = 300 

4652.22). However, the mesh E yielded a comparable model fit (DIC = 4572.74; WAIC = 301 

4710.781) but was computationally more efficient (45.38 s vs. 1667.33 s) and therefore, mesh E 302 

was chosen for fitting the model. 303 
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We selected environmental and socio-demographic variables based on the model fit scores of the 304 

univariate model. Isothermality was selected from the group of temperature variables, 305 

precipitation seasonality from the group of precipitation, and similarly, population density, 306 

distance to the nearest river, slope, and Normalized Difference Vegetation Index (NDVI) were 307 

selected from the group of socio-demographic, hydrological, and vegetation groups of covariates, 308 

respectively. Other combinations were also explored and the inclusion of covariates like soil 309 

moisture and flow accumulation further reduced the DIC and WAIC scores (S3 Table).   310 

K-fold cross-validation (k = 10) was done for three different models: one without environmental 311 

covariates, one with six covariates, and the other with an additional two covariates (flow 312 

accumulation and soil moisture), which revealed that model 3 was superior to model 0 and 1 (S5 313 

Fig). For model 3, calculating the Spearman rank correlation coefficient between the observed 314 

prevalence and the predicted prevalence ranged from 0.48 to 0.70 with a median of 0.66. 315 

Similarly, the RMSE ranged from 11.09 to 15.1, with a median of 13.18. This suggested a good 316 

model fit and accuracy for predictions across the validation datasets. 317 

Model parameters 318 

The regression coefficients were estimated for each covariate included in the model. Since INLA 319 

is a Bayesian technique, the regression coefficients are a probability distribution rather than point 320 

estimates. A negative coefficient estimate implies a negative association of the variable with the 321 

prevalence and vice versa. The significance of the estimates was determined as described in 322 

Moraga et al. (55). The association was deemed significant only if both the 95% BCI values were 323 

below 0 for negative association and above 0 for positive association.  324 
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Out of 8 covariates considered for the final model, four covariates were significantly associated 325 

(based on 95% BCI) with O. volvulus infection prevalence (Table 1). Soil moisture was 326 

positively associated (0.0216, 95% BCI: 0.014 – 0.03) with O. volvulus infection prevalence, 327 

whereas distance to the nearest river (-0.015, 95% BCI: -0.025 – -0.005), precipitation 328 

seasonality (-0.017, 95% BCI: -0.032 – -0.001), and flow accumulation (-0.042, 95% BCI: -0.07 329 

– -0.019) were negatively associated with O. volvulus infection prevalence. The regression 330 

coefficient of significant variables was at least one to two orders of magnitude greater than the 331 

non-significant ones. 332 

Table 1. Mean coefficient estimates and 95% Bayesian credible interval (BCI) for the 333 
environmental and socio-demographic variables in the model. Regression coefficients for a particular 334 
covariate represent the change in �������� for a unit change in that covariate given that all other variables 335 
are kept constant. 336 

  Regression coefficients 

Variables Mean 95% BCI 

Distance to the nearest river -0.01508 (-0.0252, -0.005)  

Soil moisture  0.02158 (0.0135, 0.0297)  

Flow accumulation -0.04225 (-0.0703, -0.0186)  

Precipitation seasonality -0.01645 (-0.0324, -0.0005)  

Vegetation index 0.00168 (-0.0072, 0.0105) 

Slope 0.00097 (-0.0071, 0.009) 

Population density 0.00005 (-0.0003, 0.0003) 

Isothermality -0.00185 (-0.0287, 0.0249) 

Intercept -1.94027 (-4.9233, 1.0416) 

Hyper-parameters   
Zero probability parameter 0.33345 (0.327, 0.342)  

�1 for spatial field -1.33992 (-1.417, -1.286)  

�2 for spatial field -0.09636 (-0.17, -0.046)  
95% BCI includes 0.025 quantiles and the 0.975 quantiles of the 
probability distribution of the coefficients 

