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This manuscript presents a study with recruited volunteers that
comprehends three sorts of events present in Alzheimer’s Dis-
ease (AD) evolution (structural, biochemical, and cognitive) to
propose an update in neurodegeneration biomarkers for AD.
The novel variables, K, I, and S, suggested based on physics
properties and empirical evidence, are defined by power-law re-
lations between cortical thickness, exposed and total area, and
natural descriptors of brain morphology. Our central hypoth-
esis is that variable K, almost constant in healthy human sub-
jects, is a better discriminator of a diseased brain than the
current morphological biomarker, Cortical Thickness, due to
its aggregated information. We extracted morphological fea-
tures from 3T MRI T1w images of 123 elderly subjects: 77
Healthy Cognitive Unimpaired Controls (CTL), 33 Mild Cog-
nitive Impairment (MCI) patients, and 13 Alzheimer’s Disease
(AD) patients. Moreover, Cerebrospinal Fluid (CSF) biomark-
ers and clinical data scores were correlated with K, intending to
characterize health and disease in the cortex with morpholog-
ical criteria and cognitive-behavioral profiles. K distinguishes
Alzheimer’s Disease, Mild Cognitive Impairment, and Healthy
Cognitive Unimpaired Controls globally and locally with rea-
sonable accuracy (CTL-AD, 0.82; CTL-MCI, 0.58). Correla-
tions were found between global and local K associated with
clinical behavioral data (executive function and memory as-
sessments) and CSF biomarkers (t-Tau, Aβ-40, and Aβ-42).
The results suggest that the cortical folding component, K, is
a premature discriminator of healthy aging, Mild Cognitive Im-
pairment, and Alzheimer’s Disease, with significant differences
within diagnostics. Despite the non-concomitant events, we
found correlations between brain structural degeneration (K),
cognitive tasks, and biochemical markers.

Cortical Folding | Aging | Alzheimer’s Disease | Mild Cognitive Impairment

Correspondence: fernanda.hansen@idor.org

Introduction
Alzheimer’s Disease (AD) is the most common dementia
worldwide. Besides being widely studied, there is a lack of
knowledge on global brain mechanics, reflected in its mor-
phology during the disease stages. The clinical diagnosis
of Alzheimer’s Disease relies on episodic memory impair-
ment, neuropsychological assessment, at least one abnormal
biomarker among Cerebrospinal fluid (CSF) analysis, and
neuroimaging (PET and MRI) (1). There is some cognitive
dysfunction in its preclinical or prodromal stage, Mild Cog-

nitive Impairment (MCI), but minor extension as in demen-
tia. MCI patients can be diagnosed as amnestic or anamnes-
tic, depending on memory loss presence, and by the decline
of single or multiple domains (2). AD is also characterized
by the concentration of Aβ1-40, Aβ1-42, and total Tau pro-
tein on the CSF, which is correlated with findings of amyloid
plaques and Tau tangles on histopathological examinations
(3, 4). In addition, new biomarkers for AD have been sug-
gested based on the pathology’s inflammation, as Lipoxin,
which regulates chronic inflammatory processes resolution
(5). In structural images, Alzheimer’s Disease is charac-
terized by brain atrophy, which includes volume reductions
in the medial temporal lobe and hippocampus, grey matter
loss, and reduced Cortical Thickness (6), currently used as
biomarkers (7, 8).

However, computing brain folds (9), arising from the corti-
cal folding (or gyrification) process is an upcoming morpho-
logical measurement of the brain that is related to age (10–
12) and neurological pathologies (Major Depressive Disor-
der, Bipolar Disorder, Schizophrenia (13), Anorexia Nervosa
(14), Autism (15), and Alzheimer’s Disease (16)). Cortical
folding can be measured from a structural T1-weighted MRI:
(i) by using the primary parameter of cortical folding, the
Gyrification Index (GI), that is the ratio of the Total Area
(AT) of the brain and its Exposed Area (AE) (17), (ii) by cal-
culating the fractal dimension (18) or (iii) by calculating an
index (k) derived from a mathematical relation of the, AT,
AE), and the Average Thickness (T) (19). The latter was
proposed as a physics-based model for cortical folding by
Mota & Herculano-Houzel, predicting a power-law relation-
ship between Cortical Thickness, Exposed, and Total Areas
experimentally confirmed on the brains of 55 mammals, in-
cluding humans. Its linear coefficient, k, is a natural variable
to describe brain morphology, while the angular coefficient
α is the fractal index and universal constant, with theoretical
value 1.25 and calculated as 1.305 (19).

A follow-up study by Wang et al., 2016 (20) described the
universal law of gyrification for the human brain across gen-
der, age, and pathology, with further confirmation that the
universal law is also respected in smaller fractions of the cor-
tex by applying the at four lobes (Frontal, Occipital, Parietal,
and Temporal Lobes)(21). In Wang et al. 2021 (22), by tak-
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ing the logarithmic variables log10 AT, log10 AE and log10 T2

as the base space, it was proposed a new set of independent
variables to described brain morphology derived from per-
pendicular planes of log10 k: K (Equation 1), representing
the axonal tension, S (Equation 2), that encapsulates brain
shape, and I (Equation 3), representing brain volume. Com-
bined, those three variables could help distinguish pathologi-
cal events similar to age effects, such as AD.

