1

2 Cohort-specific serological recognition of SARS-CoV-2 variant RBD antigens

- 3 Douglas D. Fraser^{a,b,c,d}, Michael R. Miller^{a,b}, Claudio M. Martin^{b,e}, Marat Slessarev^{b,e}, Paul Hahn^f, Ian Higgins^f,
- 4 Christopher Melo^f, Michael A. Pest^f, Nate Rothery^f, Xiaoqin Wang^f, Johannes Zeidler^f, Jorge A. Cruz-Aguado^{f*}.
- 5 a. Lawson Health Research Institute, London, ON N6C 2R5, Canada
- 6 b. Department of Pediatrics, Western University, London, ON N6A 3K7, Canada
- 7 c. Department of Clinical Neurological Sciences, Western University, London, ON N6A 3K7, Canada
- 8 d. Department of Physiology & Pharmacology, Western University, London, ON N6A 3K7, Canada
- 9 e. Lawson Health Research Institute, London, ON N6C 2R5, Canada
- 10 f. Diagnostics Biochem Canada Inc, London, ON N6M 1A1, Canada
- 11 *Corresponding author.
- 12

13 <u>Abstract</u> 14

- 15 Background: Estimating the response of different cohorts (e.g. vaccinated or critically ill) to new SARS-CoV-2
- 16 variants is important to customize measures of control. Thus, our goal was to evaluate binding of antibodies
- 17 from sera of infected and vaccinated people to different antigens expressed by SARS-CoV-2 variants.
- 18 Methods: We compared sera from vaccinated donors with sera from four patient/donor cohorts: critically ill
- 19 patients admitted to an intensive care unit (split in sera collected between 2 and 7 days after admission and
- 20 more than ten days later), a NIBSC/WHO reference panel of SARS-CoV-2 positive individuals, and ambulatory
- 21 or hospitalized (but not critically ill) positive donors. Samples were tested with an anti-SARS-CoV-2 IgG
- 22 serological assay designed with microplates coated with a SARS-CoV-2 RBD recombinant antigen. The same
- 23 sample sets were also tested with microplates coated with antigens harbouring RBD mutations present in
- 24 eleven of the most widespread variants.
- 25 Results: Sera from vaccinated individuals exhibited higher antibody binding (P<0.001) than sera from infected
- 26 (but not critically ill) individuals when tested against the WT and each of 11 variants' RBD.
- 27 The optical density generated by sera from non-critically ill convalescence individuals upon binding to variant's
- antigens was different (P<0.05) from that of the WT in some variants—noteworthy, Beta, Gamma, Delta, and
- 29 Delta Plus variants.
- 30 Conclusions: Understanding differences in binding and neutralizing antibody titers against WT vs variant RBD
- 31 antigens from different donor cohorts can help design variant-specific immunoassays and complement other
- 32 diagnostic and clinical data to evaluate the epidemiology of new variants.
- 33 Key Words: COVID-19; SARS-CoV-2 vaccine; SARS-CoV-2 variants; RBD mutations; antibody specificity;
- 34 critically ill, immunoassays, serology.

35 Introduction

The race to understand the impact of new variants of the SARS-CoV-2 virus on the effectiveness of antibody therapeutics, vaccines, and infection-elicited antibody responses has led to an unprecedented number of converging studies, the majority showing that most potent 'immune escape' mutations are in the receptorbinding motif (RBM), a region located within the receptor binding domain (RBD) of SARS-CoV-2's spike protein [1]. Indeed, approximately 90% of plasma or serum neutralizing antibody activity targets the RBD [2] and structural data support that RBD-based vaccines have a competitive position to deliver a fast response to the COVID-19 pandemic [3].

43 Until now, a trend has been delineated for the most frequent Variants of Concern (VOC) B.1.1.7 (Alpha), B.1.351 44 (Beta), P.1 (Gamma) and B1.617.2 (Delta) [4]. Some reports concur that sera from vaccinated or COVID-19 45 convalescent patients can efficiently neutralize viruses with just the N501Y mutation in the RBD, however, 46 variants including the E484K mutation render sera from both wild type (WT) infected and vaccinated patients 47 less efficient at virus neutralization [4-9]. Variants with sentinel mutation N439K decrease the activity of both 48 polyclonal convalescent sera and monoclonal antibodies from individuals recovering from infection [10]. Another 49 RBD mutation, L452R, present in variants B.1.429 and B.1.427 (Epsilon), and Indian Delta variant B.1.617.2 50 (Table 1), is thought to increase viral infectivity and potentially promote viral replication [11-15].

51 The published research, however, has scarcely addressed differences between naturally infected individuals of 52 the general population, critically ill hospitalized patients, and vaccinated subjects in the response to new 53 variants.

Personalizing the response to new variants of the virus is important to optimize measures of control; for example, as precautionary warnings for travel within regions with a prevalent variant, or to better triage the selection of individuals who should be prioritized for vaccination. Although neutralization assays could provide answers to those questions, they are expensive and time consuming for practical testing of the population.

In this study, we set out to investigate first, how the recognition pattern of WT SARS-CoV-2 RBD antibodies generated by vaccination distinguishes those patients compared to the recognition pattern of individuals after infection, and furthermore, determine how this recognition pattern differs when these antibodies are presented with the mutated variant-associated SARS-CoV-2 RBD proteins. Secondly, we aimed to examine whether recognition of variant specific RBD differs between vaccine sera and antibodies produced by different postinfection cohorts, information that could complement clinical data with variant-specific immunoassay-based

64 screenings to evaluate the potential epidemiological impact of new variants on previously infected and

65 vaccinated cohorts.

66 Methods

67 Study population and Ethics

68 We used SARS-CoV-2 serum positive samples from:

a) Donors vaccinated with mRNA vaccines. Commercial samples from individuals who were vaccinated with
 two doses of either the Moderna mRNA-1273 or the Pfizer BioNTech COVID-19 vaccines during the first 3

71 months of 2021. The donor's serum was collected before and after the first and second doses.

b) Critically-ill patients (split in sera collected between 2 and 7 days after admission and more than ten days

73 later). Samples came from patients admitted to the level-3 academic ICU at London Health Sciences Centre

74 (London, Ontario), confirmed as COVID-19 with standard hospital testing by detection of two SARS-CoV-2 viral

75 genes using polymerase chain reaction [16].

c) NIBSC/WHO reference panel of SARS-CoV-2 positive donors from the NIBSC/WHO reference panels.

d) Non-critically ill positive patient samples. Commercial samples were collected during 2020. Donors were
 ambulatory or hospitalized patients (AHP) COVID-19 positive based on RT-PCR tests and immunoassays and
 tested again with the ELISA kit of this study. Three donors were hospitalized (not critically ill) and released.

80 Commercial samples were sourced through Access Biologicals (Vista, California, USA), Lampire Biological 81 Laboratories (Pipersville, PA, USA), or Plasma Services Group, Inc (Moorestown, NJ, USA), each of which 82 confirmed patient consent and participation in an Institutional Review Board (IRB) approved protocol. For 83 critically ill patient recruitment, waived consent was approved for a short, defined period (Western University, 84 Research Ethics Board [REB] number 1670). Samples obtained through the WHO database were originally 85 collected under WHO protocols and ethical considerations, and specifics are publicly available online via links 86 provided in S4. Ultimately, all patient samples were approved for research use by their respective sources. 87 Furthermore, all samples were assigned arbitrary Sample ID's to further anonymize personal data. Additional 88 information available on request.

Samples were collected in North America before the global spread of the variants. We inferred that most of the
studied positive specimens harbored antibodies raised against the WT virus, likely WA1/2020 (summarized in

- 91 Table 1). More detailed information about each sample and the demographics, infection/vaccination timeline,
- 92 and patient outcomes can be viewed in Supplemental Tables S1-S4.
- 93
- 94 Table 1. Summary of serum specimens used in this study. Additional patient data provided in Supplemental
- 95 Material (Tables S1-S5).

Cohort Serum		Age range		Number of days between vaccine immunization or detected infection and blood draw			Date of last drawn
	samples			Median	Range		sample
		Minimum	Maximum	median	Lowest	Highest	
Vaccinated	60	19	76	14	12	17	April 6 th , 2021
ICU patients, 2 - 7 days	30	37	85	4.5ª	2	7	August 10 th , 2020
ICU patients, 10+ days	15	45	77	16ª	10	37	August 10 th , 2020
WHO reference panel	31	Unknown	Unknown At least 28 days			June 26 th , 2020	
Ambulatory and hospitalized population (AHP) ^b	37	24	81	38	10	119	July 20 th , 2020

^a Number of days after ICU admission; ^b 34 ambulatory and 3 hospitalized (but not critically ill) patients.

