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Abstract 

Renal cell carcinoma (RCC) represents the most common type of kidney cancer and, despite the 

progress of surgical and medical management, is associated with high mortality. In this study, we 

demonstrate that RCC-related processes change body fluids sphingolipid concentrations, which may be 

used to monitor tumor presence using non-invasive lipid-based blood and urine tests. We investigate 

674 plasma, urine, and tissue samples from 369 RCC patients and controls. For the first time, we show 

the significant concentration changes of low abundant sulfatides in plasma and urine of RCC patients. 

Elevated concentrations of lactosylsulfatides, decreased concentrations of sphingomyelins with long 

saturated N-fatty acyls and sulfatides with hydroxylated fatty acyls are the crucial alternations in RCC. 

These changes are stage-dependent and are more emphasized in late-stage RCC. Similar trends in body 

fluids and tissues indicate that RCC widely influences lipid metabolism and highlights the potential of 

lipidomic profiling for cancer detection.  
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Introduction 

Malignant neoplasms of the urinary system are associated with high rates of mortality and morbidity 

and constitute a major public health problem. RCC represents the most common type of kidney cancer, 

and its incidence has increased globally in the last decade1, 2, 3, 4. The principal subtype of RCC is clear 

cell (cc)RCC (>75%), with papillary (pap) RCC (15%) and chromophobe (ch) RCC (<5%) being less 

common. ccRCC often takes an aggressive behavior, but the tumor biology and outcomes vary 

substantally5. 

Early diagnosis improves survival in RCC. Widespread use of abdominal imaging, e.g., ultrasound 

or computed tomography, has resulted in early detection of RCC in many cases. Renal mass is 

discovered incidentally during abdominal ultrasonography performed for different complaints, but no 

laboratory tests distinguish between RCC and benign kidney mass. In many cases, RCC is diagnosed 

late when metastatic disease is present, and the prognosis is poor5. There are no circulating biomarkers 

for detecting RCC, such as alpha-fetoprotein in hepatocellular carcinoma, carcinoembryonic antigen 

and carbohydrate antigen (CA) 19-9 in gastrointestinal malignancies, or CA125 and HE4 in ovarian 

cancer6. Therefore, a non-invasive laboratory test to facilitate RCC diagnosis remains an unmet medical 

need.  

 Lipidomic analysis may provide information about ongoing processes in the organism. Reliable 

lipidomics could aid in the detection of cancer7, the elucidation of biochemical mechanisms associated 

with tumor growth8, and guide the development of new drugs9. For example, sphingomyelins together 

with ceramides, phospholipids, and glycerolipids showed the potential to detect kidney, breast, 

pancreatic, and prostate cancer10, 11. Sulfatides, a class of low-abundant sphingolipids, also seem to be a 

good target for such research12. The importance of sulfatide metabolism and sulfotransferase genes 

expression for the morphological differentiation of tumor and metastatic potentials of the colorectal, 

ovarian, or renal carcinoma was shown in numerous reports13, 14, 15, 16, 17. Sulfatides participate in the 

adhesion to functional proteins, the maintenance and modification of ion channels, and the induction of 

cell differentiation.  
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In our previous work, we compared 157 tumor and autologous nonmalignant tissues from 80 patients 

with RCC18, and we reported decreased concentrations of monohexosyl sulfatides (SHexCer) with 

additional hydroxyl in the ceramide part in the tumor tissue compared to the non-neoplastic autologous 

tissue. These observations are consistent with the results reported by Kim et al.13. We also found elevated 

levels of sulfatides composed of two hexosyl units (SHex2Cer) in tumor tissues compared to adjacent 

nonneoplastic tissues. These results are in agreement with previously described enhanced cerebroside 

sulfotransferase activity in RCC cells12, 16, 19, 20. Recent reports also indicate that lactosylsulfatides are 

involved in cellular adhesion and are suspected to play an important role in the metastasis of 

hepatocellular carcinoma21. 

Significantly altered sulfatide profiles are usually observed in tumor tissues or cells because of the 

high local concentrations of studied lipids. However, only a few studies have been published on sulfatide 

analysis in cells and tissues of RCC patients 13, 18. To the best of our knowledge, no work on the analysis 

of sulfatides in body fluids of RCC patients has been reported to date in the literature.  

Here we compare sulfatide and sphingomyelin profiles of plasma and urine samples taken from RCC 

patients and controls. We also investigate whether the changes in sulfatide and sphingomyelin profiles 

of tumor tissues are reflected in body fluids. 
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Results  

Study design and analytical validation 

A significant part of the cancer samples were ccRCC (128) taken from patients with different tumor 

stage, including patients with metastatic disease. Patients with other RCC subtypes were also studied, 

including 15 cases of papRCC, 4 cases of chRCC, 3 cases of multilocular cystic renal cell carcinoma 

(mcRCC), and 5 cases of patients with other kidney tumors, such as adult cystic nephroma, collecting 

duct carcinoma, oncocytic adenoma, eosinophilic granular renal cell tumor, and Wilms tumor (see Fig. 1 

and Supplementary Data 1-9).  

Fig. 1 Overview of the number of samples and clinical information. a Venn diagrams show the number of 
individual plasma, urine, and tissue samples obtained from control volunteers and kidney cancer patients 
(separately illustrated for females and males).  b Stacked bar charts reflect the TNM tumor classification of cancer 
patients. Graphs show the number of patients grouped by individual tumor stages, tumor grades, and type of node 
and distant metastases, separately shown for males (M) and females (F) (see Supplementary Data 1-9 for more 
details). c Dot plots illustrate the age and BMI distribution of control volunteers (N, blue dots) and cancer patients 
(T, red dots) in the case of plasma, urine, and tissue samples. 
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In total, we have collected and further investigated 143 plasma, 100 urine, and 154 tissue samples 

(tumor and non-affected adjacent tissue parts from 77 patients) from 155 kidney cancer patients together 

with 207 plasma and 70 urine samples from 214 control volunteers (in the following text referred to as 

controls). The distribution of the sample types from cancer patients or controls is illustrated in Fig. 1a. 