K = log10 k = log10 AT − 5
4 log10 AE + 1

4 log10 T2 (1)

S = 3
2 log10 AT − 3

4 log10 AE − 9
4 log10 T2 (2)

I = log10 AT +log10 AE +log10 T2 (3)

As a practical application of Mota, Herculano-Houzel, and
Wang’s cited works, we propose an improvement in the dif-
ferential diagnosis of AD, MCI, and CTL, with cortical fold-
ing independent variables. Therefore, we suggest that AD
effects in brain morphology are similar to accelerated aging
in the K, I, and S base space.
Further, we correlate those variables, representing patho-
logical structural changes, with neuropsychological tests
used to diagnose dementia (cognitive function, working and
episodic memory, and memory estimation), CSF biomarkers
related to Alzheimer’s Disease (total Tau, Aβ1-40, Aβ1-42),
and Lipoxin, a regulator of chronic inflammatory processes
resolution(5).

Results
With 123 subjects (77 CTL, 33 MCI, and 13 AD) (De-
mographics and summary for each group in Supplementary
Notes, Table 3), the data fits the model with α = 1.13 ± 0.03
(95% CI: 1.07; 1.19), statically different from the theoretical
value, 1.25 (Student’s t = 3.65, p = 0.00032). Healthy aging
reduces brain gyrification in terms of α (Pearson’s r = -0.79,
p = 0.0345) (Supplementary Note 2), K (Pearson’s r = -0.32,
p <0.0001) (Figure 1), and I (Pearson’s r = -0.47, p <0.0001).

Diagnostic discrimination and prediction. K is differ-
ent for the diagnostics groups in the hemisphere analysis
(ANOVA F = 28.27, p < 0.0001) (p.adj < 0.01 for all pair-
wise comparisons), meaning a global structural change with
the pathology. The decrease of K with disease presents a
similar pattern of the decrease with healthy aging, in which
Cortical Thickness, Exposed, and Total Areas are reduced.
Taking into consideration specific lobes, AD, MCI, and CTL
presented differences in gyrification in all lobes (Frontal lobe,
F = 14.71 p <0.0001; Occipital lobe, F = 10.07, p <0.0001;
Parietal lobe, F = 16.65, p <0.0001 and Temporal lobe,
F = 28.49, p <0.0001). Subsequent pairwise comparisons
showed significant differences between CTL-AD and MCI-
AD for all lobes, and a significant difference between CTL
and MCI for the Temporal lobe (SI Appendix, Fig. S1).
There is no statistical power to infer if the difference in K
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Fig. 1. Age and diagnostic effects in cortical gyrification. (A) Linear fitting with
95% Confidence Interval (CI) for the model variables in each Diagnostic group, CTL
(adjusted R² = 0.85, p < 0.0001), MCI (adjusted R² = 0.88, p < 0.0001), and AD
(adjusted R² = 0.86, p < 0.0001). As the severity of the disease increase, the linear
tendency is downshifted, with smaller linear intercepts (K). (B) K linear tendency
across age with 95% CI for the three diagnostics groups: AD (adjusted R² = 0.026,
p = 0.21), MCI (adjusted R² = 0.044, p = 0.0051), and CTL (adjusted R² = 0.097,
p < 0.0001).

between AD and CTL, increases with age (SI Appendix, Fig.
S2).
To compare K and Cortical Thickness (log10T) discrimi-
nating power, we evaluated their optimal cut-offs in raw
data and after age correction (Figure 2). K optimal cut-off
for discriminating Alzheimer’s Disease and Cognitive Unim-
paired Controls is -0.54, and for discriminating Mild Cog-
nitive Impairment and Controls, -0.53. K has excellent ac-
curacy and reasonable specificity discriminating AD from
CTL (ACC = 0.82, specificity = 0.86), and low sensitivity
(0.58), while log10T (ACC = 0.73) has a balanced trade-off
with specificity and sensitivity (0.77 and 0.73 respectively).
Discriminating MCI from CTL is challenging for both K
(ACC = 0.60) and log10T (ACC = 0.55). K (after age correc-
tion) cut-points for lobes are described in Table 1 (expanded
results in SI Appendix, Table S2), by which it is possible to
verify local regions more prone to diagnostic discrimination.
Table 1. Optimal cut-off (maximum sensitivity + specificity) for K (age-corrected) at
each lobe (F - Frontal, O - Occipital, P - Parietal, and T - Temporal lobes.). Cut-off,
accuracy, sensibility, and specificity for discriminating pairwise diagnostic groups.

Lobes CTL-AD CTL-MCI

ACC Sens Spec ACC Sens Spec

F 0.73 0.50 0.77 0.52 0.54 0.52
O 0.78 0.46 0.83 0.45 0.72 0.34
P 0.73 0.73 0.73 0.60 0.18 0.77
T 0.65 0.58 0.66 0.63 0.55 0.66
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Fig. 2. Optimal cut-off (maximum sensitivity + specificity) for K and Cortical Thick-
ness including results with removed age effect ("age correction"). The dashed line
represents optimal cut-off to discriminate AD and CTL, and the dotted line repre-
sents optimal cut-off to for MCI and CTL. "ACC" - accuracy, "SPEC" - specificity,
and "SENS" - sensibility. (A) For K, the optimal cut-off for the CTL-AD contrast is
-0.54 and CTL-MCI, -0.53. (B) For K, after age correction, the optimal cut-off for
CTL-AD = -0.52 and CTL-MCI = -0.51. (C) For log10T, the optimal cut-off for CTL-
AD = 0.39 mm and CTL-MCI = 0.40 mm. (D) For log10T, after age correction, the
optimal cut-off for CTL-AD = 0.43 mm and CTL-MCI = 0.44 mm.