Hyperparameters defining the SPDE mesh were used to calculate the spatial effect and project 337 

the spatial field (S6 Fig). The spatial effect indicates the intrinsic spatial variability in the 338 

prevalence estimates, helping us understand the data's spatial structure (47). Further, the spatial 339 

field also represents the spatial effect that was not accounted for by the covariates included in the 340 
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model (55). The mean spatial field is higher in western Ethiopia while it is lower in central 341 

Ethiopia and eastern Ethiopia, along with the high standard deviation of the spatial field in the 342 

eastern parts. 343 

Model prediction 344 

The predicted prevalence map shows spatial heterogeneity in O. volvulus infection prevalence in 345 

Ethiopia (Fig 2). Predicted O. volvulus infection prevalence is concentrated in the western parts 346 

of Ethiopia, with three to four hotspots in southwest Ethiopia. There is a relatively low 347 

prevalence of infection in eastern Ethiopia and near to zero prevalence in central Ethiopia. The 348 

range of predicted mean prevalence was 0.39 to 55.27%.  Similarly, the lower limit of predicted 349 

infection prevalence ranged from 0 to 47.28%, while the upper limit of the predicted prevalence 350 

ranged from 1.41 to 65.32%. The correlation between the observed and the predicted prevalence 351 

was 0.71 (S7 Fig). Due to the geostatistical smoothing effect, some observations with higher 352 

prevalence were underestimated and vice-versa.  353 
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354 

Fig 2. Onchocerca volvulus infection prevalence map in Ethiopia generated from the355 
geostatistical model. The mean (A), the lower limit (B), and the upper limit (C) of O. volvulus356 
infection prevalence. The prediction interval of the prevalence map is generated from the357 
calculated 95% BCI of fitted prevalence values. 358 

The uncertainty in the prevalence estimates was derived using the standard deviation of the359 

posterior distribution. The uncertainty map shows that the presence of data influenced the360 

uncertainty in the prevalence estimates; i.e., areas with the ground truth data have lower361 

uncertainty (Fig 3A). The uncertainty was higher in eastern Ethiopia due to the lack of ground362 

truth data from those sites. Most of central Ethiopia and some areas in eastern Ethiopia,363 

regardless of the absence of the data, showed low prevalence with lower uncertainty (Fig 3B).364 

There were areas with a high prevalence that had different levels of uncertainty in western365 

Ethiopia. The regions with higher uncertainty almost always corresponded with sparse data from366 

those regions. 367 
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368 

Fig 3. Uncertainty in the estimates of O. volvulus infection prevalence from the model. The369 
standard deviation of the posterior distribution of prevalence (A) and the location of the370 
observation are indicated by '+' on the map. The bivariate map (B) shows both prevalence and371 
the uncertainty estimates rescaled from 0 to 1. 372 

A district-level map was created by aggregating the mean prevalence from pixels within the373 

respective districts which represent implementation units (IUs) for MDAi (Fig 4). The374 

aggregated mean prevalence for the first dozen of the most endemic districts were greater than375 

40%. The difference between the highest and the lowest estimated prevalence pixels (range of376 

mean prevalence) within the districts was as high as 50.72% for a district within the Kemashi377 

zone of Ethiopia. 378 
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379 

Fig 4. The aggregated mean prevalence and the range of the estimated mean prevalence380 
within Ethiopian districts. The mean of the estimated prevalence of all the pixels within the381 
district level border (A) and the range of the estimated prevalence within the district, i.e. the382 
difference between the highest prevalence pixel and the lowest prevalence pixel (B), is shown. 383 

Relationship of environmental and socio-demographic covariates on the prevalence 384 