Both types of body fluids (plasma and urine samples) were investigated for 99 patients with RCC, among 

whom tissue samples were also evaluated in 50 cases. The higher number of male cancer patient samples 

in this study reflects that RCC patients are more often males and typically have larger tumors with higher 

stage and grade than females. 

The analytical methodology was validated to ensure high data quality (see Methods). The validation 

results show that the methodology can be used to quantify sulfatides, sphingomyelins, and sterol 

sulfates. The measurement of NIST plasma shows comparable results to previously published data 

(Supplementary Fig. 1)22, 23, 24 QC samples were included in the sequence measurements to control 

instrument performance and data acquisition quality. We have established inclusion criteria for 

measured lipids before constructing statistical models or calculating relative concentrations (Methods, 

Data Processing). Data distribution was checked for all quantified lipids within the studied groups, 

resulting in the application of nonparametric tests. 

 

Alternations in the plasma lipid profiles of cancer patients 

In the first step, we compared the relative concentrations of 33 lipids (Supplementary Data 4) 

measured in plasma from 143 kidney cancer patients and 207 controls. We observed a partial group 

separation in the PCA score plot in Fig. 2a, indicating differences between the lipid profiles of cancer 

cases and controls. A cluster of quality control samples (green dots) shows good method stability during 

the measurements. Although cancer patients and controls are not age-balanced (Fig. 1c), both groups 

contain enough samples to build age-matched models to exclude possible bias based on the age, as 

presented in Supplementary Fig. 2. We also observed the separation of cases and controls in the PCA 

score plot in this case. We selected the four most statistically significant lipids for both studied lipid 

classes (SHexCer and SM) based on the fold change, effect size, and false discovery rate, as 
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demonstrated by the volcano plot in Fig. 2b. These lipids were used to generate a circular dendrogram 

(Fig. 2c), which also shows a good classification of controls and cancer cases.  

 

Fig. 2 Overview of statistical analysis based on the evaluation of relative concentrations of 33 lipids in 
plasma samples of RCC cancer patients (T) and controls (N). a PCA-X score plot includes 207 controls (blue), 
143 cancer patients (red), and 18 QC (green). Data were log-transformed and Pareto-scaled before the PCA 
analysis. b Volcano plot reflects the statistically most significant lipid species with respect to the highest fold change 
(robust Hodges-Lehmann type fold change estimator) and false discovery rate (FDR) from the Mann-Whitney U 
test. c Circular dendrogram with heat map calculated based on the relative concentrations of 4 most significant SM 
species and 4 most significant SHexCer species demonstrating the classification of controls from RCC cancer 
cases. Data were log-transformed and Pareto-scaled, then the Euclidean distances were calculated, and Ward's 
clustering method was selected. The heatmap was generated using z-score scaling. c Box plots of the relative 
concentrations of four most significant SHexCer and four most significant SM in plasma samples for controls and 
patients with RCC. Box plots were adjusted for skewed distributions according Hubert & Vandervieren

55
. The 

importance marked above box plots includes fold change, effect size, and FDR from the Mann-Whitney U test: **** 
- very large, *** - large, ** - medium, * - small significance (more explanation in the Suppl. material 4 - plasma). 
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Statistical analysis results for all 33 lipids are listed in Supplementary Data 10. In general, most of 

the studied lipids are downregulated in cancer patients compared to controls, as demonstrated by the 

volcano plot (Fig. 2b) and box plots (Fig. 2d). The decreased concentrations of SM 41:1, SM 40:1;O2, 

SM 39:1, SM 38:1, SM 33:1, and SM 32:1 are the most significant changes among sphingomyelins. 

Sulfatides containing one double bond and mostly with additional hydroxylation (abbreviated as 

SHexCer XX:1;O3), such as SHexCer 40:1;O3, SHexCer 41:1;O3, SHexCer 42:1;O3 together with 

SHexCer 40:1;O2, are another significant downregulations in cancer patients. In turn, sulfatides with 

more double bonds, such as SHexCer 42:3;O2, SHexCer 42:3;O3, and SHexCer 42:2;O2, are 

upregulated in cancer patients.  

The comparison of cancer patients and controls, based on molar concentrations of individual lipids, 

is listed in Supplementary Data 11 and Supplementary Fig. 3. Downregulation of sphingomyelins 

containing one double bond, i.e., SM 32:1;O2, SM 33:1;O2, SM 39:1;O2, SM 40:1;O2, SM 41:1;O2, 

and sulfatides containing one double bond and additional hydroxylation are the most significant 

differences between RCC patients and controls, similarly, as for the relative concentrations. Only 

sulfatides with one hexosyl unit were reliably quantified in plasma samples. Such sulfatides are 

synthesized from glucosylceramides. More complex sulfatides with more than one hexosyl unit are 

obtained from lactosylceramide. Unfortunately, these lipids were usually below LOQ in plasma, except 

for SHex2Cer 42:2;O2 (higher concentrations than LOQ were observed for 24 cancer patients and 2 

controls). In the case of lipids, which were detected in less than 50% of RCC cases or controls, we 

decided to use the present/absent approach (Supplementary Data 12). In this way, we investigated if a 

lipid occurs more often in the plasma of controls or cancer patients (N or T). Results of the analysis are 

presented using radar charts (Supplementary Fig. 4a). We observe that very low abundant 

sphingomyelins and sulfatides with one double bond and additional hydroxylation are usually more 

often present in the plasma of controls than patients. In turn, SHex2Cer 42:2;O2 is present more often 

in the plasma of RCC patients. Elevated SHex2Cer 42:2;O2 was also found by us previously in tumor 

tissue18. In general, we observe substantial differences between plasma sulfatide and sphingomyelin 

profiles in RCC patients compared to controls. 
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Alternations in the urine lipid profiles of cancer patients 

After the data filtration described in Methods, 76 samples taken from RCC patients and another 67 

from controls were used to perform the statistical comparison for urine (Supplementary Data 13).  