Aging and pathological morphology alterations. It is
essential to notice that despite aging and AD share similar
changes in neurodegenerative-related gyrification patterns,
our data suggest that the underlying neurobiological mecha-
nisms related to cortical shrinking are distinct in each group.
We compared the hemispheric values of K, S, and I for two
groups (66 to 75 years old and 76 to 85 years old) to discrimi-
nate the effect of aging or AD pathology on brain morphome-
try. ANOVA showed significant effect on the Diagnostic:Age
group interaction in K (F = 13.3, p < 0.0001), the tension
component, the shape component S (F = 4.70, p = 0.000412),
and I (F = 5.961, p < 0.0001), the volume component. Fur-
ther, combined, K, S, and I trajectories suggest that MCI is
an intermediary stage between healthy aging and Alzheimer’s
Disease. The trajectories suggest that the AD group reaches
a plateau across brain tension and shape (K and S), with the
most noticeable changes in I, the volume component (Figure
3).
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Fig. 3. Morphological trajectory traced across the normalized independent compo-
nents K, S, and I. We normalized the variable to the unity vectors providing compa-
rable scale for the differences in both axes. Groups were divide in two subgroups,
subjects with age between 65 and 75 years old (CTL N = 67, MCI N = 24, AD N = 4)
and subjects with ages between 76 and 85 years old (CTL N = 10, MCI N = 9, AD
N = 9).
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Behavioral and CSF data correlation. Further, we aimed
to verify if the AD-related morphological brain changes
would be correlated to clinical and behavioral variables and
CSF biomarkers of the disease. We found significant cor-
relations between executive function (Cognitive Index, Digit
Span Backwards), cognitive flexibility tasks related to mem-
ory (TMT B-A), and episodic memory (RAVLT A7/A5) with
K and Cortical Thickness (Table 2 and extended results in SI
Appendix, Table S3). The severity of cognitive symptoms
was associated with decreased gyrification and decreased
Cortical Thickness.
For CSF biomarkers, we found significant correlations be-
tween K and the concentration of t-Tau, concentration of
Aβ1-42, and ratios of Tau andAβ concentrations. Decreased
gyrification index was associated with elevated concentra-
tions of t-Tau and its ratios with Aβ in CSF and increased
concentrations of Aβ1-42 (Table 2 and extended results in SI
Appendix, Table S3).
Table 2. Pearson Correlations (r) for behavioral assessments and morphological
parameters, K and log10 Cortical Thickness (log10T) after age correction. p-value
was corrected (Bonferroni) for multiple comparisons within Clinical Assessment and
morphological measurement. ROI codes: H - Hemisphere, F - Frontal Lobe, O -
Occipital Lobe, P - Parietal Lobe and T - Temporal Lobe.

Clinical Assessment ROI K (r) log10 T (r)
Cognitive Index H 0.32*** 0.24***
RAVLT A7/A5 H 0.27*** 0.26***
RAVLT A7/A5 T 0.23*** 0.34***
TMT B-A H -0.22** -0.067
TMT B-A F -0.11 -0.080
Digit Span Backward H 0.22** 0.099
Digit Span Backward F 0.17* 0.074
Aβ1-40 H -0.054 -0.18
Aβ1-42 H 0.21 -0.012
t-Tau H -0.18 -0.29**
Aβ1-42/Aβ1-40 H 0.15 0.14
t-Tau/Aβ1-42 H -0.22 -0.16
t-Tau/(Aβ1-42/Aβ1-40) H -0.20 -0.24*
Lipoxin H 0.11 -0.035
p-value codes: *** <=0.001, ** <= 0.01, * <= 0.05

Discussion
Structural MRI imaging biomarkers have been largely stud-
ied, including gyrification applied to AD (23) and MCI (24).
However, investigating cortical morphological measurements
(or their combinations) is not a straightforward task since
only a few of these parameters will lead to biological inter-
pretations and adequate characterizations of the event in the
study. Inspired by the cortical folding model proposed by
Mota & Herculano-Houzel (19), we aim to investigate an im-
provement on structural biomarkers with independent com-
ponents to discriminate diseased and healthy aged brains bet-
ter. The hypothesis relies on the singularity of brain gyrifica-
tion variable K, its biological meaning, and its low variance
across species, especially in healthy adult humans. We have
shown that the gyrification variable K discriminates patients
with AD from MCI and age-matched controls. Further, we

have shown that structural damages described by K correlate
with cognitive decline and biochemical CSF changes related
to AD.
From the chosen independent parameters, K is a natural de-
scriptor of cortical folding and global brain morphology as it
is: i) a universal law for mammals, including lissencephalic
and cetaceans; ii) based on physical properties, iii) aggregate
structural information from Areas and Cortical Thickness,
iv) is based on empirical evidence (19) and, v) it is proven
to have a robust behavior when applied to smaller regions of
interest in the human cortex (21). In addition, brain gyrifica-
tion variables S and I are mathematically derived from K, but
they are independent. Changes on K do not imply changes in
S and I, as previously described (22).
Therefore, corroborating the primary hypothesis in this study,
our results suggest that K is a sensitive variable for differ-
entiating AD patients, MCI patients, and normal aging sub-
jects, with complex biological and theoretical backgrounds
compared to other previously established structural biomark-
ers such as Cortical Thickness. More specifically, in the
Alzheimer’s Disease application, K is an excellent candidate
to become a neurodegenerative biomarker in the NIA-AA
AT(N) framework (25). Moreover, including S and I to cre-
ate a morphological trajectory, our findings drive to the hy-
pothesis that morphological degeneration in Alzheimer’s Dis-
ease could be interpreted as a premature or accelerated form
of cortical aging and unfolding of the brain. In this study,
the subject’s assessment covered multiple clinical and behav-
ioral domains and investigated biochemical CSF biomarkers
of neurodegeneration, allowing us to confirm that alteration
on cortical gyrification (in K) is correlated to changes in cog-
nitive function and biochemical markers in AD pathology.