A GAM curve was fitted between the predicted prevalence and the covariates used in the model385 

to assess the relationship between them. The relationship profile of the predicted O. volvulus386 

infection prevalence across the range of values of different covariates indicates which ecological387 

conditions are suitable for onchocerciasis transmission (Fig 5). The relationship curve for the388 

distance to the nearest river and the predicted prevalence shows the sharp decline in the O.389 

volvulus infection prevalence to around 20-25 km, and the curve continues in the low prevalence390 

region with increased uncertainty as distance increases from the nearest river (Fig 5). There was391 

almost a linear increase in the predicted prevalence with an increase in soil moisture up to around392 

18 mm.  393 

There was a negative association with the flow accumulation with a considerable increase in394 

uncertainty in the areas with high flow accumulation, i.e., larger rivers. Nevertheless, the areas395 
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with lower flow accumulation had a higher predicted prevalence than those with higher flow396 

accumulation, suggesting the importance of intermediate-sized rivers to onchocerciasis397 

epidemiology in Ethiopia. In addition, the relationship curve for the slope shows that a certain398 

degree of slope is favorable for O. volvulus infection prevalence (S8 Fig). There is a similar399 

response profile for population density where intermediate population density is favorable for400 

onchocerciasis transmission. There was a steep decline in predicted prevalence with the initial401 

increase in precipitation seasonality. However, there was a mixed non-linear response in the402 

regions with precipitation seasonality from 60 to 130 mm.  403 

404 

Fig 5. The relationship between the predicted mean prevalence with the significant405 
environmental covariates in the regression model. The curve was fitted using a generalized406 
additive model (GAM) using the smoothing function available in the ggplot2 package. The407 

22 

w 

sis 

in 

lar 

for 

ial 

he 

 

nt 
ed 
he 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.22269016doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.10.22269016
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

shaded region around the curve represents the 95% confidence interval. Flow accumulation had a 408 
range of high magnitude compared to other covariates (values ranged from 0 to 100418). Thus, 409 
this variable was rescaled from 0 to 100 to make its range comparable with other variables. 410 

  411 
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Discussion 412 

We generated a country-level geospatial map of O. volvulus infection prevalence before the start 413 

of MDAi in Ethiopia, accounting for environmental and socio-demographic factors. The 414 

prevalence has been extrapolated to the country-level border of Ethiopia, including the eastern 415 

regions which were not mapped previously. Predicted prevalence in areas where people do not 416 

currently inhabit can indicate the risk of transmission should infected people establish 417 

communities. Prevalence was estimated using the pre-intervention nodule prevalence data and 418 

therefore represents the infection status before MDAi in Ethiopia. Thus, these predictions can act 419 

as a pre-control baseline map to on which decisions concerning new pre-MDAi mapping of 420 

likely hypoendemic areas that are not yet under MDAi can be prioritized and the effects of past 421 

interventions or of ecological changes at different locations can be assessed. 422 

The predicted infection prevalence was found to be relatively low in the central parts of Ethiopia. 423 

This can be attributed to the presence of a significant geographical feature, the Great Rift valley. 424 

The elevated highlands along the center and lowland to the east of the Great Rift valley are 425 

characterized by low predicted prevalence. The land east of the valley is dry with few rivers (16, 426 

20). On the other hand, the high elevation and slopes in western Ethiopia experience much 427 

higher rainfall, resulting in fast-flowing rivers, a specific requirement for blackfly breeding and 428 

development. The response profile for slope indicates that there is an optimal slope for the 429 

prevalence of O. volvulus infection that may be related to the flow characteristics optimal for 430 

blackfly breeding.  431 

The spatial pattern of O. volvulus infection prevalence predicted across Ethiopia by this 432 

geospatial model was consistent with previously published prevalence maps that were based on 433 

REMO and other data (17, 19). It is noteworthy that in those earlier maps and in this geospatially 434 
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predicted map there was a high level of spatial heterogeneity in infection prevalence, including 435 

heterogeneity within health districts (which are the implementation units for MDAi in Ethiopia). 436 