 

Fig. 3 Overview of the statistical analysis based on the evaluation of relative concentrations of 33 lipids in 
urine samples of RCC cancer patients (T) and controls (N). a PCA-X score plot includes 67 controls (blue), 76 
cancer patients (red), and 18 QC (green). Data were log-transformed and Pareto-scaled before the PCA analysis.  
b Circular dendrogram with heat map calculated based on the relative concentrations of 4 most significant 
SHex2Cer and 4 most significant SHexCer species that demonstrates the classification of RCC cancer patients and 
controls. Data were log-transformed and Pareto-scaled, subsequently the Euclidean distances were calculated, and 
Ward's clustering method was selected. The heatmap was generated using z-score scaling.  c Volcano plot reflects 
the statistically most significant lipid species with respect to the highest fold change (robust Hodges-Lehmann type 
fold change estimator) and false discovery rate (FDR) from the Mann-Whitney U test. d Box plots of relative 
concentrations of 4 most significant SHex2Cer and 4 most significant SHexCer for controls and patients with RCC 
cancer. Box plots were adjusted for skewed distributions according Hubert & Vandervieren

55
. The importance 

marked above box plots includes fold change, effect size, and FDR from the Mann-Whitney U test: **** - very large, 
*** - large, ** - medium, * - small significance (more explanation in the Suppl. material 13 - urine). 
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We quantified 18 SHexCer and 4 SHex2Cer in urine. No SM were detected because the 

concentrations were below the limit of detection, but 11 sterol sulfates (StS) (Supplementary Table 1) 

were quantified together with sulfatides to provide additional information (Supplementary Data 5). We 

again observe a partial separation of controls from cancer cases in the PCA score plot (Fig. 3a). A 

circular dendrogram with a heat map was prepared for 8 selected sulfatides (Fig. 3b), and it also shows 

some differences between RCC and control samples. In the urine of patients with RCC, concentrations 

of lactosylsulfatides are elevated compared to control samples. The differences are presented in the 

heatmap surrounding the dendrogram (Fig. 3b), volcano plot (Fig. 3c), and in the form of box plots 

(Fig. 3d). Higher levels of SHex2Cer 34:1;O2, SHex2Cer 40:1;O2, SHex2Cer 42:1;O2, and SHex2Cer 

42:2;O2 are most significant upregulations. Sulfatides with an additional hydroxyl group in the ceramide 

backbone (SHexCer XX:XX;O3 or SHexCer XX:XX;O4) show the opposite dysregulation, similarly as 

in the case of plasma samples. These results might indicate that the synthesis of hydroxylated sulfatides 

is suppressed in cancer.  

The present/absent analysis results also show that hydroxylated sulfatides occur more often in the 

urine of controls than RCC cases (Supplementary Fig. 4b, Supplementary Data 14). Another difference 

between the urine samples of RCC patients and the controls is observed in the case of sterol sulfates. In 

patients with RCC, we observe upregulation of StS 3 and StS 4 and downregulation of StS 8 and StS 11. 

In summary, we also found differences between the urine lipid profiles of RCC cases and controls 

  

Different sulfatide and sphingomyelin levels in patients with advanced tumor stage and grade 

To answer whether the lipid changes observed in both biological fluids are associated with tumor 

stage and grade, we divided the plasma and urine sample sets into controls, and patients with early 

(T1-T2) and more advanced tumors (T3-T4). Results of statistical tests are presented in Supplementary 

Data 15 and 16 for plasma samples and Supplementary Data 17 and 18 for urine samples, respectively.  
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Fig. 4 Gradual dysregulation in cancer samples with increased tumor stage. Box plots of the most statistically 
significant lipids for controls, patients with tumor stages T1-2, and T3-4: a sulfatides in plasma samples, b sulfatides 
in urine samples, and c SM in plasma samples. Box plots were adjusted for skewed distributions according Hubert 
& Vandervieren

55
. The importance marked above box plots indicates results of the Conover posthoc test (FDR): 

0.05-0.01 - *, 0.01-0.001 - **, 0.001-0.0001 - ***, 0.0001 and lower - ****. 
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The box plots in Fig. 4 and Supplementary Fig. 6 illustrate a gradual drop in concentrations of O3 

and O4 hydroxylated sulfatides SHexCer XX:XX;O3 or SHexCer XX:XX;O4 in plasma and urine 

samples with higher stage and grade. In contrast, a gradual increase in concentrations of 

lactosylsulfatides SHex2Cer XX:XX;O2 and monohexosylated sulfatides SHexCer 42:2;O2 and 

SHexCer 42:3;O2 was observed with increasing cancer stage and grade. Based on these results, we 

suspect that changes in the profile of sulfatides might be related to tumor progression, and we 

hypothesize that cancer can affect sulfatide metabolism. Similarly, lower levels of SM with longer fatty 

acyls, i.e., SM 39:1, SM 40:1, and SM 41:1 were found in patients with more advanced tumor stage or 

grade. These findings show that in RCC, plasma and urine lipid profiles differ slightly between patients, 

depending on how advanced the tumor is. 

 

Observed sulfatide and sphingomyelin dysregulations in RCC patients are similar in body fluids 

and tumor tissues  

To support the hypothesis that dysregulation observed in plasma and urine can result from cancer 

progression, we further investigated differences between lipid profiles of tumor and autologous 

nonneoplastic tissues of 77 patients (Supplementary Data 6). Results of statistical tests for 44 quantified 

lipids, including 20 SHexCer, 12 SHex2Cer, and 12 SM species, are listed in Supplementary Data 19. 

The separation of both sample groups was observed in the PCA score plot (Fig. 5a).  