Model fitting. To investigate the hypothesis properly, we
first verified if the model proposed by Mota & Herculano-
Houzel was adequately fitted to our dataset. We compared
α for each group with the theoretical value, 1.25 (19) to ver-
ify our data fits the proposed model for gyrification. α was
defined as 1.25 to calculate K, S, and I to study how cortical
gyrification changes within the selected diagnostics, allowing
comparisons with previous investigations.
The presented data fit the model and has a slope compara-
ble to previous findings (20, 21). However, there are limita-
tions in comparing our results to prior publications due to the
differences in acquisition parameters, acquisition equipment,
and FreeSurfer versions that could imply confounding com-
ponents (26, 27). Nevertheless, the presented data’s slope, α,
is smaller than the previously published results. When com-
paring our data with a public image set, Amsterdam Open
MRI Collection, AOMIC - PIOP01 (28), acquired with the
same scanner and processed with the same setup, the results
suggest that the slope’s variation is mainly related to age. Our
supposed abnormal reported smaller α is probably due to the
elder subjects present in the data. We cross-validated these
results with the open image set AHEAD, which includes 7T
MRI structural images (29). Future studies should investigate
any dependency on the slope attributed to sociodemographic
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stats, acquisition parameters, and a bias derived from partici-
pant selection.
Nevertheless, a digest of the published results concerning the
related limitations indicates that the method is robust with an
acceptable variation of K, S, and I from the multiple samples
(Supplementary Note 2). The results confirm the previously
reported dependency of gyrification with age globally and lo-
cally (30).

Diagnostic discrimination. To confirm that K is a better
discriminator than Cortical Thickness, we estimated their op-
timal cut-offs and their relative accuracy, specificity, and sen-
sibility. Lobes’ cut-offs were also determined. Our results
suggest that an independent cortical morphology component,
K, is of great use, even when applied to smaller ROI, in agree-
ment with (12). We included optimal cut-off analysis for Cor-
tical Thickness and K after removing the age effect to isolate
the pathological effects in brain structure. Hereafter, K still
had higher accuracy than Cortical Thickness to discriminate
CTL and AD, and CTL and MCI.
Considering K is a neurodegeneration biomarker in
Alzheimer’s Disease, the bi-modal shape of the curve indi-
cates two influential groups with different levels of structural
injuries, not seen by Cortical Thickness. It is possible to af-
firm with a visual inspection of Figure 2 that K is very sensi-
tive to discriminate subjects in later stages of Alzheimer’s
Disease or more aggressive pathological injuries. Future
works should quantify if there is a connection between K
and spatial distribution of brain atrophy, also an indicator of
the disease later stages (31) (Supplementary Note 3). The re-
duced subject number limits the statistical power of including
subgroups in the cut-off analysis.
When comparing CTL and MCI, the accuracy is smaller,
which is expected since the MCI diagnostic includes a broad
range of pathological involvement. It does not configure,
in all cases, a transition to any dementia, and especially to
Alzheimer’s Disease. Besides, memory loss and reduced
cognitive abilities are present in healthy aging. The morpho-
logical characteristics of our MCI sample suggest that, as in
the clinical aspects, the diagnostic works as an intermediate
step.
Local analysis in lobes indicates K (after age correction) has
better accuracy discriminating CTL and AD in the Frontal
lobe, despite its very low sensibility. Higher sensibility is
found on the Parietal lobe and higher specificity at the Oc-
cipital lobe. This finding confirms (21) results as the parietal
lobe is affected by extended brain atrophy after the tempo-
ral lobe. The significant difference between discriminating
power of K’s values with and without the age effect suggests
that the parietal lobe is more affected by disease than aging.
It is not possible to confirm the results from (21), which K is
better discriminating Alzheimer’s Disease from healthy ag-
ing in younger individuals (Supplementary Note, Fig. 5). An
extension of this work would be benefited from the increase
in the number of subjects to investigate this hypothesis.

Premature and accelerated aging. As previous publica-
tions report, Alzheimer’s Disease, and healthy aging have

different biological bases and onset locations of degeneration
that construct both cognitive degeneration processes, from
hippocampal neuronal loss (32) to the degradation of cog-
nitive networks (33). However, AD degeneration is similar to
a premature and accelerated aging process in morphological
terms. Our global and local analysis corroborates this indi-
cation as K is depreciated with aging for all diagnostics. Be-
sides, AD presents a higher unfolding rate for the four lobes.
In (22), it is proposed that including S and I would improve
our knowledge about brain morphology and our capability of
removing aging effects. In our sample, AD visually mimics
aging in K, S, and I.
Besides Cortical Thickness being one of the most studied
morphological parameters for AD, further studies should
consider that K represents a natural variable that translates
global and local changes in brain structure and is more sen-
sitive to less subtle changes in the disease severity. An ex-
tension of this work, one must consider i) including younger
subjects to delimitate the typical values of K, S, and I; ii) in-
crease the complexity in the discrimination model since none
of the morphological parameters tested delivered results that
could be used in a clinical approach; iii) verify the short
and medium-term variation in cortical folding versus Cortical
Thickness in a longitudinal study.