97 Immunoassays

98 Anti-SARS-CoV-2 IgG antibodies were detected with an enzyme-linked immunosorbent assay (ELISA) kit (DBC 99 anti-SARS-CoV-2 ELISA, DBC-IGG-19) with interim authorization by Health Canada. In brief, the ELISA based 100 assays were designed against antigens formulated by recombinant proteins (aa 319-541) created from the WT 101 RBD sequence (original manufacturer's ELISA design) or those representing the RBD of prevalent VOCs (Table 102 2) with their various mutation sets (N501Y, K417N-E484K-N501Y, K417T-E484K-N501Y, L452R, L452R-103 E484Q, L452R-T478K, K417NL452R-T478K, N439K, Y453F, S477N, K417T). 104 The original WT assay (CAN-IGG-19) uses a ratio between the optical density (OD) of the sample and the cut-105 off [Ratio = OD of sample / Cut-Off] to determine a 'positive' vs 'negative' result, where the Cut-Off [Cut-Off

106 (CO) = (Mean of 3 Negative Control results) x factor 1.5] is used to generate a ratio which is then interpreted

as a Positive (Ratio \ge 1.2), Negative (Ratio \le 1.0), or Borderline (Ratio 1.0 – 1.2) result.

- 108 In this study, the ratio was used only to compare the results between cohorts within the same antigen. When
- 109 comparisons were made between antigens, we used the optical density (OD) generated by the binding of
- samples' antibodies to the antigens (rather than the ratio); in this way isolating the antigen-antibody interaction
- and avoiding bias generated by differences in binding between the antigens and the negative control.
- 112 More details on the layout and performance of the original test can be found in [16] and in the kit's IFU
- 113 (<u>https://dbc-labs.com/products/elisa/anti-sars-cov-2-igg/</u>).
- 114 DiaSorin Liaison SARS-CoV-2 S1/S2 IgG results were provided by the sample supplier.

115 Neutralization antibodies study

- 116 To establish the validity of the DBC-IGG-19 ELISA kit to detect neutralizing antibodies we ran a comparison
- 117 study against Genscript cPass™ SARS-CoV-2 Neutralization Antibody Detection/Surrogate Virus
- 118 Neutralization Test Kit (NJ, USA). This assay was previously validated against plaque reduction neutralization
- 119 tests PRNT50 and PRNT90 with 100% agreement (See manual for SARS-CoV-2 Surrogate Virus Neutralization
- 120 Test Kit).
- 121 The samples were run with both the Genscript Kit and the DBC ELISAs for each of the WT and variants listed 122 above following the instructions for use of each test.

123 Variant-specific immunoassays

To test the binding of antibodies to mutated antigens, microplates were coated with recombinant RBD harbouring mutations present in 11 of the most widespread variants of the virus to date (Table 2). The expression system used to generate the mutant antigen RBD was identical to that of the previously released DBC kit (DBC-IGG-19) with the only difference being the mutations themselves. The mutated antigens were coated under the same conditions used for the WT antigen currently in the commercial anti-SARS-CoV-2 IgG immunoassay. All other reagents of the variant kits used and serological test conditions remained the same as the WT unaltered assay (DBC-IGG-19).

131

132

133

135	Table 2. Classification	of the variants and RBD n	nutations associated v	with the antigens of this study.
-----	-------------------------	---------------------------	------------------------	----------------------------------

Variant name	Lineage (PANGO)	Clade (GISAID)	RBD mutations	Country of first detection	
Wild Type	В	G	-	China	
Alpha	B.1.1.7	GRY	N501Y	United Kingdom	
Beta	B.1.351/501Y.V2	GH	K417N, E484K and N501Y	South Africa	
Gamma	P.1/B.1.1.28.1.	GR	K417T, E484K, and N501Y	Brazil	
Epsilon	B.1.427/429	GH	L452R	Denmark	
Карра	B.1.617.1	G	L452R, E484Q	India	
Delta	B.1.617.2	G	L452R, T478K	India	
Delta Plus	B.1.617.3	G	K417N, L452R, T478K	India	
N439K	B.1.141/B.1.258	GR	N439K	United Kingdom	
Y453F	N/A	N/A	Y453F	Denmark	
S477N	B.1.526.2/B1.1.25	20.C	S477N Australia		
K417T	N/A	N/A	K417T	Brazil	

136

137 Statistical Analysis

Statistical analysis was performed using Analyse-it software (Analyse-it Software, Ltd. (UK); https://analyseit.com/). Univariate group comparisons with non-parametric Steel pairwise ranking were calculated to compare variants within each cohort (figure 2) and cohorts within each variant (figure 3). P-values at the 5% significance level were used to establish differences between variables.

We compared the results of WT antigen to antigens with RBD mutations within each patient cohort based on optical density (OD) which represents binding between antibodies in patient samples and the presented antigen (i.e. the antigen coated onto the microplates), rather than ratios because the ratios are calculated using the negative control as a reference of the cut-off. Therefore, the ratios are affected by changes in the binding of the Negative control to the mutated antigens (Figure 2). To compare cohorts within each variant we used the ratio, because as long as the same antigen is used, normalizing by the negative control enables assessment of the clinical result (positive, borderline, or negative) (Figure 3).

149 **Results**

150 **Detection of neutralizing antibodies.**

- 151 To evaluate the capacity of the RBD variant DBC ELISA kits in this study to detect neutralizing antibodies we
- 152 compared patient sample results against the Genscript cPass™ SARS-CoV-2 Neutralization Antibody Kit.

All 168 samples that generated a positive neutralizing antibody result with the GenScript test were also confirmed with the DBC ELISA for 100% positive agreement (See supplemental Table S5, borderline results

are counted as positive). We observed a positive exponential relationship between the inhibition rate produced

- by the GenScript kit (x) and the ratio generated by the ELISA (y), y = 0.4275e0.0385x, r = 0.85 (Figure 1).
- 157 Additionally, the GenScript neutralizing antibody kit reported a positive result in 98.2% (165 of 168) of COVID

158 seroconverters also detected by the DBC ELISA (counting borderline DBS results as negative). The few

159 seropositive samples that produced a negative neutralizing antibody result had a low serological positive ratio

160 (< 1.9) relatively close to the Cut-off.

161 Reactivity of vaccine and infection sera with WT and mutated antigens

To assess how the humoral immune response in vaccinated individuals compares to antibodies generated from WT infection, and the further influence of the mutations present in the RBD of SARS-CoV-2 variants, we purchased commercial samples of sera from individuals who had received two doses of the Moderna mRNA-1273 or the Pfizer BioNTech COVID-19 vaccines during the first 3 months of 2021.

Even though the donors recruited for the study had declared themselves healthy and uninfected with COVID-19, 25% had a positive pre-vaccine anti-SARS-CoV-2 IgG result with the DBC assay (18% with DiaSorin, Tables S1 and S2 in Supplemental Material). In 80% of those donors, the ELISA signal was above the maximal OD of 4 after the first vaccine dose suggesting that the asymptomatic infection might have been equivalent to a first vaccine dose.

For the rest of the vaccinated donors, the ELISA ratio increased more than two times between the first and the second vaccination doses. After the second vaccination dose, binding responses appear to converge, as we no longer observed a higher SARS-CoV-2 IgG ELISA ratio among the subjects who had a viral infection before the vaccination. In fact, only four (including one sample from a donor positive before the vaccination) of 60 samples did not produce a ratio higher than 15 after two vaccination doses (Supplemental Table S1). We,

176 therefore, estimate that a prior infection had a negligible effect in the load of anti-SARS-CoV-2 antibodies after

177 two vaccine doses

Sera from vaccinated individuals were compared to sera of three COVID-19 convalescent cohorts: a) ICU patients, split into short (2-7 days) and longer (10+ days) hospitalization, b) a reference panel of samples from SARS-CoV-2 positive donors produced by NIBSC/WHO (WHO), and c) infected ambulatory or hospitalized population (AHP) samples.

For AHP and WHO samples, the ELISA OD response of the serological tests in four of the variants was not different (p>0.05) from WT antigen (Figure 2)—all four variants had a single mutation in the RBD (N501Y, L452R, K417T, or S477N). This pattern was different for the vaccinated, for whom three of the above single mutations and two triple mutation antigens displayed no differences in relation to the WT antigen (Figure 2). No significant differences (p>0.05) were observed between the WT and variants in the reactivity of ICU sera (Figure 2). We observed a consistent trend across individual donors (Supplemental Figure S1).