When we compared lipid profiles of two tissue types, we found similar changes to these observed in 

body fluids. Namely, in the tumor tissues, hydroxylated sulfatides and SM with one double bond, such 

as SM 41:1;O2 are downregulated. In contrast, elevated SHex2Cer species, SHexCer 42:2;O2, SHexCer 

42:3;O2 and SM 42:2;O2 are observed in tumor tissues as illustrated in the volcano plot in Fig. 5b or 

the paired box plots in Fig. 5c-e. The alterations in SHex2Cer, SHexCer, and SM are also presented in 

the circular dendrogram's heat map (Fig. 5f). In the dendrogram, nonneoplastic and tumor tissue samples 

are well-separated from each other. 
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Fig. 5 Overview of statistical analysis based on the evaluation of relative concentrations of 44 lipids in 
nonneoplastic (N) and tumor (T) tissues of 77 patients. a PCA-X score plot includes all 144 studied tissue 
samples. Data were log-transformed and Pareto-scaled before the PCA analysis. b Volcano plot reflects statistically 
most significant lipid species with respect to highest fold change (robust Hodges-Lehmann type fold change 
estimator) and false discovery rate (FDR) from the Wilcoxon signed-rank test for paired samples. c-e Box plots of 
concentrations of 4 most significant SHexCer, 4 most significant SHex2Cer, and 4 most significant SM in tumor 
tissue and nonneoplastic tissue samples of RCC patients. Box plots were adjusted for skewed distributions 
according Hubert & Vandervieren

55
. The importance marked above box plots includes fold change, effect size, and 

FDR from the Wilcoxon signed-rank test: **** - very large, *** - large, ** - medium, * - small significance (more 
explanation in the Suppl. material 19 - tissues). f Circular dendrogram with heat map calculated based on the 
concentrations of 4 most significant SM, 4 most significant SHexCer, and 4 most significant SHex2Cer species 
demonstrates classification of tumor and nonneoplastic tissue samples of RCC patients. Data were log-transformed 
and Pareto-scaled, then the Euclidean distances were calculated, and Ward's clustering method was selected. The 
heatmap was generated using z-score scaling.   
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The results from the present/absent analysis for lipids, which did not fulfill inclusion criterion 1, in 

the case of tissue samples, are summarized in Supplementary Data 20. Because both tissue parts were 

taken from one subject with RCC, we considered the following cases: lipid present (or absent) in 

nonneoplastic/tumor tissue at once, i.e., (1,1) or (0,0), present only in nonneoplastic tissue (1,0) or only 

in tumor tissue (0,1). The McNemar's test was applied for the presence/absence analysis in this case. 

Similarly to plasma and urine results, we found that hydroxylated sulfatides and SM are present more 

often in nonneoplastic parts but absent in the tumor tissue, i.e., usually more (1,0) pairs are found than 

(0,1) for SM and hydroxylated sulfatides.  

Then, to see the whole picture, we compared all alterations in lipid profiles found in RCC vs. control 

samples across all three types of studied materials, as illustrated in network visualization (Fig. 6). 

Fig. 6 Network visualization of dysregulated lipids in RCC across all three types of samples. Graphs show 
simplified metabolism of sphingolipids a tissue, b plasma, and c urine samples; the Cytoscape software 
(http://www.cytoscape.org) was used to generate the networks. Circles represent the detected lipid species, where 
the circle size expresses the significance according to AUC values from ROC analyses listed in Supplementary 
Data 27, while the color saturation defines the degree of up/downregulation (red/blue). 

a cb
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Similar dysregulation trends in all RCC samples might indicate that lipid alternations originated in tumor 

tissue are reflected in body fluids studied. However, no gradual drop with increasing tumor stage 

(Supplementary Data 21 and 22) or grade (Supplementary Data 23 and 24) is observed in the case of 

tissue samples, as presented in Supplementary Figures 7 and 8. Patients with advanced tumor are at 

increased risk of developing metastases, and the advanced disease might result in stronger differences 

between their lipid profiles and controls. We compared lipid concentrations in body fluids (plasma and 

urine) of patients with cancer stage T3 - with and without metastases (Supplementary Data 25 and 26, 

and Supplementary Fig. 9). Increased concentrations of SHex2Cer species and SHexCer 42:2;O2, are 

observed in the urine of patients with metastases, compared to patients with no metastases. In turn, 

hydroxylated sulfatides in the urine and plasma and SM in plasma are lower in patients with metastases. 

It supports the hypothesis that cancer metastases are associated with higher degree of lipid 

dysregulations.  

 

Potential of studied lipids for clinical cancer detection 

To check the potential of the lipids studied for clinical cancer detection, we divided plasma samples 

into a training and testing cohort, and about 25% of all samples were allocated to the testing set.  

Relative concentration of 33 lipids, presence/absence data for 13 lipids, gender, and BMI were used 

to build the classification model. We selected logistic regression with ridge penalty. The influence of 

clinical parameters on lipid concentrations was analyzed before the model was built, including gender, 

age, and BMI. All subjects were split according to gender and then – into controls, RCC patients with 

tumor stage T1-2, and patients with tumor stage T3-4. After splitting the data according to gender, we 

observed that the respective medians in box plots are slightly shifted, and gender separation might 

improve the differentiation of cases from controls (Supplementary Figure 10). Spearman correlations 

were calculated between lipid concentrations and age (Supplementary Table 2) and lipid concentrations 

and BMI (Supplementary Table 3). Most of the obtained correlations indicate a relatively weak 

association between age and lipid concentrations or BMI and lipid concentrations and are not statistically 

significant. Moderate positive correlations between BMI and SM 36:0;O2, SM 36:1;O2, and SM 
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36:2;O2 levels, and moderate negative correlations between BMI and SHexCer 42:1;O2, SHexCer 

42:2;O2, SHexCer 42:3;O2 levels may indicate alterations in the metabolism of C18 and C24-based 

sphingolipids in obesity. Besides, stronger correlations between lipids and BMI for females with T3-4 

cancer stages may be associated with a low number of samples available for calculations. Finally, gender 

and BMI were included in the model, but we resigned from the age because it was not well-balanced 

between controls and RCC patients (Fig.1). The ability of the model to distinguish controls from patients 

in the case of plasma samples is illustrated in Fig. 7a. The value of the area under the receiver operating 

characteristic curve (AUC) was 0.973 (95% confidence interval range from 0.940 to 0.995) for the 

testing set and 0.940 for the training set (95% confidence intervals range from 0.909 to 0.965). The 

sensitivity, specificity, and accuracy for the classification of training and testing samples are presented 

in the form of a bar chart (Fig.7b). 

The clinical potential of studied sulfatides and sphingomyelins in all studied materials is further 

evident in the network visualization of dysregulated lipids (Fig. 6). The circle size expresses the 

significance according to AUC values from ROC analyses listed in Supplementary Data 27. 