Behavioral and biochemical correspondence. Previous
studies suggested the morphological alterations in a brain
with Alzheimer’s Disease are not concurrent with biochemi-
cal and behavioral alterations in AD development, as in Jack
et al. (34), which suggest abnormalities in Aβ/t-Tau concen-
trations and brain morphology alterations precede the clinical
symptoms. Moreover, one limitation of behavioral assess-
ments is that they can include multiple cognitive domains,
and most complex tasks are not mapped in a single region of
the human brain. As an example, episodic memory decline
can be related to the reduced number of neurons, synaptic ef-
ficiency, the concentration of neurotransmitters, and affects
the prefrontal cortex, medial temporal lobe, parietal cortex,
and cerebellum successively (35).
K and Cortical Thickness presented correlations at almost
the same comparisons, highlighting the Cognitive Index
and the episodic memory score (RAVLT A7/A5). An ex-
pected correlation was also found for t-Tau/Aβ1-42 and t-
Tau/(Aβ1-42/Aβ1-40), commonly used ratios to describe
Alzheimer’s Disease effects, besides the different onset time
points. Therefore, regardless of the Diagnostic, the brain un-
folds (measured by the decrease of variable K) with a smaller
cognitive index, episodic memory score, auditory (Digit Span
Backward), and visual working memory (Trail Making Test).
In terms of the biochemical data analyzed, we can confirm
that a less folded brain tends to have a higher concentration
of t-Tau, t-Tau/Aβ1-42, and t-Tau/(Aβ1-42/Aβ1-40) ratios.
We correlated K and the clinical/biochemical scores inde-
pendently from the diagnostic given the non-simultaneous
events.
We do not yet fully understand the contributions of deviation
from biochemical and clinical typical values to the structural
changes present in dementia and neurodegenerative diseases.
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We can, however, provide a time-point analysis and correlate
the accumulation of Aβ plaques and t-Tau tangles with re-
duced Cortical Thickness, and now, a less folded brain. Also,
previous reports describe gyrification changes in smaller re-
gional ROIs (36), with the association to one domain tasks
and cognitive index as MMSE. Núñez investigated the asso-
ciation between gyrification and memory scores in AD sub-
jects and reported significant associations for a semantic flu-
ency test and the left insular cortex (37). In contrast, here,
we use a global measure of gyrification that is theoretically
motivated and shown to be correlated to multiple cognitive
measurements.

Conclusions
This manuscript intended to verify the clinical application
of the proposed independent morphological components on
123 elder subjects and argues that K, the tension compo-
nent, should be considered an additional structural marker
to describe neurodegenerative pathologies. Our results sug-
gest that Alzheimer’s Disease is morphologically similar to
accelerated aging and distinguishable from the Mild Cogni-
tive Impairment and Healthy Cognitive Unimpaired Control
groups. It is essential to notice that K, like many morpho-
logical biomarkers, is a valuable tool to verify normal brain
morphology conditions instead of determining the specific
pathology that caused the brain abnormalities. Further, we
demonstrated significant correlations between K and multi-
ple behavioral tests and CSF biomarkers, which are sensitive
to age correction, reinforcing that the non-concomitant pro-
cess occurs during Alzheimer’s Disease development.
Finally, it is our hope that our dataset of processed 432 sub-
jects (123 from IDOR, 208 from AOMIC PIOP01, and 101
from AHEAD) can be included in the human lifespan trajec-
tory of K, S, and I.
A natural next step for this study would be a longitudinal
study to quantify the intraindividual trajectories of K, S, and
I and improvements in cortical folding sensitivity to morpho-
logical damage before AD or MCI diagnostics. Concern-
ing the cortical folding theory proposed by Mota et al., fu-
ture studies must overcome the methodological limitations
of comparing samples acquired on different sites to focus on
socio-economic-demographic (38) and cognitive reserve (39)
and protection (40) impact on K, S, and I.

Materials and Methods
The Alzheimer’s project sustained by IDOR is a follow-
up study about Alzheimer’s Disease in morphological, be-
havioral, and biochemical aspects. The study enrolled 231
individuals from 2011 to 2018. Eligibility criteria of the
project were as follows: (i) subjects had no contraindications
to undergo MRI, such as presenting metal implants in the
head; (ii) participants showed no signs or symptoms indica-
tive of large-vessel cerebrovascular disease, tumoral changes,
or traumatic injury affecting brain structure, as detected in
clinical, cognitive and neuroimaging assessments; (iii) no
severe sensorial deficits which could interfere in the appli-

cation of neuropsychological tests were identified; (iv) sub-
jects did not present major depressive disorder or any severe
lifetime psychiatric disorder and (v) MRI analyses showed
no significant artifacts, which could preclude the identifica-
tion of brain structures. Also, subjects presenting anxiety
or any other condition which interfered with his/her ability
to remain still during MRI were excluded. All the partici-
pants provided written informed consent before enrollment
in the study. The Hospital Copa D’Or Research Ethics Com-
mittee approved the present research under protocol number
CAAE 47163715.0.0000.5249 and all images and data were
anonymized after acquisition. We selected 132 subjects with
structural MRI scans acquired with the same equipment and
based on diagnostic criteria: Healthy subjects, Mild Cogni-
tive Impairment, or Alzheimer’s Disease.