Sera from vaccinated individuals consistently exhibited a higher ratio (p<0.001) than sera from infected (but not critically ill) individuals (AHP, WHO) when tested against the WT and each of the 11 variants (Figure 3). Only the vaccinated cohort displayed a median ratio higher than 15 against all the mutated antigens—except the N439K antigen, which significantly lowered the median of ratio results in all cohorts. Still, even against this antigen, none of the samples from vaccinated donors produced a negative ratio result (<1.0). (Figure 3).

The second highest antibody response was from critically ill ICU patients who were hospitalized for more than 10 days. For seven of twelve of the antigens, including the WT antigen, this cohort was not different from the vaccinated. ICU patients upon admission (2-7 days), WHO, and AHP samples presented lower positive ratios (Figure 3).

To assess if the differences between the cohorts were due to lower age range of vaccinated and AHP in comparison to ICU patients (Table 1), we split the ratio results of the vaccinated and AHP cohorts into those from donors younger and older than 45 (since the ICU 10+ were all older than 45) and compared them. We found no age-related differences (p>>0.05) (Supplemental Figures S2, S3).

201 Discussion

202 Differences in cross-variant seroreactivity between population cohorts, including vaccinated individuals and 203 severely ill patients, have been scarcely documented. Current concerns are that some variants might escape

204 neutralizing antibodies (an issue just recently developing with the recent multi-mutation bearing variant 205 Omicron), but it is unclear how factors such as vaccines and the severity of the disease can influence the 206 outcome. In this study, we used sera from vaccinated and previously infected individuals to evaluate their ability 207 to recognize mutations in the SARS-CoV-2 RBD. We show that vaccine sera exhibited higher reactivity than 208 convalescence sera from non-critically ill individuals against all twelve studied SARS-CoV-2 RBD antigens 209 tested, including the WT RBD, while the reactivity of critically ill sera bridged those cohorts in most variants.

Understanding the nature of viral and vaccine-induced immunity is critical to managing the course of an epidemic [17]; in particular, how individuals infected early in the pandemic, or those who have been vaccinated will be protected against emerging variants, more importantly, variants holding mutations in the RBD—a region targeted by ~90% of the neutralizing antibody activity [2].

To establish the capability of the ELISA used in this study to detect neutralizing antibodies we compared its performance against the Genscript cPass SARS-CoV-2 Neutralization antibody detection kit and found 100% positive agreement. This performance was likely enabled by the fact that the antigen in the ELISA comprises the critical RBD region of the virus. Indeed, immunoassays that use the full spike as antigen show a diminished ability to detect neutralizing antibodies [18].

Having established the capacity of the serological test to detect neutralizing antibodies, we proceeded to evaluate how sera from COVID infected critically ill patients recognize antigens harbouring RBD mutations. Previously, we have shown that IgG levels increase soon after admission to the ICU [16]. Here, we found that sera from ICU patients did not significantly distinguish any of the mutated antigens when compared to WT (p>0.05, Figure 2). Perhaps, severe, and prolonged infection induces a broad polyclonal antibody variability enabling reactivity to a wide range of antigenic variants.

225 For other cohorts, including the vaccinated, not all the mutations caused a decrease in the antigen's antibody 226 recognition (Figure 2). Vaccine sera did not discriminate five of the variants against the WT according to ELISA 227 OD values, while WHO and AHP samples showed that four of the mutated target antigens, all bearing a single 228 mutation, enabled the same level of antigen recognition in comparison to the WT. Conversely, mutations N439K 229 (present in deemed extinct lineages B1.141 and B1.258), K417N-E484K-N501Y (Beta variant), and L452R-230 T478K (Delta variant) produced lower ODs (p<0.05) than the WT across the vaccinated, WHO and AHP panels. 231 Differences between vaccine sera and WHO or AHP sera might be expected since the antigen configuration 232 and display generated by the mRNA vaccines is dramatically different from that of the live viruses [3]. For

233 example, K417T-E484K-N501Y (Beta variant) and L452R-E484Q (Delta Plus variant) were distinguished from

the WT by WHO and AHP cohorts but not by the vaccinated.

It is noteworthy that the WHO and AHP panels, comprised of samples collected from two separate and unrelated populations, yielded almost identical results (Figure 2). Both panels identified the antigens with mutations corresponding to three VOCs (Beta, Gamma, Delta) Delta Plus, a fact that suggests that variant-specific immunoassay-based screenings on existing sera samples could serve as prospective tests to assess the potential impact of new variants before sufficient epidemiological data is available.

240 However, we believe that our results do not necessarily extrapolate to patterns in the in vivo neutralization of 241 variants because we are examining antigens constructed solely by the RBD, while the mutations' effect on virus 242 affinity to the ACE2 receptor is not considered here. Nor are we examining the influence of variants' full set of 243 concomitant mutations outside of the RBD. Nevertheless, considering that the RBD plays a critical role in the 244 antigenicity of new variants [2] we hypothesized that a relationship might exist between patient vulnerability to 245 infection and disease and the reactivity of antibodies to isolated variant RBD. This is important considering that 246 in a short time most of the worlds' population should have some degree of immunity either by infection or 247 vaccines' (57% of the world's population received at least one COVID-19 vaccine dose by December 23rd 2021, 248 according to Ourworldindata.org).

249 Our results tend to match previous findings. Compared to the WT, neutralization of B.1.1.7 (Alpha) and P.1 250 (Gamma) was found to be roughly equivalent [19], while neutralization of B.1.351 (Beta) spike protein was lower 251 but still relatively robust. Neutralization titers against mutant viruses containing key spike mutations: N501Y and 252 E484K-N501Y-D614G were found to be 1.46 and 0.81 in relation to the WT virus respectively [4] which matches 253 well with the results we obtained for WHO and AHP panels for those mutations (Figure 2). Similarly, Wu et al. 254 [5] detected reductions of the titer of neutralizing antibodies by a factor of 1.2 with pseudo-viruses encoding the 255 B.1.1.7 (Alpha) variant compared to a factor of 6.4 and 3.5 against the B.1.351 (Beta) and P.1 (Gamma) 256 variants. Those studies again align with our data showing that antibody binding to antigen with N501Y mutation 257 alone and WT antigen are the same in all tested cohorts. Conversely, mutants including E484K-N501Y 258 produced lower binding in WHO and AHP samples. Other reports, however, indicate that both B.1.1.7 (Alpha) 259 and B.1.351 (Beta) lead to a decrease in neutralization [9,14,20].

Epidemiological data is conflicting but tend to assign higher mortality to mutations associated with B.1.351 (Beta) than to B.1.1.7 (Alpha) [21]. However, a recent study found increased transmissibility of variants that included mutations N501Y and E484K but not increased disease severity [22].

Residues N501 and E484 play different functions in the infectivity of the virus. Residue N501 is at the RBD-ACE2 interface and mutation N501Y was found to result in an increase of affinity to ACE2 [23]. Mutation E484, in turn, has been identified as an immunodominant spike protein residue with various mutations, including E484K, supporting escape from several monoclonal antibodies [24]. This divergence of functions between residues N501 and E484 might explain why we found E484K to reduce binding of WT-induced antibodies whereas N501Y and WT did not differ.

Additionally, in studies with monoclonal antibodies, the spike's B.1.1.7 (Alpha) mutations were shown to reduce

270 neutralization mostly of antibodies specific to the spike's amino-terminal domain (NTD) but only with a small

271 proportion of RBD specific antibodies [25].

Considering the immunodominance of the RBD, this could explain some of the moderate reduction in
neutralizing activity of convalescence sera against authentic B.1.1.7 (Alpha) or pseudo-viruses carrying the
B.1.1.7 (Alpha) spike mutations [26, 27] and the lack of diminished seroreactivity to N501Y by any of the cohorts
of this study (Figure 2).

Furthermore, neutralization by some RBD-specific and NTD-specific monoclonal antibodies was found to be unaffected by variation in the spike protein suggesting the presence of cross-neutralizing epitopes in both the RBD and NTD [28].

Remarkably, mutation N439K produced one of the most consistent drops in ODs compared to WT and other variants (Fig 2). Early in 2021, N439K was the second most prevalent mutation of the RBD sequence [29], but currently is not one of the top ten most distributed mutations worldwide. This mutation is noteworthy because it enhances the binding affinity for the ACE2 receptor and decreases the neutralizing activity of both monoclonal antibodies and serum polyclonal antibodies of convalescence patients [10].

However, a deep mutational scanning (DMS) study did not find that mutation N439K significantly alters neutralization by polyclonal antibodies in plasma [30] in contrast to the findings described above [10] and our results (Figs 2 and 3). According to Harvey et al. [31], this discrepancy derives from the fact that the mechanism of immune escape provided by N439K is based on increased affinity to ACE2 rather than by directly affecting

epitope recognition. Perhaps then, the experimental design of the DMS study is less sensitive to detecting immune evasion mutations of this type—an inconsistency that exposes limitations of DMS [32] and highlights the significance of testing the ability of immune (COVID-19 positive) sera to recognize new variants with real human samples and serological-based assays.