The difference between the highest and lowest prevalence pixel (range) within the districts was 437 

as high as 50%. A study in Cameroon reported that hypoendemic areas could sustain low-grade 438 

transmission and, therefore, might cause rapid recrudescence in neighboring meso- and 439 

hyperendemic areas where the transmission has been successfully controlled (56). Given that 440 

much of the unmapped onchocerciasis endemic areas of Ethiopia is hypoendemic, these areas 441 

must be identified and treated for elimination of transmission to be reached. Hence, we need to 442 

consider the spatial heterogeneity within and between the intervention units while planning the 443 

elimination programs.  444 

We used a bivariate map to visualize estimated prevalence and the associated uncertainty (Fig 4). 445 

The presence/absence of data influences this uncertainty map; i.e., areas with ground truth data 446 

have lower prediction errors. This is expected in geostatistical models as they depend on the 447 

Euclidean distances between the reported observations (39). Thus, the uncertainty map can 448 

indicate where additional data would reduce the overall prediction error of the prevalence map, 449 

particularly in the areas with higher prevalence. This can be used to identify regions that might 450 

benefit from targeted re-mapping or elimination mapping efforts (3). For example, there are 451 

areas with higher prevalence in the west but varying uncertainty. The areas with high uncertainty 452 

could be targeted for re-mapping. Similarly, there are areas in the east with both low prevalence 453 

and lower uncertainty, i.e., with higher confidence, and thus, do not need to be re-mapped.  454 

Ecological features associated with O. volvulus infection prevalence 455 

The major environmental factors significantly associated with infection prevalence were distance 456 

to the nearest river, soil moisture, precipitation seasonality, and flow accumulation. As expected, 457 
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there was a negative association between the distance to the nearest river and predicted 458 

prevalence. Onchocerciasis has long been recognized as being higher in communities near rivers 459 

and this correlation, which has been reported in prior geospatial modeling studies (19, 37, 39), is 460 

driven by blackfly breeding and development requirements for fast-flowing rivers, such that 461 

villages can be categorized epidemiologically as first, second, or third-line villages based on 462 

their proximity to vector breeding sites (39, 57, 58).  463 

The relationship curve between the predicted prevalence and the distance to the nearest river 464 

shows that there is an initial rapid decline in prevalence followed by a less rapid decline as the 465 

distance from the river increases, and the curve asymptotes to a very low prevalence with 466 

increased uncertainty as the distance exceeds 100 km. A rapid decline in blackfly biting rate at 467 

increasing distance from a river breeding site, based on vector biting rate data collected in 468 

northern Cameroon over three years, has been reported previously (59). Similarly, a mark-469 

recapture study found a logarithmic decline in the proportional fly biting density as the distance 470 

increased from the marking site (60), and a mark-release-recapture study in Ghana in West 471 

Africa reported the average flight range of S. damnosum may be as high as 27 km (58). While 472 

Ethiopia is host to several different competent blackfly vector species, the part of the curve 473 

where the change in slope declines is consistent with this estimated flight range viz., ~20-25 km. 474 

However, the curve does not reach its lowest point until 100 km, suggesting that the parasites 475 

could be transmitted beyond the average dispersal range of an individual blackfly. This could be 476 

because the dispersal range for gravid blood-seeking and ovipositing female blackflies has been 477 

reported to be greater than the average dispersal range at around 60-100 km from the river (58). 478 

In addition, wind-assisted long-distance migration of blackflies of hundreds of km and 479 

transmission due to the human migration have also been reported (61-63). Thus, this study 480 
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supports that longer range migration is likely and that it also likely contributes to O. volvulus 481 

transmission. 482 

We observed a positive association between soil moisture and O. volvulus infection prevalence. 483 