Data acquisition and processing. T1-weighted MRI im-
ages (3T Philips Achieva) of the participants were ac-
quired with the following acquisition protocol: TR/TE
7.2/3.4 ms; matrix 240x240 mm; FOV 240 mm; slice thick-
ness 1 mm; 170 slices. The structural images were processed
in FreeSurfer v6.0.0 (41) with the longitudinal pipeline
(42) without manual intervention at the surfaces (43). The
FreeSurfer localGI pipeline generates the external surface
and calculates the local Gyrification Index (localGI) (17) for
each vertex. Values of Average Cortical Thickness, Total
Area, Exposed Area, and Local Gyrification Index were ex-
tracted with Cortical Folding Analysis Tool (44). We defined
as ROI the whole hemisphere, frontal, temporal, occipital,
and lateral lobes (based on FreeSurfer definition of lobes).
The lobes’ area measurements were corrected by their inte-
grated Gaussian Curvature, removing the partition size effect
and enabling a direct comparison between lobes and hemi-
sphere cortical folding (21). Due to processing errors, eleven
subjects were excluded during the FreeSurfer processing or
data extraction steps. The final number of subjects included
in this report is 123 (77 CTL, 33 MCI, and 13 AD).
A team of physicians, psychologists, and speech therapists
handled the Clinical behavior and the biochemical assess-
ment as described previously (45). The tests included Digit
Span Backwards, RAVLT A7, RAVLT A5, and Trail Making
Test (TMT). The Cognitive Index is calculated as a global
cognitive function (composed of TMT and RAVLT) weighted
for age intervals of 10 years. For a subset of our sample (de-
scribed in Supplementary Note, Table 3), we included the fol-
lowing biochemical biomarkers from the Cerebrospinal Fluid
(CSF): Lipoxin, Aβ1-42, Aβ1-40, and t-Tau.
All statistics were analyzed with R v4.1.0 and has the code
available at GitHub (46). Multiple comparisons of means
were made with ANOVA, post hoc evaluations with Tukey
multiple comparisons of means (which presents p-value cor-
rected for multiple comparisons, "p adj"), correlation tests
with Pearson’s r and Cohen’s d Effect Size. Correlation’s
p-value was corrected for multiple comparisons (Bonferroni)
within the clinical assessment and morphological parameters.
K, S, and I were normalized to unity vector when neces-
sary. Cut-offs were determined, maximizing the sensitivity
and specificity’s sum with bootstrapping to estimate the cut
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point variability (bootstrap number = 1000). The statistical
significance threshold was α = 0.05.
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Supplementary Note 1: Extended Results
Extended results with supplementary Tables and Figures. Table 3 describes diagnostic groups in Sociodemographic, Morpho-
metrical, Behavioral and Biochemical information. Figure 4 compares post hoc difference of means for K and Average Cortical
Thickness in all ROIs with and without age correction. Figure 5 compares post hoc difference of means comparing diagnostic
means of K and K (age-corrected) at each age decade to explore whether the difference would be related to age. Table 4 presents
the extended results K (raw data) optimal cut-off analysis for discriminating Alzheimer’s Disease, Mild Cognitive Impairment,
and Cognitive Unimpaired Controls. Table 5 presents the extended results for the correlation analysis within K or Average
Cortical Thickness and behavioral and biochemical biomarkers of Alzheimer’s Disease.
Table 3. Summary of each sociodemographic, morphological, behavioral, and biochemical variable. Mean values ± standard deviation
(number of subjects).

Variable CTL (N = 77) MCI (N = 33) AD (N = 13)

Age [years] 65.87 ± 8.42 72.25 ± 4.62 77.08 ± 6.14
Education [years] 15.22 ± 2.20 13.18 ± 2.41 12.62 ± 2.98
Female, N (%) 53 (69%) 19 (51%) 8 (62%)

Morphometrical

Cortical Thickness [mm] 2.51 ± 0.10 2.46 ± 0.09 2.38 ± 0.08
Total Area [mm2] 98420.20 ± 7836.81 97382.63 ± 8529.96 95109.22 ± 9251.56
Exposed Area [mm2] 37478.26 ± 2395.69 37306.01 ± 2795.69 37160.08 ± 2962.07
k 0.30 ± 0.01 0.29 ± 0.01 0.28 ± 0.01
K (log10 k) -0.52 ± 0.01 -0.53 ± 0.01 -0.55 ± 0.02
S 9.1 ± 0.01 9.2 ± 0.12 9.2 ± 0.13
I [mm6] 10 ± 0.06 10 ± 0.07 10 ± 0.07

Behavioral

Cognitive Index 0.21 ± 0.64 (77) -1.48 ± 1.27 (33) -3.35 ± 1.46 (13)
RAVLT A7/A5 0.82 ± 0.18 (77) 0.54 ± 0.30 (33) 0.24 ± 0.31 (13)
TMT B-A 58.67 ± 47.57 (77) 139.32 ± 110.78 (33) 226.69 ± 129.06 (13)
Digit Span Backward 5.84 ± 1.74 (77) 4.70 ± 1.59 (33) 3.77 ± 1.37 (13)

Biochemical

Lipoxin [pg/mL] 127.15 ± 61.04 (28) 118.35 ± 47.33 (14) 79.10 ± 70.87 (6)
Aβ1-40 [pg/mL] 4192.04 ± 1900.51 (29) 4935.29 ± 2783.09 (14) 5664.22 ± 1603.33 (6)
Aβ1-42 [pg/mL] 533.92 ± 240.92 (29) 433.47 ± 299.05 (14) 279.71 ± 57.75 (6)
t-Tau [pg/mL] 354.87 ± 193.47 (29) 449.59 ± 187.44 (14) 632.00 ± 268.36 (6)

Table 4. Optimal cut-off (maximum sensitivity + specificity) for K at each ROI (hemispheres and lobes). Cut-off, accuracy, sensibility,
and specificity for discriminating pairwise diagnostic groups.