Mutation S477N—that has emerged several times during the pandemic [31]—was found in one study to be resistant to neutralization by a panel of monoclonal antibodies, but by contrast, responds similarly to the WT when tested with convalescence (polyclonal) serum [33]—a result that aligns with the data of this study (Figure 2), once again underscoring the advantage of testing real patient sera to evaluate the antigenicity of new mutations.

A recent study found lineage B.1.617.2 (Delta) to be associated with an increase in disease severity [34]. This variant also caused a higher rate of vaccine breakthrough cases (17.4% compared to 5.8% for all other variants) in Texas, with 8.4% of all COVID-19 cases occurring in fully vaccinated individuals [35]. In our study, the Delta and kappa variants (which share the L452R mutation) eluded vaccine and infection sera antibodies more than the WT in all cohorts except for critically ill patients (Figure 2).

However, in vaccinated individuals, we observed a shift towards higher ODs when mutation K417N was added to the Delta variant mutations L452R and T478K to replicate the Delta Plus variant (B1.617.3, K41N-L452R-T478K) mutation set. These additional mutations diminished the decreased binding seen in the Delta variant compared to Wild Type (p<0.001), which ultimately demonstrated a similar binding profile for the Delta Plus variant vs Wild Type (Figure 2). Not much epidemiology data have been collected so far about the Delta Plus variant, but it has been pointed out that this variant spreads more easily and is potentially more infectious [36].

As the recently emerging Omicron variant begins to spread, it is relevant to this study to note that this VOC bears 5 of the spike protein mutations examined (N501Y, K417N, E484A, T478K, S477N) [37]. While it is beyond the scope of this study to evaluate the effects of these mutations individually or collectively in the immunoreactivity of the Omicron variant, we believe evaluation of this VOC and future inevitable variants using similar assay panels may give insight into immune escape effects.

Our study has some limitations. We have not investigated how antibodies generated by vaccines other than the mRNA based Moderna and Pfizer products would respond to variant antigens; vaccines with different antigen presentations might result in a different pattern of variant recognition. The study is also limited by the fact that

- 316 we were not able to examine how immune sera collected several months or years after infection or vaccination
- 317 would affect recognition of RBD in antigens of new variants.

318 **Conclusions**

- 319 In summary, our results indicate that:
- a) Recognition of SARS-CoV-2 RBD in the sera of vaccinated individuals is significantly enhanced compared
- to sera from non-critically infected patients regardless of the antigen variant.
- b) The antibodies generated in critically ill individuals are less variant-specific than those of non-critically ill and
- 323 vaccinated subjects.
- 324 c) The antibodies present in the sera of non-critically ill convalescent donors distinguish some variants-
- 325 noteworthy, Beta, Gamma, Delta, and Delta Plus variants—in relation to the WT, a fact that could enable
- 326 variant-specific immunoassay-based screenings to aid evaluating the potential epidemiological impact of
- 327 new variants.
- 328

329 **References**

- Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK, et al. Transmission, infectivity,
 and neutralization of a spike L452R SARS-CoV-2 variant. Cell. 2021;184:3426-37 e8.
- Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M, et al. Mapping Neutralizing
 and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided
 High-Resolution Serology. Cell. 2020;183:1024-42 e21.
- Valdes-Balbin Y, Santana-Mederos D, Paquet F, Fernandez S, Climent Y, Chiodo F, et al. Molecular
 Aspects Concerning the Use of the SARS-CoV-2 Receptor Binding Domain as a Target for Preventive
 Vaccines. ACS Cent Sci. 2021;7:757-67.
- Xie X, Liu Y, Liu J, Zhang X, Zou J, Fontes-Garfias CR, et al. Neutralization of SARS-CoV-2 spike 69/70
 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nat Med. 2021;27:620-1.
- Wu K, Werner AP, Koch M, Choi A, Narayanan E, Stewart-Jones GBE, et al. Serum Neutralizing Activity
 Elicited by mRNA-1273 Vaccine. N Engl J Med. 2021;384:1468-70.
- Rathnasinghe R, Jangra S, Cupic A, Martínez-Romero C, Mulder L, Kehrer T, et al. The N501Y mutation
 in SARS-CoV-2 spike leads to morbidity in obese and aged mice and is neutralized by convalescent and
 post-vaccination human sera. medRxiv : the preprint server for health sciences, 2021.
 https://doi.org/10.1101/2021.01.19.2124959
- Edara VV, Hudson WH, Xie X, Ahmed R, Suthar MS. Neutralizing Antibodies Against SARS-CoV-2
 Variants After Infection and Vaccination. JAMA. 2021;325:1896-8.

- Chen RE, Zhang X, Case JB, Winkler ES, Liu Y, VanBlargan LA, et al. Resistance of SARS-CoV-2 variants
 to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat Med. 2021;27:717-26.
- Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y, et al. Antibody resistance of SARS-CoV-2 variants
 B.1.351 and B.1.1.7. Nature. 2021;593:130-5.
- Thomson EC, Rosen LE, Shepherd JG, Spreafico R, da Silva Filipe A, Wojcechowskyj JA, et al. Circulating
 SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell.
 2021;184:1171-87 e20.
- Motozono C, Toyoda M, Zahradnik J, Ikeda T, Saito A, Tan TS, et al. An emerging SARS-CoV-2 mutant
 evading cellular immunity and increasing viral infectivity. bioRxiv. 2021.
- McCallum M, Bassi J, Marco A, Chen A, Walls AC, Iulio JD, et al. SARS-CoV-2 immune evasion by variant
 B.1.427/B.1.429. bioRxiv. 2021.
- Hayashi T, Yaegashi N, Konishi I. Effect of RBD (Y453F) mutation in spike glycoprotein of SARS-CoV-2
 on neutralizing IgG affinity. medRxiv. 2021.
- 361 14. Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO, Finkin S, et al. mRNA vaccine-elicited
 362 antibodies to SARS-CoV-2 and circulating variants. Nature. 2021;592:616-22.
- 15. Verdecchia P CC, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2
 infection. Eur J Intern Med. 2020;76:14-20.
- Fraser DD, Cepinskas G, Slessarev M, Martin CM, Daley M, Patel MA, et al. Critically III COVID-19 Patients
 Exhibit Anti-SARS-CoV-2 Serological Responses. Pathophysiology. 2021;28:212-23.
- Meschi S, Matusali G, Colavita F, Lapa D, Bordi L, Puro V, et al. Predicting the protective humoral response
 to a SARS-CoV-2 mRNA vaccine. Clin Chem Lab Med. 2021;59:2010-8.
- Legros V, Denolly S, Vogrig M, Boson B, Siret E, Rigaill J, et al. A longitudinal study of SARS-CoV-2infected patients reveals a high correlation between neutralizing antibodies and COVID-19 severity. Cell Mol Immunol. 2021;18:318-27.
- Liu Y, Liu J, Xia H, Zhang X, Fontes-Garfias CR, Swanson KA, et al. Neutralizing Activity of BNT162b2 Elicited Serum. N Engl J Med. 2021;384:1466-8.
- 20. Zhou D, Dejnirattisai W, Supasa P, Liu C, Mentzer AJ, Ginn HM, et al. Evidence of escape of SARS-CoV2 variant B.1.351 from natural and vaccine-induced sera. Cell. 2021;184:2348-61 e6.
- 21. Davies NG, Jarvis CI, Group CC-W, Edmunds WJ, Jewell NP, Diaz-Ordaz K, et al. Increased mortality in
 community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature. 2021;593:270-4.
- Nagano K, Tani-Sassa C, Iwasaki Y, Takatsuki Y, Yuasa S, Takahashi Y, et al. SARS-CoV-2 R.1 lineage
 variants that prevailed in Tokyo in March 2021. J Med Virol. 2021;93:6833-6.
- Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS, et al. Deep Mutational Scanning of
 SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell.
 2020;182:1295-310 e20.
- Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JC, et al. Escape from neutralizing
 antibodies by SARS-CoV-2 spike protein variants. Elife. 2020;9.
- 25. Collier DA, De Marco A, Ferreira I, Meng B, Datir R, Walls AC, et al. SARS-CoV-2 B.1.1.7 sensitivity to
 mRNA vaccine-elicited, convalescent, and monoclonal antibodies. medRxiv. 2021.
- Rees-Spear C, Muir L, Griffith SA, Heaney J, Aldon Y, Snitselaar JL, et al. The effect of spike mutations
 on SARS-CoV-2 neutralization. Cell Rep. 2021;34:108890.