Fig. 7 Potential of the studied lipids in case of clinical cancer detection: a ROC curves based on logistic 
regression with ridge penalty for the training and testing sets. Data from 207 controls and 143 RCC patients were 
divided into training (75%) and testing set (25%). b The obtained sensitivity (red) specificity (green), and accuracy 
(blue) values in percentage for the training and validation set. The error bars represent the 95% confidence intervals 
for accuracy, sensitivity, and specificity. 
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Metabolic reprogramming is a hallmark of cancer and plays an important role in malignant 

transformation and tumor progression, shapes tumor microenvironment, and the phenotype of cancer 

cells, further contributing to tumorigenesis25. Sphingolipid metabolism shows an imbalance in many 

cancers, which is consistent with the involvement of these lipid classes in basic cellular mechanisms, 

including proliferation, migration, and senescence26. Lipids belonging to sphingolipids, such as 

ceramides, glucosyl-/galactosyl- and lactosyl-ceramides, and sphingomyelins, have been proposed 

several times as potential biomarkers for the early detection of kidney, breast, prostate, or pancreatic 

cancer7, 10, 11, 27.  

Recently, we have reported significant concentration changes of sulfatides in RCC tumor tissues 

compared to the nonneoplastic tissue part. One of the most important alternations, downregulation of 

hydroxylated monohexosylsulfatides (SHexCer XX:XX;O3 and SHexCer XX:XX;O4), is also observed 

in the all three types of biological matrices in the present study. The structure of the sphingoid base in 

sulfatides is generally predominantly represented by sphingosine C18, while the N-acyl chain exhibits 

a greater degree of structural variability in both the length and in the range of metabolic modifications, 

such as desaturation or hydroxylation28. The constituents of one of the typical modified N-acyl types are 

2-hydroxy fatty acids (hFA), and from them, the corresponding hFA-sphingolipids are formed. The 

precursors of hFA-sphingolipids, hydroxy fatty acids (hFAs), are enzymatically formed from fatty acids 

catalyzed by fatty acid 2-hydroxylase (FA2H, EC 1.14.18.6)29. The decrease in FA2H expression and 

associated reduced levels of hFA-sphingolipids have been described in aggressive and treatment-

resistant tumors. Altered FA2H expression may be associated with resistance to treatment30 and the 

progression of tumor growth, for example, in lung31, ovarian32, colorectal33, and breast cancer34. In turn, 

increased expression of FA2H and higher levels of hFA-sphingolipids have been described in 

chemosensitive tumors and patients with a better prognosis30, 32. Therefore, we hypothesize that 

determining hydroxylated sulfatides in plasma and urine might have a diagnostic value in RCC.  

In tumor tissues and urine from RCC patients, elevated sulfatide content, especially dihexosyl-

sulfatides (SHex2Cer XX:XX;O2), is another crucial dysregulation and might be related to the 

metabolism of glutamine. Increased glutamine uptake and its utilization in the TCA cycle or as a 
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nitrogen and carbon donor have been observed in many cancers35, specifically in RCC36, 37. The 

dysregulation of glutamine metabolism increases the secretion of ammonium ions, and sulfatides, as 

anionic molecules, carry a negative charge that can balance the positively charged ammonium ions. This 

mechanism was already proposed in chronic metabolic acidosis, where renal sulfatides serve the same 

purpose38, 39.  

Concerning sterol sulfates in urine samples, the upregulation of StS 3 and StS 4 (Fig. 3c and 

Supplementary Fig. 5) corresponding to elemental compositions of cortisol metabolites (Supplementary 

Table 1) indicates increased stress in patients with RCC40. In contrast, the downregulation is observed 

for sterols StS 8 and StS 11 with the elemental composition corresponding to lithocholic acid 

metabolites. As lithocholic acid has recently been shown to induce apoptosis within several tumor cell 

lines41, its suppression may result from cancer metabolic reprogramming.  

Another class of sphingolipids investigated in our work is SM that are reduced in the tumor tissue as 

well as in the plasma of RCC patients. For example, SM 41:1 and SM 42:1 are downregulated in both 

sample matrices, but lower levels of multiple other SM are observed in plasma rather than in the tumor 

tissue. Reduced levels of SM in RCC have been documented before 10, 27. In contrast, higher levels of 

SM were associated with the antitumor effect of 2-hydroxyoleic acid (2OHOA)42. However, the exact 

mechanism of action has not yet been elucidated and probably it is not related to direct activation of 

sphingomyelin synthase (SMS, EC 2.7.8.27)43. Furthermore, SM-enriched cells are more sensitive to 

apoptosis44. This biochemical alteration may be explained by the upregulation of SM to ceramide 

conversion pathway in tumor tissue via SMS. SMS, which exists in isozyme variants SMS1 and SMS2, 

is the only enzyme that produces SM in humans by transferring of phosphocholine from 

phosphatidylcholine to ceramide45. The role of SMS in cancer is complex, shows discrepancies, and is 

widely debated, for example, because expression of SMS1 was found to be reduced in lung cancer, but 

not significantly altered in esophageal cancer46. Additionally, decreased expression of SMS1 has been 

associated with sphingolipid reprogramming and a worse prognosis in advanced melanoma patients47. 

On the other hand, increased SMS2 expression has been observed in patients with metastatic breast 

cancer48, and SMS2 deficiency led to the inhibition of colon cancer progression in murine model49. 
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These findings suggest that SM levels and alteration of the synthetic and degradative pathways play an 

essential role in cancer. Reduced SM levels observed in RCC samples may promote cancer cell survival. 

However, the mechanism has not yet been deciphered, mainly due to the complexity and different 

behavior in various types of tumors.  