ROI CTL-AD CTL-MCI

Cut-off Acc Sens Spec Cut-off Acc Sens Spec

Hemi -0.54 0.82 0.58 0.86 -0.53 0.60 0.55 0.63
Frontal -0.55 0.69 0.65 0.69 -0.54 0.55 0.69 0.49
Occipital -0.50 0.79 0.58 0.58 -0.48 0.51 0.51 0.51
Parietal -0.52 0.75 0.77 0.75 -0.50 0.46 0.57 0.42
Temporal -0.51 0.69 0.73 0.68 -0.51 0.63 0.58 0.66
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Fig. 4. Statistically significant (p < 0.05) differences in mean levels with the 95% Confidence Interval of Diagnostics for K and log(T),
with ("After age correction") and without ("Raw data") age correction for the hemisphere and the four lobes. Multiple corrections were
applied within each morphological feature and ROI.

Table 5. Extended table with Pearson’s r correlation results with Cohen’s d effect size for behavioral assessments and morphological
parameters, K and Average Cortical Thickness, with and without age correction. P-value was corrected (Bonferroni) for multiple com-
parisons within Clinical Assessment and morphological measurement. ROI codes: H - Hemisphere, F - Frontal Lobe, O - Occipital
Lobe, P - Parietal Lobe and T - Temporal Lobe.

Clinical Assessment ROI K log10T

Age correction no yes no yes

Correlation r d r d r d r d

Cognitive Index H 0.41*** 0.9 0.32*** 0.68 0.39*** 0.85 0.24*** 0.49
RAVLT A7/A5 H 0.36*** 0.77 0.27*** 0.56 0.40*** 0.87 0.26*** 0.54
RAVLT A7/A5 T 0.31*** 0.65 0.23*** 0.47 0.43*** 0.95 0.34*** 0.72
TMT B-A H -0.31*** -0.65 -0.22** -0.45 -0.23*** -0.47 -0.067 -0.13
TMT B-A F -0.22** -0.45 -0.11 -0.22 -0.22** -0.45 -0.08 -0.16
Digit Span Backwards H 0.27*** 0.56 0.22** 0.45 0.19** 0.39 0.099 0.2
Digit Span Backwards F 0.21** 0.43 0.17* 0.35 0.16* 0.32 0.074 0.15
Aβ1-40 H -0.11 -0.22 -0.054 -0.11 -0.26* -0.54 -0.18 -0.37
Aβ1-42 H 0.23* 0.47 0.21 0.43 0.063 0.13 -0.012 -0.02
t-Tau H -0.26* -0.54 -0.18 -0.37 -0.41*** -0.9 -0.29** -0.61
Aβ1-42/Aβ1-40 H 0.18 0.37 0.15 0.3 0.21 0.43 0.14 0.28
t-Tau/Aβ1-42 H -0.30** -0.63 -0.22 -0.45 -0.32** -0.68 -0.16 -0.32
t-Tau/(Aβ1-42/Aβ1-40) H -0.28** -0.58 -0.2 -0.41 -0.38*** -0.82 -0.24* -0.49
Lipoxin H 0.094 0.19 0.11 0.22 -0.042 -0.08 -0.035 -0.07

p-value codes: *** <=0.001, ** <= 0.01, * <= 0.05
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Fig. 5. Difference of means in pairwise comparison for AD-CTL, AD-MCI, and MCI-CTL in grouped by age in decades in each ROI for
(A) K and (B) K after age correction. Bars represents 95% confidence interval. There is no statistical power to infer that the difference
between diagnostics is more significant in younger adults, probably influenced by the small number of observations in each data point.
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Supplementary Note 2: Slope interpretation
One unexpected aspect of the reported data in the manuscript is that the data presents a smaller cortical folding model slope
(Figure 6) than the previously published results (20). Considering that multiple acquisition and processing sites increase
the variability in brain morphology studies (26, 27, 47–49), the slope analysis should be handled by reducing the possible
methodological confounding variables.
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Fig. 6. Age effect in cortical gyrification. Cortical folding model slope α within 5 years, only for Healthy Cognitive Unimpaired Controls.
Above each point, we display the number of subjects in each regression. Bars represent the standard deviation for the respective age
interval regression. Points with one subject were excluded due to the lack of statistical significance.