- Hu J, Peng P, Wang K, Fang L, Luo FY, Jin AS, et al. Emerging SARS-CoV-2 variants reduce neutralization
 sensitivity to convalescent sera and monoclonal antibodies. Cell Mol Immunol. 2021;18:1061-3.
- Dupont L, Snell LB, Graham C, Seow J, Merrick B, Lechmere T, et al. Neutralizing antibody activity in convalescent sera from infection in humans with SARS-CoV-2 and variants of concern. Nat Microbiol.
 2021;6:1433-42.
- Li M, Lou F, Fan H. SARS-CoV-2 variants: a new challenge to convalescent serum and mRNA vaccine
 neutralization efficiency. Signal Transduct Target Ther. 2021;6:151.
- Greaney AJ, Loes AN, Crawford KHD, Starr TN, Malone KD, Chu HY, et al. Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe. 2021;29:463-76 e6.
- 399 31. Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, et al. SARS-CoV-2 variants,
 spike mutations and immune escape. Nat Rev Microbiol. 2021;19:409-24.
- 401 32. Fowler DM, Fields S. Deep mutational scanning: a new style of protein science. Nat Methods. 2014;11:801402 7.
- 403 33. Liu Z, VanBlargan LA, Bloyet LM, Rothlauf PW, Chen RE, Stumpf S, et al. Identification of SARS-CoV-2
 404 spike mutations that attenuate monoclonal and serum antibody neutralization. Cell Host Microbe.
 405 2021;29:477-88 e4.
- 406 34. Ong SWX, Chiew CJ, Ang LW, Mak TM, Cui L, Toh M, et al. Clinical and virological features of SARS407 CoV-2 variants of concern: a retrospective cohort study comparing B.1.1.7 (Alpha), B.1.315 (Beta), and
 408 B.1.617.2 (Delta). Clin Infect Dis. 2021;23:ciab721.
- Musser JM, Christensen PA, Olsen RJ, Long SW, Subedi S, Davis JJ, et al. Delta variants of SARS-CoV 2 cause significantly increased vaccine breakthrough COVID-19 cases in Houston, Texas. medRxiv. 2021.
- 36. Roy B, Roy H. The Delta Plus variant of COVID-19: Will it be the worst nightmare in the SARS-CoV-2
 pandemic? Journal of Biomedical Sciences. 2021;8:1-2.
- 37. Cele S, Jackson L, Khan K, et al. SARS-CoV-2 Omicron has extensive but incomplete escape of Pfizer
 BNT162b2 elicited neutralization and requires ACE2 for infection. Preprint. *medRxiv*.
 2021;2021.12.08.21267417. Published 2021 Dec 11. doi:10.1101/2021.12.08.21267417
- 416
- 417
- 41
- 418
- 419
- 420
- 421
- 422
- 422
- 423
- 424
- 425
- 426
- 427

Fig 1. Relationship between neutralization and IgG antibody ratio as determined by the Genscript
cPass[™] SARS-CoV-2 Neutralization Antibody Detection/Surrogate Virus Neutralization Test Kit
(L00847) and DBC's Health Canada authorized anti-SARS-CoV-2 IgG (CAN-IGG-19). Ratio (DBC kit) was
calculated based on a Cut Off [Cut-Off (CO) = (Mean of 3 Negative Controls) x factor 1.5] which is then used
to generate a ratio [Ratio = OD of sample / Cut-Off].

Α	Vaccinated			B >1	LO Days Post ICL	J	
RBD Mutation	Shift	p-value		RBD Mutation	Shift	p-value	
N501Y		0.6252	NS	N501Y		0.3648	NS
K417N, L452R, T478K		0.9917	NS	K417N, L452R, T478K		0.2645	NS
K417T, E484K, N501Y		0.8831	NS	K417T, E484K, N501Y		0.5962	NS
S477N		0.1944	NS	S477N		0.9977	NS
L452R		0.0709	NS	L452R		0.5594	NS
K417T		0.0087	**	K417T		0.5595	NS
K417N, E484K, N501Y		0.0058	**	K417N, E484K, N501Y		0.5325	NS
L452R, T478K		0.0009	***	L452R, T478K		1.0000	NS
Y453F		0.0020	**	Y453F		0.9344	NS
N439K		<0.0001	***	N439K		0.9613	NS
L452R, E484Q		<0.0001	***	L452R, E484Q		0.9079	NS

C 2	-7 Days Post ICU			D	WHO		
RBD Mutation	Shift	p-value		RBD Mutation	Shift	p-value	
N501Y		0.7576	NS	N501Y		0.9792	NS
K417N, L452R, T478K		0.5040	NS	K417N, L452R, T478K		0.0109	*
K417T, E484K, N501Y		0.4713	NS	K417T, E484K, N501Y		0.0004	***
S477N		1.0000	NS	S477N		0.4540	NS
L452R		0.9327	NS	L452R		0.5529	NS
K417T		0.8682	NS	K417T		0.7579	NS
K417N, E484K, N501Y		0.2118	NS	K417N, E484K, N501Y		0.0011	**
L452R, T478K		0.8097	NS	L452R, T478K		0.0114	*
Y453F		0.7739	NS	Y453		0.0201	*
N439K		0.2798	NS	N439K		0.0180	*
L452R, E484Q		0.2460	NS	L452R, E484Q		0.0026	**

Ε

E	AHP		
RBD Mutation	Shift	p-value	
N501Y		0.8659	NS
K417N, L452R, T478K		0.0117	*
K417T, E484K, N501Y		0.0028	**
S477N		0.3526	NS
L452R		0.4757	NS
K417T		0.8380	NS
K417N, E484K, N501Y		0.0013	**
L452R, T478K		0.0149	*
Y453F		0.0292	*
N439K		0.0048	**
L452R, E484Q		0.0015	**

438 Figure 2. Comparative evaluation of antibody recognition of mutated antigens against WT in five cohorts by

439 optical density (OD). The OD, rather than the ratio, was used to prevent bias from differences in the ELISAs'

440 negative control OD between antigens. Univariate Steel pairwise ranking non-parametric comparisons

- 441 against the WT antigen. Experimental datasets for cohorts (A) Vaccinated, (B) >10 days post ICU admission, (C)
- 442 2-7 days post ICU admission, (D) WHO (E) Ambulatory or hospitalized population (AHP), (NS) nonsignificant, (*)

P<0.05; (**) P<0.01, (***) P<0.001. 443

- 444
- 445

medRxiv preprint doi: https://doi.org/10.1101/2022.01.10.21268250; this version posted January 11, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

446

- 479 Figure 3. Reactivity of sera from vaccinated individuals (Vaccine), from patients 2-7 (ICU 2-7 days) and
- 480 more than 10 days (ICU 10+ days) after admission to ICU, from a NIBSC/World Health Organization
- 481 (WHO) panel, and from ambulatory and hospitalized population (AHP) to recombinant antigens
- 482 comprising the RBD of wild type (WT) SARS-CoV-2 or recombinant antigens with mutations present in
- 483 variants of the virus. Ratio was calculated based on a Cut Off [Cut-Off (CO) = (Mean of 3 Negative
- 484 Controls) x factor 2.0] which is then used to generate a ratio [Ratio = OD of sample / Cut-Off]. The cohorts
- 485 were compared against the vaccinated using Steel pairwise ranking non-parametric method: (NS)
- 486 nonsignificant, (*) P<0.05; (**) P<0.01, (***) P<0.001. The median is plotted as a line. The box represents 1st
- 487 to 3rd quartiles and the whiskers the minimum and maximum of the 95% confidence interval. (A) WT, (B)
- 488 N501Y, (C) K417N-E484K-N501Y, (D) K417T-E484K-N501Y, (E) L452R, (F) L452R-E484Q, (G) L452R-
- 489 T478K, (H) K417N-L452R-T478K, (I) N439K, (J) Y453F, (K) S477N, (L) K417T.
- 490
- 491
- 492
- 493
- 494

495 SUPPLEMENTAL MATERIAL

Т

Г

496 **Table S1.** Analysis of samples from the Moderna COVID-19 Vaccine Serum Panel