Sphingolipids have been the focus of many previous studies7, 10 looking for biomarkers allowing 

early kidney cancer diagnosis. However, these studies did not include multi-tissue/plasma/urine 

comparison of the concentrations of these sphingolipids, and selected biomarkers were often not fully 

quantified by validated methods. Therefore, these were the key points of our study. Here, we describe 

the dysregulation of specific sphingolipids and for the first time show significant concentration changes 

of low abundant sulfatides in the body fluids of RCC patients based on the comparison of blood and 

urine samples from 358 RCC patients and controls. Compared to previously published reports, we 

confronted alterations observed in lipid profiles of tissues and biological fluids to analyze how widely 

cancer-associated processes influence sphingolipid levels. We found that sphingolipids with the same 

structural elements show a similar dysregulation in all three types of investigated materials. Increased 

dysregulations in more advanced tumor stage and grade may be used to predict various pathological 

states of RCC. This suggests the potential application of sphingomyelins and sulfatides for the early 

detection, assessment of tumor progression, and treatment monitoring of RCC in plasma or urine.
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Methods 

Sample collection  

Plasma and urine samples of kidney cancer patients and healthy controls were obtained at the 

Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University 

Hospital Olomouc, Czech Republic (Supplementary Data 4 and 5 for more details). 154 tissue samples, 

including 77 kidney tumor parts and 77 adjacent nonmalignant kidney tissue parts from 77 RCC patients 

(Supplementary Data 6 for more details), were obtained from the Department of Urology, Palacký 

University, Faculty of Medicine and Dentistry and University Hospital, Olomouc, Czech Republic18. 

Controls are samples obtained from volunteers without cancer records (the only exclusion criterion). 

For cancer patients, the disease was confirmed by biopsy, surgical resection, or histology. All cancer 

patients and controls were of Caucasian ethnicity, collected at the same place, and processed the same 

way. The study was approved by the Ethics Committee of the University Hospital Olomouc and Medical 

Faculty of Palacký University in accordance with Ethical Principles for Medical Research Involving 

Human Subjects (Helsinki Declaration). All subjects signed an informed consent. Blood and urine 

collection was performed after overnight fasting with the recommendation to avoid fat-rich meals and 

alcohol consumption in the evening before the collection. Blood and urine from cancer patients were 

obtained before surgical operation and treatment. The samples were stored at − 80 °C, transported from 

the hospital to the analytical laboratory at -20 °C on dry ice, and subsequently stored again at − 80 °C 

until the sample processing.  

 

Sample processing 

Solvents used for extraction were purchased from Sigma-Aldrich (St. Louis, MI, USA). For lipid 

extraction from 25 µL of plasma, a modified Folch method with a chloroform – methanol – water 

mixture was employed10. The samples were spiked before extraction with a mixture of internal standards 

obtained from Avanti Polar Lipids (Alabaster, AL, USA) to achieve final concentrations of 0.1 nmol of 

SHexCer d18:1/12:0 and 43.3 nmol of SM d18:1/12:0 per ml of plasma. For urine samples, reversed-

phase solid-phase extraction (SPE) was performed. Briefly, 2 ml of human urine together with 3 µl of 
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the mixture of internal standards dissolved in methanol (SHexCer d18:1/12:0 of concentration 1.7 µg/ml 

and D4 taurocholic acid of concentration 16.7 µg/mL) were loaded into a 200 mg tC18 cartridge (Sep-

Pak Vac, 37-55 µm particle size) (Waters, Milford, MA, USA) providing concentrations 0.04 nmol of 

SHexCer d18:1/12:0 and 0.55 nmol of D4 taurocholic acid per ml of urine. SPE columns were previously 

primed with 3 mL of methanol followed by 3 ml of water. The columns were washed with 3 mL of 

water, and the studied lipids were further eluted with 3 ml of methanol. The eluates were collected, then 

evaporated by a gentle stream of nitrogen, and redissolved in the mixture of 600 µl of methanol before 

the measurement.  

 

Mass spectrometry analysis 

Mass spectra were measured using an ultrahigh-resolution MALDI LTQ Orbitrap XL mass 

spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) equipped with a nitrogen UV laser (337 

nm, 60 Hz) with a beam diameter of about 80 µm x 100 µm. The LTQ Orbitrap instrument was operated 

in negative-ion mode over a normal mass range m/z 400 – 2000, and the mass resolution was set to R = 

100,000 (full width at half maximum definition, at m/z 400) for all full scan mass spectrum experiments 

(an identical setting was used for MALDI-MSI experiments). 9-AA (Sigma-Aldrich, St. Louis, MO, 

USA) was dissolved in methanol (Sigma-Aldrich) – water mixture (4:1, v/v) to provide a concentration 

of 5 mg/ml for plasma samples or 10 mg/ml for urine samples and mixed with lipid extracts (1:1, v/v). 

Deionized water was prepared with a Milli-Q Reference Water Purification System (Molsheim, France). 

The deposited volume of each sample on the target plate was 1 µL and was followed by dried droplet 

crystallization. Each sample was deposited on MALDI plate five times and measured in negative 

polarity mode. The zig-zag sample movement with 250 µm step size was used during the individual data 

acquisition. The laser energy corresponded to 2.7 µJ and 2 microscans/scan with 2 laser shots per 

microscan at 36 different positions were accumulated for one measurement to achieve a reproducible 

signal. 
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Data processing 

Each measurement was represented by 5 average MALDI-MS spectra (5 repetitions) with thousands 

of m/z values for each sample. The automatic peak assignment was subsequently performed, and m/z 

peaks were matched with deprotonated molecules [M-H]- for sulfatides and StS or [M-CH3]- for SM 

from a database created during the identification procedure using the Excel macro script available on 

figshare (https://figshare.com/s/d01d43e862b7e03adbfe). This peak assignment resulted in the 

generation of the list of present m/z of the studied lipids with the median intensities and relative standard 

deviations of repetitions for each measured sample, which was used for further IS (calculation of molar 

concentrations) or relative normalization (calculation of relative concentrations) and statistical 

evaluation. Obtained lists of all m/z together with their median intensities for all studied samples are 

presented in Supplementary Data 1-3. For all three types of samples, we have calculated both relative 

(Supplementary Data 4-6) and molar concentrations (Supplementary Data 7-9). The large differences in 

case of normalization to IS (Supplementary Data 7-9) within the urine or tissue samples studied resulted 

in many outliers, therefore we have finally decided to discuss the results of relative concentrations that 

allow direct statistical comparison of all three types of samples (plasma, urine, and tissue). Molar 

concentrations were calculated as follows: the intensity of lipid species was divided by the intensity of 

a particular IS and multiplied by IS concentration. Zero values were replaced by 80% of the minimum 

within all samples for each corresponding lipid species for molar concentrations. Only lipids, which met 

two inclusion criteria, have been further used to calculate relative concentrations. The first criterion 