We compared the data of this manuscript with the Amsterdam Open MRI Collection (AOMIC) PIOP01 dataset. MRI T1-
weighted images were acquired at the same MRI equipment, Philips Achieva 3 T. Moreover, we cross-validated the results with
the Amsterdam Ultra-High Field Adult Lifespan database (AHEAD), a 7 T available set of MR images.
AOMIC PIOP01 and AHEAD were processed with the FreeSurfer v6.0 (41) standard pipeline, the localGI FreeSurfer pipeline,
and the Cortical Folding Analysis Tool (44). AOMIC PIOP01 dataset (28) contains 216 healthy younger subjects close to 25
years old, the age used to correct our data. Seven subjects were excluded for missing age information and one due to error
in processing and extraction. AHEAD dataset (29) contains 105 healthy subjects from 18 to 80 years old. From those, four
subjects were excluded due to errors in processing or uncorrected surface. Processed data from both datasets are available (50).
We included S and I values for the datasets published by Wang et al. (20) (Table 6).
The IDOR slope is smaller than HCP500r, AHEAD, AOMIC, NKI, and OASIS and comparable to ADNI-Control and ADNI-
AD, both samples with exclusively elder subjects (Fig. 7). To confirm the hypothesis of slope dependency on age without
the methodological confounding variables, we verified the slope behavior in AOMIC and IDOR-Control samples through Age
(Fig. 8 - A). There is a tendency of a reduced slope with the increase of age, and this tendency is similar to the negative gradient
found in cortical thickness and K (Fig. 8 – B and C). These results are validated when compared to the AHEAD subjects (Fig.
9). After a certain age, between 40 to 60 years, the slope escapes the model’s expectations, which could be explained by the
nonhomogeneity in aging effects on brain structure. Aging occurs with different onsets, locations, and scales (from a single
cerebral gyrus to a whole lobe).
Future works with data from a unique site and protocol could evaluate the effect of socioeconomic status and prospect the
biological meaning of the slope.
This manuscript also contributes to sketch the trajectory across the human lifespan for K, S, and I. The fitting of Control data
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Fig. 7. Slope for each sample with the number of subjects included and the age range. The traced line is for 1.25, the theoretical value
of the slope α. Bars represents the standard deviation.
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Fig. 8. Plots comparing morphological variables behavior with Age. Red is for AOMICPIOP01-Control and blue for IDOR-Control. The
x-axis is modified to hide the age interval from 30 to 40 years old that has none subjects, two data points with only one subject, 40-45
and 80-85. The total number of subjects included are 284. (A) Slope for each Age interval group and each sample. The number on
top of the point indicates the number of subjects included in the linear regression, and each subject contributes with two data points,
one for each hemisphere. The traced line is for 1.25, the theoretical value of the slope. Bars represents the standard deviation. (B)
Log10(T) distribution for each Age interval group and each sample. Bars represents the 95% Confidence interval. (C) K distribution for
each Age interval group and each sample. Bars represents the 95% Confidence interval.

points through age demonstrates an acceptable variance considering the methodological limitations and intraspecies biological
diversity (Fig 10). The age dependency in K (Pearson’s r = -0.77, p < 0.0001) and I (Pearson’s r = -0.62, p < 0.0001 is
confirmed. The shape factor has the most intersubject variability possibly, but still significant correlation (Pearson’s r = 0.21, p
< 0.0001.

14 de Moraes et al. |

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.22268812doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.10.22268812
http://creativecommons.org/licenses/by-nc-nd/4.0/


PR
EP

RIN
T40

12

13
12 13

12

0.9

1.1

1.3

1.5

[2
0,

25
)

[3
5,

40
)

[4
5,

50
)

[5
5,

60
)

[6
5,

70
)

[7
5,

80
)

Age [years]

S
lo

pe

Fig. 9. Slope for each Age interval group in AHEAD-Control. The number on top of the point indicates the number of subjects included
in the linear regression, and each subject contributes with two data points, one for each hemisphere. The traced line is for 1.25, the
theoretical value of the slope α. Bars represents the standard deviation.
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Fig. 10. Distribution of subjects for every Healthy Control subject across the independent morphological component through age. For
HCP500r and AHEAD, the mean age of the interval was considered, since ages are determined by an interval of years, instead of one
value for each subject. The solid line represents a linear regression applied for all data with the 95% confidence interval. (A) K, the
tensor component, Pearson’s r = -0.77, p < 0.0001 (B) S, the shape component, Pearson’s r = 0.21, p < 0.0001, and (C) I, the volume
component, Pearson’s r = -0.62, p < 0.0001.
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Supplementary Note 3: Bimodal distribution of K in Alzheimer’s Disease and optimal cut-off
analysis
As commented in the Manuscript Discussion, the bimodal distribution of K is very prominent for the AD subjects. However,
the reduced number of subjects limits our statistical and inference power. Nevertheless, the bimodal distribution communicates
that we have two groups divided by the intensity of whole-brain structural injuries in this sample. Lower values of K are related
to healthy aging and Alzheimer’s Disease as proved here and in (20). Thereby, based on Alzheimer’s Disease spatial evolution
at the human brain (31), one could hypothesize that the worst the structural damage, the spreader the damage would be, and
the lower K values would be found. Based on this hypothesis, we estimated the minimum value of the valley between peaks
with a simple mathematical procedure (value of K were f ′(K) = 0. The valley is placed at K = -0.5432, with 11 hemispheres
with K >-0.54321 and 15 hemispheres with K < -0.5432, with a total of 26 hemispheres for the 13 subjects as expected. Those
hemispheres were divided into two groups, and then we visually evaluated the density plots regarding the K for the lobes of
those hemispheres Figure 11. Here, we can verify that hemispheres with lower K and consequently more significant distance
between AD and CTL/MCI peaks (meaning more considerable discriminating power) had the same pattern at the lobes.
We confirmed the increase of the discriminating power by including only AD subjects with K < -0.5432187 in the optimal
cut-off analysis; The accuracy in discriminating AD and CTL has an impressive increase to 0.96, while the sensibility and
specificity rise to 0.93 and 0.97, respectively (Figure 12). The optimal cut-off in this analysis is -0.55. As expected, the
discriminating power of diagnostics using the Cortical Thickness as a biomarker also increases. However, it does not reach K
discriminating power levels.
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Fig. 11. K density plots across hemisphere and lobes. AD as red, MCI as green, and CTL as blue. In the first column, all AD subjects
were included, along with all MCI and CTL subjects. The second column display results only for AD subjects with hemispherical
K < -0.54, and MCI and CTL subjects. Finally, all AD subjects with hemispherical K > -0.54 or K = -0.54 with MCI and CTL subjects.
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Fig. 12. ROC curves derived from the optimal cut-off analysis of K (hemisphere as ROI) to discriminate CTL and AD subjects. (A) All
AD subjects included and optimal cut-off = -0.54. (B) AD subjects included if hemispherical K < -0.54, optimal cut-off = -0.55.
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