Negative		Borderline	Positive						
Manufact	urer:		DiaSorin				DBC		
Devices			LIAISON S	SARS-CoV-	2 S1/S2	lgG	Anti-SARS-CoV-2 IgG		
Device:							(CAN-IGO	G-19)	
Device In	terpretat	ion:	AU/mL; <1	5 negative	, ≥15 pos	sitive		; ≤1.0 nega >1.0 and <′	tive, ≥1.2 1.2 borderline
Count	Sar	nple ID	Pre- Vaccine	Post-Va 1 st Do		Post- Vaccine 2 nd Dose	Pre- Vaccine	Post- Vaccine 1 st Dose	Post- Vaccine 2 nd Dose
1		101	<3	11	7	3,380	0.65	10.97	>25
2		102	60	272	00	17,920	3.32	>25	>25
3		103	17.5	540	0	4,280	0.78	>25	>25
4		104	882	408	0	3,692	16.2	>25	>25
5		105	<3.80	17:	2	1,150	0.65	15.6	>25
6		106	<3.80	18	Э	4,760	0.54	17.12	>25
7		107	<3.80	10	C	880	0.73	8.9	20.06
8		108	8.1	25	6	1,580	2.16	>25	>25
9		109	<3	74		2,340	0.7	6.41	>25
10		110	<3	249	Э	4,680	0.56	19	>25
11		111	<3.80	78		363	0.6	9.97	18.9
12		112	<3.80	17:	2	4,340	0.65	15.06	>25
13		113	<3	229	Э	2,420	0.63	15.8	>25
14		115	19.7	636	0	12,160	1.55	>25	>25
15		117	<3.80	303	3	3,400	1.01	17.03	>25
16		118	<3.80	30	1	1,020	0.63	2.13	17.81
17		119	39.6	242	0	5,600	4.07	>25	>25
18		120	<3	65	i -	1,080	0.72	5.65	>25
19		121	<3	11	1	2,920	0.57	10.06	>25
20		122	<3	11	7	3,660	0.58	10.86	>25
21		123	<3	49	1	2,200	0.54	3.63	>25
22		124	14.1	11	5	1,884	0.74	12.61	>25
23		126	<3.80	128	3	1,360	0.7	12.3	>25
24		127	<3	10:	3	1,360	0.59	6.77	20.5
25		128	<3	12	3	2,120	0.55	8.64	>25
26		129	<3	16	9	1,640	0.54	15.72	>25
27		130	<3.80	12	7	2,600	0.92	14.08	>25
28		132	<3.80	17:	3	4,160	0.87	16.49	>25
29		133	<3	19:	3	2,320	0.61	16.68	>25

		0		•			
30	134	<3	9	2,460	0.66	0.93	>25
31	135	<3	11	1,970	0.7	1.81	>25
32	136	<3	91	2,180	0.59	6.1	>25
33	137	<3	238	4,720	0.62	17.96	>25
34	138	<3	6	143	0.7	0.94	15.4
35	141	<3	79	1,440	0.75	7.22	>25
36	144	368	16800	17,920	20.64	>25	>25
37	145	86.4	14000	9,600	4.82	>25	>25
38	146	<3	40	253	0.55	2.5	16.7
39	150	58.2	3180	4,400	6.92	>25	>25
40	155	<3.80	10	208	0.64	1.65	15.92
41	156	<3	<3.00	176	0.62	0.65	14.9
42	157	<3	28	388	0.67	2.35	>25
43	158	<3.80	<3.80	145	2.98	3.16	14
44	159	<3	<3.00	180	0.74	1.07	13.5
45	160	<3	116972	1,321,064	0.48	4.21	>25

- -

Table S2. Analysis of samples from the Pfizer COVID-19 Vaccine Serum Panel.

Negative	Borderlin	е	Positive				
Manufactu	urer:	DiaSorin			DBC		
Device:		LIAISON	SARS-CoV-2	2 S1/S2 IgG	Anti-SARS-CoV-2 IgG (CAN-IGG-19)		
Device Interpretat	Device Interpretation:		15 negative,	≥15 positive	Ratio; ≤1	.0 negative, ≥1.: and <1.2 borde	
Count	Sample ID	Pre- Vaccine	Post- Vaccine 1st Dose	Post- Vaccine 2nd Dose	Pre- Vaccine	Post- Vaccine 1st Dose	Post-Vaccine 2nd Dose
1	114	117	5,200	4,880	6.85	>25	>25
2	116	11.1	127	1,120	2.48	15.47	18.2
3	125	131	1,430	1,090	16.87	>25	18.1
4	131	<3.80	81	1,350	0.76	7.84	>25
5	139	<3.80	23	169	1.39	3.53	14.02
6	140	<3.80	98	50	0.74	9.89	4.82
7	142	<3.80	7	2,920	0.72	1.51	>25
8	143	<3.80	36	2,150	0.62	2.63	>25
9	147	<3.80	25	226	0.5	1.95	16.7
10	148	<3.80	102	4,080	0.58	9.16	>25
11	149	<3.80	25	2,070	0.84	1.91	>25
12	151	<3.80	34	1,640	0.7	3.58	>25
13	152	12.8	3,468	4,280	1.61	>25	>25
14	153	<3.80	33	261	0.53	4.21	18.54
15	154	100	7,760	8,240	6.63	>25	>25

522 **Table S3.** Age and sex of sample donor in the 4 Cohorts

Vaccinated		
Sample #	Age	Sex
101	<20	М
102	21-30	F
103	21-30	F
104	21-30	F
105	21-30	М
106	21-30	М
107	31-40	F
108	31-40	F
109	31-40	F
110	31-40	F
111	31-40	F
112	31-40	F
113	31-40	F
114	31-40	F
115	31-40	М
116	31-40	М
117	41-50	F
118	41-50	F
119	41-50	F
120	41-50	F
121	41-50	F
122	41-50	F
123	41-50	F
124	41-50	F
125	41-50	F
126	41-50	М
127	41-50	М
128	41-50	М
129	41-50	М
130	41-50	М
131	41-50	М
132	51-60	F
133	51-60	F
134	51-60	F
135	51-60	F
136	51-60	F
137	51-60	F
138	51-60	F

139	51-60	F
140	51-60	F
141	51-60	М
142	51-60	М
143	51-60	М
144	61-70	F
145	61-70	F
146	61-70	F
147	61-70	F
148	61-70	F
149	61-70	F
150	61-70	М
151	61-70	М
152	61-70	М
153	61-70	М
154	61-70	М
155	71-80	F
156	71-80	F
157	71-80	F
158	71-80	М
159	71-80	М
160	71-80	М
AVE	50.1	
Median	49.5	
SD	14.8	
Females		38
Males		22

AHP		
Sample #	Age	Sex
161	21-30	F
162	21-30	F
163	21-30	F
164	21-30	F
165	21-30	М
166	31-40	F
167	31-40	F
168	31-40	F
169	31-40	F
170	31-40	F
171	31-40	F

172	31-40	М
173	31-40	М
174	41-50	F
175	41-50	F
176	41-50	F
177	41-50	F
178	41-50	F
179	41-50	F
180	41-50	М
181	41-50	М
182	51-60	F
183	51-60	F
184	51-60	F
185	51-60	F
186	51-60	F
187	51-60	F
188	51-60	F
189	51-60	F
190	51-60	М
191	51-60	М
192	51-60	М
193	51-60	М
194	61-70	F
195	61-70	F
196	71-80	F
197	81-90	F
AVE	46.9	
Median	47	
SD	13.5	
Females		28
Males		9

ICU 2 – 7 days			
Sample #	Age	Sex	Outcome
198	31-40	М	ALIVE
199	41-50	F	ALIVE
200	41-50	М	ALIVE
201	41-50	М	ALIVE
202	41-50	М	DEAD
203	41-50	М	ALIVE
204	51-60	F	ALIVE

205	51-60	F	ALIVE
206	51-60	F	ALIVE
207	51-60	F	ALIVE
208	51-60	М	ALIVE
209	51-60	М	ALIVE
210	51-60	М	ALIVE
211	51-60	М	ALIVE
212	51-60	М	ALIVE
213	61-70	F	ALIVE
214	61-70	F	ALIVE
215	61-70	F	ALIVE
216	61-70	F	ALIVE
217	61-70	F	ALIVE
218	61-70	М	ALIVE
219	61-70	М	ALIVE
220	61-70	М	ALIVE
221	61-70	М	ALIVE
222	71-80	F	ALIVE
223	71-80	М	DEAD
224	71-80	М	ALIVE
225	71-80	М	ALIVE
226	81-90	F	DEAD
AVE	60.7		
Median	61		
SD	11.3		
Females		12	
Males		17	

ICU 10+ days			
Sample #	Age	Sex	Outcome
227	41-50	F	ALIVE
228	41-50	М	ALIVE
229	41-50	М	ALIVE
230	51-60	F	ALIVE
231	51-60	F	ALIVE
232	51-60	F	ALIVE
233	51-60	F	ALIVE
234	51-60	М	ALIVE
235	61-70	F	ALIVE
236	61-70	F	ALIVE
237	61-70	F	ALIVE

238	61-70	М	ALIVE
239	61-70	М	ALIVE
240	71-80	F	ALIVE
AVE	58.3		
Median	56		
Median SD	56 8.5		
		9	