(inclusion criterion 1) is that the evaluated lipid species must be present at least in 50% of samples in 

both groups, i.e., controls x cancer cases, of individual datasets (plasma, urine, and tissue). The second 

criterion (inclusion criterion 2) is that the coefficient of variation of the raw intensities (Supplementary 

Data 1-3) of the lipids in the measured QC samples must be less than 35%. In the case of urine samples, 

we have also excluded 27 selected subjects (24 patients and 3 controls) because more than 50% of the 

lipids were below LOQ or the IS signal was below LOQ due to the high matrix effect (inclusion criterion 

3). For the relative quantitation, the zero values (see Supplementary Data 1-3) were replaced by the 

value corresponding to the lowest reproducible intensity (8000) for all lipids. Signal intensities of each 
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lipid (feature) were related to the sum of all intensities for all lipid species within a particular class, i.e., 

SM, sulfatides, and sterol sulfates, and multiplied by 100 for each sample separately to calculate relative 

% (the percentage abundance of lipid species within individual lipid classes).  

 

Method validation 

All used internal standards (SHexCer 18:1;O2/12:0, SM d18:1;O2/12:0, and taurocholic acid-d4) 

were tested for their applicability for quantitation of plasma or urine samples. The bioanalytical method 

validation guidelines50, 51 were followed and adapted. Representative samples of controls and cases 

characterized by different gender, age, and health state, were mixed in equal ratios for the pooled sample 

preparation - QC. The parameters determined included calibration curve, selectivity, repeatability, 

extraction recovery, matrix effect, within-run and between-run precision, carry-over effect, and 

freeze/thaw stability. Aliquots of the pooled sample were either not spiked, spiked before or after 

extraction with a mixture of IS at a low, medium, or high concentration level, respectively. Medium 

concentration was identical to the IS concentrations in studied plasma and urine samples of controls and 

RCC patients. Individual IS concentration in plasma and urine are listed in Supplementary Table 4. 

The reproducibility of sample spotting is represented by the coefficients of variation (CV) calculated 

from five IS intensities of 5 consecutive spots of each sample (Supplementary Tables 5-7). All validation 

parameters were calculated using Microsoft Excel® 2016 (ver. 2102). The investigated parameters were 

determined on two independent days (except freeze/thaw stability). The linearity range and the limit of 

quantitation (LOQ) of the developed MALDI-MS method were determined from a calibration curve 

based on the extracted pooled sample of plasma or urine spiked with IS mixture of different 

concentration levels (Supplementary Table 8 and Supplementary Figure 11a-d). Calibration curves were 

plotted as peak abundances against concentrations of IS individual calibration solutions at 8 

concentration levels and fitted by linear regression. The measurement of high number of samples with 

five repetitions is not possible within one run on one MALDI plate. The washing step of the plate is 

necessary before the next run, and the carry-over effect should be determined to verify the efficiency of 

the washing procedure. The carry-over effect was determined from the blank sample, which was spotted 
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on the washed MALDI plate on the same positions as previously measured calibration standards at the 

upper limit of quantitation. No signal at m/z corresponding applied IS was observed for both sample 

types. The extraction recovery was determined by calculating the ratio of the IS signal intensity of 6 

samples (3 for urine) spiked before and 6 samples (3 for urine) spiked after the extraction at three 

concentration levels (Supplementary Tables 9, 10, and Supplementary Figure 11e, f). The precision was 

calculated considering the mean value and standard deviation (Supplementary Table 11). Within-run 

precision was calculated as the CV of IS intensities (IS spiked before extraction) within three 

consecutive extractions performed in one day for low, medium (only for plasma), and high concentration 

levels. The between-run precision was determined based on the measurement of six extracts of the 

pooled samples at three concentration levels (three extracts were prepared in one day, and another three 

extracts were prepared in the second day). For evaluating selectivity, matrix effect, and freeze/thaw 

stability of the plasma samples, plasma extracts of six different individuals were measured 

(Supplementary Table 6). The selectivity of the tested IS was verified based on the evaluation of the 

data obtained after measurement of these samples without the addition of IS, where no interference 

signal was observed at m/z corresponding to IS. The matrix effect was calculated as the coefficient of 

variation of IS intensities within the mass spectra of samples of six different individuals at three 

concentration levels (Supplementary Tables 12). Freeze/thaw stability was determined individually for 

each sample of 6 individuals with IS at the medium level, and it was calculated as the coefficient of 

variation of four median intensities within three freeze/thaw cycles involving the storage of the sample 

at -20°C overnight and its thawing at room temperature for 1 h (Supplementary Table 13). For urine 

samples, the selectivity of the tested IS was verified based on the evaluation of data obtained after 

measurement of pooled plasma and plasma samples of six random individuals (without the addition of 

IS), where no signal at m/z of IS was observed in all cases. Freeze/thaw stability of urine was verified 

based on the comparison of IS intensities of the pooled sample with IS at low and high concentration 

levels after one freeze/thaw cycle involving the storage of the sample at -20°C overnight and its thawing 

at room temperature for 1 h (Supplementary Table 13). High matrix effect was observed for urine 

samples as evident from the Supplementary Data 1 (raw intensities) of IS intensities in the studied 
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samples resulting in the decision to normalize the data to the sum of all intensities for all lipid species 

within a particular class for each sample separately to calculate relative concentrations in %.  

 

Quality control and NIST plasma measurement 

Pooled samples (see above) were used as quality control (QC) to monitor the instrument performance 

and the quality of data obtained in sequence measurement of plasma and urine samples. At least 3 QC 

samples were spotted on each MALDI plate at the beginning, middle, and end of the sequence 

measurement. Supplementary Figures 12 and 13 show the variation in absolute intensities of IS and 

selected endogenously present lipids within all measured QC samples. The middle line represents 

average intensity, and the dashed lines represent the coefficient of variation of 20%. The coefficient of 

variation of the absolute signal, which in some cases exceeds 20%, especially for SHexCer 41:1;O3, is 

reduced by normalization to IS or sum of intensities of all quantified sulfatides (relative concentrations), 

which is shown in Supplementary Figures 12d and 13f, where the absolute concentration of selected 

lipids within QC samples are replaced by molar or relative concentrations. Similarly, for urine samples, 

the coefficient of variation is reduced in the case of monitoring relative concentrations (Supplementary 

Figures 13). The clusters of QC samples in the PCA score plots indicated method stability during 

measurements (Fig. 2a and Fig. 3a). Another verification of the reliability of our semiquantitative 

method was performed using the measurement of NIST plasma as available standard reference materials 

to compare the obtained concentration values with literature22, 23, 24. Unfortunately, no information about 

sulfatide concentrations is found in the literature, so that the comparison of obtained concentrations is 

performed only for SM lipid class in Supplementary Figure 1, showing very good congruence. 