Soil moisture is high in areas with high precipitation or near water bodies, including rivers—i.e., 484 

where there are suitable blackfly breeding sites. Soil moisture is an indicator of agricultural 485 

suitability, and agricultural areas have historically known to have high prevalence of O. volvulus 486 

infection (19, 37, 64). Agricultural lands and farms in these areas tend to be near rivers for easy 487 

irrigation. Therefore, the increased prevalence of O. volvulus infection among people involved in 488 

agriculture and farming (37, 65, 66) is presumably because these workers are generally outdoors, 489 

often in proximity to rivers, and thus experience increased exposure to blackflies (7, 9, 67). 490 

Flow accumulation is used in hydrogeology as a proxy for river grades and represents the 491 

cumulative number of cells in a raster object that flow into a given cell: high flow accumulation 492 

represents large rivers, and lower flow accumulation represents secondary rivers and their 493 

tributaries. It has been used to map onchocerciasis hotspots in hypoendemic settings of the 494 

Democratic Republic of Congo (68). In this study, flow accumulation was negatively associated 495 

with O. volvulus infection prevalence, meaning that the infection was more common in the 496 

communities near the secondary rivers and tributaries than the large rivers. The primary vectors 497 

of onchocerciasis in Ethiopia are S. damnosum s.l. and S. neavei (69). In a study describing the 498 

ecological study of West African Simulium spp., S. damnosum s.l. were found in rivers of 499 

medium width with a lower flow accumulation than the large size rivers (6). Furthermore, the 500 

important characteristic of S. neavei is the obligatory phoretic association of larvae with the 501 

freshwater crabs which are more common in sheltered smaller river streams in the forests than in 502 

larger rivers (70, 71). The forested riverine areas, where S. neavei are found, is a dominant 503 
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ecotype in southwestern midland and highlands of Ethiopia, where onchocerciasis is highly 504 

endemic and from where most of the data were collected for this study (9, 72). 505 

Similarly, precipitation seasonality was also negatively associated with the predicted prevalence, 506 

i.e., the prevalence was high in the areas with lower precipitation seasonality. Areas with high 507 

precipitation seasonality might have ephemeral rather than perennial streams. If the breeding 508 

sites are ephemeral, blood-feeding by blackflies would only happen during some part of the year, 509 

lowering the annual biting rate, a key parameter in O. volvulus transmission (73-75). Southeast 510 

Ethiopia, characterized by low prevalence of O. volvulus infection, has high seasonality in 511 

precipitation that is characterized by two short wet seasons with a dry period in between (76). 512 

However, the southwestern areas where the disease is most endemic have low precipitation 513 

seasonality and high annual precipitation (77).  514 

As one would expect, the environmental factors that were significantly associated with O. 515 

volvulus infection prevalence are all exert strong influence on vector breeding and thus impact 516 

blackfly density and biting rates. The implication of this strong association between determinants 517 

of vector breeding and infection prevalence implies that spatial variation in vector breeding 518 

drives the spatial variation of O. volvulus infection prevalence in Ethiopia and that the geospatial 519 

model we present here, based on nodule prevalence data, is also predictive of vector distribution. 520 

This suggests that ongoing climate change, which is affecting the pattern of precipitation (78, 521 

79), and other anthropogenic environmental changes such as changing river flow with the 522 

construction of river dams for hydroelectricity or irrigation might significantly change vector 523 

distribution and thus the spatial occurrence of the disease (80, 81). The impacts of these changes 524 

could be modeled using this approach.  525 
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Model limitations and recommendations 526 

The geospatial model we report here incorporates different environmental and socio-527 

demographic variables that are known to influence the transmission and prevalence of 528 

O. volvulus infection and the distribution of blackflies. However, the data incorporated in the 529 

model do not include all factors that may be epidemiologically relevant, such as direct/indirect 530 

interventions affecting infection prevalence and human behaviors that may increase or decrease 531 

the risk of infection. The non-uniform mean spatial field across the triangulation mesh shows 532 

that there might be some effects that are unaccounted for by the model (S6 Fig), and the 533 

possibility remains that an unidentified covariate that closely resembles the spatial field might 534 

aid in explaining the spatial variation in prevalence. In addition, the inclusion of blackfly 535 

distribution maps based on the identification of breeding sites and their productivity might 536 

improve the model fit. Unfortunately, such data are not available for Ethiopia.  537 