526

528 Table S4. Links to sample NIBSC/WHO information.

Study Assigned	NIBSC/WHO	Website link	529
Sample ID	Sample ID		530
335	20/B770-1	https://www.nibsc.org/documents/ifu/20-B770.pdf	
336	20/B770-2	https://www.nibsc.org/documents/ifu/20-B770.pdf	
337	20/B770-3	https://www.nibsc.org/documents/ifu/20-B770.pdf	
338	20/B770-4	https://www.nibsc.org/documents/ifu/20-B770.pdf	
339	20/B770-5	https://www.nibsc.org/documents/ifu/20-B770.pdf	
340	20/B770-6	https://www.nibsc.org/documents/ifu/20-B770.pdf	
341	20/B770-7	https://www.nibsc.org/documents/ifu/20-B770.pdf	
342	20/B770-8	https://www.nibsc.org/documents/ifu/20-B770.pdf	
343	20/B770-9	https://www.nibsc.org/documents/ifu/20-B770.pdf	
344	20/B770-10	https://www.nibsc.org/documents/ifu/20-B770.pdf	
345	20/B770-11	https://www.nibsc.org/documents/ifu/20-B770.pdf	
346	20/B770-12	https://www.nibsc.org/documents/ifu/20-B770.pdf	
347	20/B770-13	https://www.nibsc.org/documents/ifu/20-B770.pdf	
348	20/B770-14	https://www.nibsc.org/documents/ifu/20-B770.pdf	
349	20/B770-15	https://www.nibsc.org/documents/ifu/20-B770.pdf	
350	20/B770-16	https://www.nibsc.org/documents/ifu/20-B770.pdf	
351	20/B770-17	https://www.nibsc.org/documents/ifu/20-B770.pdf	
352	20/B770-18	https://www.nibsc.org/documents/ifu/20-B770.pdf	
353	20/B770-19	https://www.nibsc.org/documents/ifu/20-B770.pdf	
354	20/B770-20	https://www.nibsc.org/documents/ifu/20-B770.pdf	
355	20/B770-21	https://www.nibsc.org/documents/ifu/20-B770.pdf	
356	20/B770-22	https://www.nibsc.org/documents/ifu/20-B770.pdf	
357	20/B770-23	https://www.nibsc.org/documents/ifu/20-B770.pdf	
327	20/130	https://www.nibsc.org/documents/ifu/20-130.pdf	
328	20/162	https://www.nibsc.org/documents/ifu/20-162.pdf	
329	20/B764-01	https://www.nibsc.org/documents/ifu/20-B764-xxx.pd	
330	20/136	https://www.nibsc.org/documents/ifu/20-136.pdf	
331	20/140	https://www.nibsc.org/documents/ifu/20-268.pdf	
332	20/144	https://www.nibsc.org/documents/ifu/20-268.pdf	
333	20/148	https://www.nibsc.org/documents/ifu/20-268.pdf	
334	20/150	https://www.nibsc.org/documents/ifu/20-268.pdf	

- 531 Table S5. Evaluation of Neutralizing Antibodies Detection by Anti-SARS-CoV-2 DBC Serological tests.
- 532 Results of testing samples from 4 sources on GenScript cPass[™] SARS-CoV-2 Neutralization Antibody
- 533 Detection/Surrogate Virus Neutralization Test Kit and DBC IgG anti-SARS-CoV-2 authorized serological
- test. Samples were sourced from (1) infected individuals PCR proven to be SARS-CoV-2 positive, (2) COVID-
- 535 19 infected ICU patients, (3) fully vaccinated individuals (two doses of either Pfizer or Moderna vaccines), and
- 536 (4) Reference samples from NIBSC/WHO. For the GenScript kit, a Positive outcome was considered at \geq 30%.
- 537 For the DBC kits, a Positive outcome was considered at a ratio of >1.2, Borderline 1.2-1.0, and Negative <1.0.

		GenScript		DBC	
Sample ID	Sample Origin	Neutralizing Antibodies		IgG ELISA	
	Ū	<30% Negat	ive	<1 Negat	ive
		≥30% Positiv	/e	>1.2 Pos	itive
		%NeutAbs	Diagnosis	Ratio	Diagnosis
161	1	95.9	POSITIVE	9.7	POSITIVE
162	1	17.5	NEGATIVE	1.1	BORD
163	1	47.7	POSITIVE	2.4	POSITIVE
164	1	44.3	POSITIVE	3.4	POSITIVE
165	1	76.1	POSITIVE	5.1	POSITIVE
166	1	34.1	POSITIVE	1.1	BORD
167	1	84.8	POSITIVE	9.5	POSITIVE
168	1	22.8	NEGATIVE	1.2	BORD
169	1	96.3	POSITIVE	12.6	POSITIVE
170	1	85.3	POSITIVE	5.0	POSITIVE
171	1	23.5	NEGATIVE	1.7	POSITIVE
172	1	89.8	POSITIVE	8.9	POSITIVE
173	1	47.2	POSITIVE	2.8	POSITIVE
174	1	80.1	POSITIVE	9.1	POSITIVE
175	1	14.3	NEGATIVE	1.1	BORD
176	1	75.8	POSITIVE	3.9	POSITIVE
177	1	97.4	POSITIVE	7.2	POSITIVE
178	1	63.7	POSITIVE	5.4	POSITIVE
179	1	64.8	POSITIVE	2.3	POSITIVE
180	1	94.2	POSITIVE	13.2	POSITIVE
181	1	48.1	POSITIVE	1.9	POSITIVE
182	1	92.4	POSITIVE	18.0	POSITIVE
183	1	95.6	POSITIVE	13.4	POSITIVE
184	1	90.6	POSITIVE	9.9	POSITIVE
185	1	92.4	POSITIVE	7.7	POSITIVE
186	1	69.7	POSITIVE	2.8	POSITIVE
187	1	88.5	POSITIVE	4.6	POSITIVE

188	1	61.6	POSITIVE	7.4	POSITIVE
189	1	46.9	POSITIVE	2.6	POSITIVE
190	1	77.1	POSITIVE	7.1	POSITIVE
191	1	88.5	POSITIVE	7.9	POSITIVE
192	1	92.8	POSITIVE	11.9	POSITIVE
193	1	91.0	POSITIVE	14.4	POSITIVE
194	1	94.7	POSITIVE	13.2	POSITIVE
195	1	52.0	POSITIVE	2.2	POSITIVE
196	1	76.7	POSITIVE	4.2	POSITIVE
197	1	94.0	POSITIVE	15.4	POSITIVE
241	1	58.3	POSITIVE	3.7	POSITIVE
242	1	96.1	POSITIVE	20.0	POSITIVE
243	1	63.8	POSITIVE	9.2	POSITIVE
244	1	93.7	POSITIVE	14.6	POSITIVE
245	1	47.1	POSITIVE	5.8	POSITIVE
246	1	68.4	POSITIVE	6.6	POSITIVE
247	1	73.2	POSITIVE	6.5	POSITIVE
248	1	72.1	POSITIVE	7.9	POSITIVE
249	1	67.5	POSITIVE	7.3	POSITIVE
250	1	67.9	POSITIVE	6.5	POSITIVE
251	1	90.9	POSITIVE	17.2	POSITIVE
252	1	32.1	POSITIVE	1.1	BORD
253	1	54.5	POSITIVE	4.5	POSITIVE
254	1	71.7	POSITIVE	2.7	POSITIVE
198	2	91.9	POSITIVE	17.2	POSITIVE
200	2	97.5	POSITIVE	25.0	POSITIVE
202	2	90.3	POSITIVE	21.0	POSITIVE
204	2	96.9	POSITIVE	25.6	POSITIVE
205	2	81.8	POSITIVE	11.4	POSITIVE
206	2	94.2	POSITIVE	22.2	POSITIVE
207	2	94.2	POSITIVE	23.6	POSITIVE
208	2	48.8	POSITIVE	4.0	POSITIVE
209	2	80.4	POSITIVE	13.7	POSITIVE
210	2	22.0	NEGATIVE	1.1	BORD
211	2	84.0	POSITIVE	15.6	POSITIVE
214	2	77.0	POSITIVE	7.0	POSITIVE
215	2	82.9	POSITIVE	16.3	POSITIVE
216	2	96.5	POSITIVE	26.5	POSITIVE
218	2	19.3	NEGATIVE	0.5	NEGATIVE
219	2	94.8	POSITIVE	24.5	POSITIVE
220	2	93.0	POSITIVE	25.2	POSITIVE