 

Lipid annotation 

The lipid nomenclature followed LIPID MAPS system52 and the shorthand notation for lipid 

structures53, 54. In the following text, sulfatide shorthand notification is briefly described on the example 

of sulfatide SHex2Cer 34:1;O2 for a better understanding. First capital letter S means presence of one 

sulfate group, the abbreviation Hex means the presence of hexosyl unit without specification of 
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stereochemistry, and the additional number gives the information on their number (in our example, two 

hexosyl units) on ceramide backbone. Subsequently, the colon-separated numbers 34:1 provides the 

information on the total number of carbon atoms and double bonds (CN:DB) of N-linked fatty acyl and 

sphingoid base of ceramide part, and a semicolon separated O2 informs about two hydroxyl oxygens in 

the ceramide part without any specification of their position. In the case that an additional hydroxyl is 

present in the ceramide part without any specification of its position O3 is written behind semicolon. 

For sterol sulfates, we have been able to verify the presence of the sulfate group according to MS/MS 

spectra, where a typical neutral loss of 80 was observed, and using a high-resolution mass spectra 

measurement that allowed us to determine the elemental composition. However, the exact structure 

elucidation, including the isomerism of sterols, is not possible only by using MALDI-Orbitrap MS 

measurement. Several sterol isomers with identical elemental composition can contribute to the ion 

signal. For this reason, we have abbreviated the observed sterols from StS 1 to St S13 and we only 

suggested the most probable compounds for individual elemental compositions in Supplementary 

Table 1. 

 

Statistical data analysis  

All calculations and visualizations were done using Microsoft Excel (ver. 2111), R free software 

environment (ver. 4.1.2), SIMCA statistical software (ver. 13.0.0.0), and the Inkscape open-source 

vector graphics editor (ver. 1.1). In the first step, the distribution of variables in the dataset was usually 

observed based on the density plots generated using the ggplot2 library. Then, medians and interquartile 

ranges (IQR) were calculated for all the variables within groups, using the rstatix library. Fold change 

was computed via the robust Hodges-Lehmann type fold change estimator. To obtain it, we computed 

all possible pairwise ratios between the feature's values in two groups, and then the median of those 

ratios was returned. To compare differences between two independent groups, we used the Mann-

Whitney U test (plasma and urine), and its equivalent for paired samples was applied in the case of tissue 

samples (rstatix package). The comparison of controls and cases split into stages or grades (multiple 

group analyses) was performed using the Kruskal Wallis test (rstatix library). When the Kruskal-Wallis 
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test indicated differences, the Conover post-hoc test was applied to see which pairs of groups differed 

significantly (PMCMRplus library). The rank-biserial correlation coefficient effect size was computed 

for the Mann-Whitney two-sample test using the rcompanion library, and the epsilon squared effect size 

for the Kruskal-Wallis test (with the use of the ggstatsplot library). For the presence/absence analysis, 

first, the contingency tables were prepared in which lipids having intensity > 8000 were classified as 

"1" (present), otherwise as "0" (absent). The Fisher's exact test was used to analyze contingency tables 

concerning lipids detected in plasma and urine samples. In the case of tissues, both parts were taken 

from the same subject, and we considered the following pairs: lipid present (or absent) in 

nontumor/tumor tissue at once, i.e., (1,1) or (0,0), present only in nontumor tissue (1,0), or only in tumor 

tissue (0,1). The McNemar's test was applied in the next step (exact2x2 library) to analyze the 

contingency tables for tissues. Spearman correlations were calculated to investigate the relationships 

between age and lipid concentrations and BMI and lipid concentrations (psych library). Volcano plots 

were prepared with the use of the EnhancedVolcano library. Differences between groups were visualized 

in the form of box plots for skewed distributions (litteR and ggplot2 libraries). The construction of a box 

plot was presented and well-explained in Hubert & Vandervieren55. All p-values were corrected for the 

multiple comparisons using the Benjamini-Hochberg assessment of the False Discovery Rate (FDR). In 

the next step, the data were log-transformed and Pareto-scaled (tidymodels, tidySpectR libraries). The 

Principal Component Analysis was performed in the SIMCA statistical software. For the circular 

dendrograms, the Euclidean distances were calculated first, and Ward's clustering algorithm was used 

in the next step (phangorn library). The dendrogram was generated applying the ggtree library and the 

ggplot2 library. The z-scores were calculated for each transformed concentration before plotting the heat 

map. The logistic regression with ridge penalty was applied to classify plasma samples (glmnet library). 

All 33 lipid concentrations, presence/absence data for 13 lipids, BMI, and gender were included in the 

model. The data were split into training (75%) and testing set (25%), log-transformed, and Pareto-scaled. 

A 5-fold cross-validation approach was applied to prepare the model. Based on the AUC values, the 

model with a minimum value of lambda regularization parameter was selected for the classification. The 

receiver operating characteristic curve (ROC) was generated (pROC library) to assess the model 
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performance, and the confusion matrix was computed using the caret library. Confidence intervals were 

calculated for accuracy, specificity, and sensitivity. The ROC curves were also prepared for individual 

lipids in all analyzed samples. The AUC from this analysis and fold changes were subsequently used to 

generate Fig. 6 in the Cytoscape software (the network visualization of alterations in lipid profiles of 

RCC vs. controls). The color saturation reflects fold change and the size of each circle - the AUC for a 

lipid. 

 

Data availability 

All data necessary to support the conclusions are available in the manuscript or supplementary 

information. Raw data, instructions for data processing and Excel macro script are available in online 

open-access repository Figshare at https://figshare.com/s/d01d43e862b7e03adbfe  
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