Some variables that we expected may correlate with prevalence, such as human host population 538 

density and vegetation, were not shown to be significantly associated in these analyses. 539 

Blackflies are not usually reported to be found in dense urban environments and, similarly, 540 

vegetation cover is essential for blackfly breeding and thus O. volvulus transmission (37, 64, 82). 541 

We suggest that the lack of association might be because the country-wide spatial scale 542 

neutralizes factors that impact prevalence at a smaller geographic scale. Therefore, targeted 543 

spatial analysis in regions with differences in vegetation near rivers or with differences in rural-544 

urban indices (83) might be helpful to explore the effects of these variables on infection 545 

prevalence. Furthermore, O. volvulus transmission is highly dynamic, not just spatially but also 546 

temporally. Extending the current spatial model to a spatio-temporal model might improve the 547 
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model fit, which requires both the prevalence and the covariate data at sufficient temporal 548 

resolution.  549 

We could not include prevalence measures based on other diagnostic methods for Ethiopia 550 

because fine-scaled prevalence data based on mf counts from skin snips or antibody tests (Ov16) 551 

were not available. However, these data could be used as an alternative to, or in addition to, 552 

nodule prevalence. Combining data across methods is challenging, as correlations between mf 553 

counts and nodule counts can be highly variable (however, see (18)) and the correlation between 554 

these measures and Ov16 seropositivity prevalence is unclear. Nevertheless, the map presented 555 

here could be used by onchocerciasis elimination programs to direct resources for elimination 556 

mapping because elimination mapping of any disease can be expensive (3), and the method 557 

described here may be an inexpensive first step that can extrapolate country-wide prevalence 558 

from existing data and thus better target re-mapping efforts.  559 

Conclusion 560 

Onchocerciasis programs have transitioned from control of onchocerciasis as a public health 561 

problem to elimination of O. volvulus transmission, triggering the need to develop new tools to 562 

more efficiently prioritize decisions concerning elimination mapping and interventions in 563 

hypoendemic foci that were not previously targeted for intervention. To this end, we have 564 

generated a baseline pre-intervention prevalence map for the whole of Ethiopia using geospatial 565 

modelling that is based on pre-intervention nodule prevalence data and spatial variation in 566 

different environmental and socio-demographic factors. We extrapolated existing historical 567 

nodule prevalence measures to previously unmapped regions of Ethiopia and quantified 568 

uncertainty in predicted prevalence. This map could be used as an aid to decision making on 569 

where and how to (a) extend elimination mapping into areas identified as likely hypoendemic 570 
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foci and (b) prioritize the allocation of scarce health system resources to areas most likely to 571 

benefit from that allocation. Furthermore, this study found that hydrological variables such as 572 

distance to the nearest river, soil moisture, precipitation seasonality, and flow accumulation were 573 

significant in describing the spatial heterogeneity of O. volvulus infection in Ethiopia. All these 574 

ecological features are related to the suitability of an area for vector breeding, movement, biting 575 

behavior, and density, leading to the conclusion that vector suitability and movement are the 576 

primary determinants of the spatial distribution of O. volvulus infection in Ethiopia. 577 

Consequently, changes in these ecological features due to anthropomorphic changes in climate, 578 

agriculture, vegetation type (e.g., slash-and-clear), or construction of hydroelectric or irrigation 579 

dams might significantly alter the occurrence of the disease. We suggest, therefore, that the 580 

importance of these vector-related ecological factors in determining infection distribution and 581 

intensity reaffirms that inclusion of vector control could augment current interventions based 582 

primarily on prophylactic chemotherapy. 583 
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