221	2	86.1	POSITIVE	13.2	POSITIVE
223	2	95.6	POSITIVE	21.3	POSITIVE
224	2	83.4	POSITIVE	8.6	POSITIVE
226	2	91.1	POSITIVE	9.2	POSITIVE
227	2	90.9	POSITIVE	9.8	POSITIVE
240	2	95.9	POSITIVE	25.0	POSITIVE
255	2	46.6	POSITIVE	1.1	BORD
256	2	84.6	POSITIVE	12.9	POSITIVE
257	2	97.7	POSITIVE	23.2	POSITIVE
258	2	96.7	POSITIVE	23.8	POSITIVE
259	2	93.6	POSITIVE	17.8	POSITIVE
260	2	94.6	POSITIVE	23.1	POSITIVE
261	2	37.6	POSITIVE	17.6	POSITIVE
262	2	96.5	POSITIVE	26.1	POSITIVE
263	2	94.5	POSITIVE	25.8	POSITIVE
264	2	78.4	POSITIVE	10.9	POSITIVE
265	2	16.4	NEGATIVE	0.6	NEGATIVE
266	2	36.6	POSITIVE	1.4	POSITIVE
267	2	89.2	POSITIVE	13.8	POSITIVE
268	2	19.2	NEGATIVE	1.3	POSITIVE
269	3	95.4	POSITIVE	25.0	POSITIVE
270	3	98.1	POSITIVE	25.0	POSITIVE
271	3	97.4	POSITIVE	18.8	POSITIVE
272	3	95.2	POSITIVE	15.3	POSITIVE
273	3	98.2	POSITIVE	21.7	POSITIVE
274	3	98.1	POSITIVE	25.0	POSITIVE
275	3	53.6	POSITIVE	5.4	POSITIVE
276	3	96.1	POSITIVE	23.0	POSITIVE
277	3	97.8	POSITIVE	22.6	POSITIVE
278	3	97.6	POSITIVE	23.0	POSITIVE
279	3	98.0	POSITIVE	25.0	POSITIVE
280	3	98.1	POSITIVE	25.0	POSITIVE
281	3	98.0	POSITIVE	22.2	POSITIVE
282	3	97.7	POSITIVE	22.6	POSITIVE
283	3	98.0	POSITIVE	25.0	POSITIVE
284	3	98.0	POSITIVE	21.0	POSITIVE
285	3	98.0	POSITIVE	23.1	POSITIVE
286	3	98.2	POSITIVE	25.0	POSITIVE
287	3	98.2	POSITIVE	25.0	POSITIVE
288	3	97.7	POSITIVE	19.7	POSITIVE
289	3	98.1	POSITIVE	25.0	POSITIVE

290	3	98.0	POSITIVE	21.8	POSITIVE
291	3	98.1	POSITIVE	23.0	POSITIVE
292	3	98.1	POSITIVE	22.9	POSITIVE
293	3	97.5	POSITIVE	18.2	POSITIVE
294	3	98.2	POSITIVE	25.0	POSITIVE
295	3	98.1	POSITIVE	25.0	POSITIVE
296	3	98.0	POSITIVE	23.0	POSITIVE
297	3	98.2	POSITIVE	22.0	POSITIVE
298	3	98.2	POSITIVE	25.0	POSITIVE
299	3	98.2	POSITIVE	22.6	POSITIVE
300	3	98.0	POSITIVE	22.7	POSITIVE
301	3	97.5	POSITIVE	22.7	POSITIVE
302	3	97.6	POSITIVE	22.6	POSITIVE
303	3	98.2	POSITIVE	25.0	POSITIVE
304	3	98.0	POSITIVE	25.0	POSITIVE
305	3	98.0	POSITIVE	23.1	POSITIVE
306	3	98.1	POSITIVE	23.1	POSITIVE
307	3	98.2	POSITIVE	25.0	POSITIVE
308	3	98.1	POSITIVE	25.0	POSITIVE
309	3	98.2	POSITIVE	23.2	POSITIVE
310	3	98.2	POSITIVE	25.0	POSITIVE
311	3	97.9	POSITIVE	23.2	POSITIVE
312	3	98.2	POSITIVE	25.0	POSITIVE
313	3	96.5	POSITIVE	19.6	POSITIVE
314	3	93.1	POSITIVE	16.5	POSITIVE
315	3	98.2	POSITIVE	22.7	POSITIVE
316	3	98.1	POSITIVE	22.9	POSITIVE
317	3	96.4	POSITIVE	19.4	POSITIVE
318	3	98.0	POSITIVE	22.2	POSITIVE
319	3	97.5	POSITIVE	25.0	POSITIVE
320	3	98.0	POSITIVE	25.0	POSITIVE
321	3	90.7	POSITIVE	21.0	POSITIVE
322	3	98.2	POSITIVE	25.0	POSITIVE
323	3	98.0	POSITIVE	23.3	POSITIVE
324	3	98.1	POSITIVE	25.0	POSITIVE
325	3	97.5	POSITIVE	23.1	POSITIVE
326	3	98.2	POSITIVE	25.0	POSITIVE
327	4	90.4	POSITIVE	9.5	POSITIVE
328	4	98.1	POSITIVE	15.0	POSITIVE
329	4	34.7	POSITIVE	1.9	POSITIVE
330	4	96.2	POSITIVE	12.1	POSITIVE

1		5		1	1
331	4	19.0	NEGATIVE	1.6	POSITIVE
332	4	36.1	POSITIVE	1.7	POSITIVE
333	4	81.4	POSITIVE	5.9	POSITIVE
334	4	90.1	POSITIVE	11.1	POSITIVE
335	4	44.8	POSITIVE	1.6	POSITIVE
336	4	44.9	POSITIVE	2.4	POSITIVE
337	4	97.3	POSITIVE	12.3	POSITIVE
338	4	94.6	POSITIVE	11.8	POSITIVE
339	4	97.4	POSITIVE	12.4	POSITIVE
340	4	83.3	POSITIVE	10.1	POSITIVE
341	4	86.7	POSITIVE	7.5	POSITIVE
342	4	95.8	POSITIVE	10.5	POSITIVE
343	4	52.0	POSITIVE	11.3	POSITIVE
344	4	51.7	POSITIVE	11.0	POSITIVE
345	4	87.4	POSITIVE	4.5	POSITIVE
346	4	84.2	POSITIVE	4.7	POSITIVE
347	4	86.7	POSITIVE	5.1	POSITIVE
348	4	81.9	POSITIVE	4.0	POSITIVE
349	4	90.3	POSITIVE	5.8	POSITIVE
350	4	74.7	POSITIVE	2.7	POSITIVE
351	4	88.8	POSITIVE	7.6	POSITIVE
352	4	95.6	POSITIVE	11.3	POSITIVE
353	4	85.1	POSITIVE	6.7	POSITIVE
354	4	95.5	POSITIVE	6.4	POSITIVE
355	4	94.7	POSITIVE	8.9	POSITIVE
356	4	95.5	POSITIVE	7.1	POSITIVE
357	4	91.3	POSITIVE	7.8	POSITIVE

553 Figure S1. Individual variability in vaccine and convalescence sera reactivity to WT SARS-CoV-2 RBD antigen 554 and antigens bearing mutations. Each line represents the optical density values from an individual donor.

A. Vaccinated, B. ICU patients 10+ days, C. ICU patients 2-7 days, D. NIBSC/WHO (WHO) panel, E. 555 556 Ambulatory and hospitalized (but not critically ill) population (AHP) panel.

Descriptives

Multiple Comparisons

558

559 Figure S2. Reactivity of sera from vaccinated individuals (Vaccine) to a recombinant antigen comprising the

560 RBD of wild type (WT) SARS-CoV-2. The vaccine results were split in those older or younger than 45 years.

561 The median is plotted as a line. The box represents 1st to 3rd quartiles and the whiskers the minimum and

562 maximum of the 95% confidence interval.

Multiple Comparisons

	Hodges- Lehmann location			
Contrast	shift	Simultaneous 95% CI	0	p-value
AHP older 45	2.7155	-1.9120 to 7.7000		0.35161
AHP All - AHP Younger 45	1.3850	-2.4930 to 5.8180		0.6579
AHP older 45	1.1970	-2.7640 to 5.2150		0.74671

Steel-Dwass-Critchlow-Fligner all pairs comparisons

H0: θ = 0

The shift in location between the distributions of the populations is equal to 0. H1: $\theta \neq 0$

The shift in location between the distributions of the populations is not equal to 0.

¹ Do not reject the null hypothesis at the 5% significance level.

565

Figure S3. Reactivity of sera from ambulatory and hospitalized, but not critically ill, population (AHP), to a recombinant antigen comprising the RBD of wild type (WT) SARS-CoV-2. The AHP results were split in those older or younger than 45 years. The median is plotted as a line. The box represents 1st to 3rd quartiles and the whiskers the minimum and maximum of the 95% confidence interval.