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Abstract 
 

Tumor-Infiltrating Lymphocytes (TILs) have strong prognostic and predictive value in breast cancer, but their visual 
assessment is subjective. To improve reproducibility, the International Immuno-oncology Working Group recently 
released recommendations for the computational assessment of TILs that build on visual scoring guidelines. However, 
existing resources do not adequately address these recommendations due to the lack of annotation datasets that 
enable joint, panoptic segmentation of tissue regions and cells. Moreover, existing deep-learning architectures focus 
entirely on either tissue segmentation or object detection, which complicates the process of TILs assessment by 
necessitating the use of multiple models with inconsistent predictions. We introduce PanopTILs, a region and cell-level 
annotation dataset containing 814,886 nuclei from 151 patients, openly accessible at: sites.google.com/view/panoptils. 
PanopTILs enabled us to develop MuTILs, a convolutional neural network architecture optimized for assessing TILs in 
accordance with clinical recommendations. MuTILs is a concept bottleneck model designed to be interpretable and to 
encourage sensible predictions at multiple resolutions. Using a rigorous internal-external cross-validation procedure, 
MuTILs achieves an AUROC of 0.93 for lymphocyte detection and a DICE coefficient of 0.81 for tumor-associated 
stroma segmentation. Our computational score closely matched visual scores (Spearman R=0.58, p<0.001). Moreover, 
our TILs scores had a higher prognostic value than visual scoring, independent of TNM stage and patient age. In 
conclusion, we introduce a comprehensive open data resource and a novel modeling approach for detailed mapping 
of the breast tumor microenvironment.  
 

 

Introduction 

Advances in slide scanners, machine learning, and 
computational efficiency have increased interest in 
histology as a source of data in cancer studies [1,2]. 
Tissue morphology contains essential prognostic and 
diagnostic information and reflects underlying 
molecular and biological processes. This work 
presents approaches for the computational discovery 
of interpretable predictive histologic biomarkers, 
focusing on invasive breast carcinomas. 
Histopathology is a medical field where medical 
experts (i.e., pathologists) examine stained 
microscopic tissue sections to make diagnostic 
decisions, most often from tumor biopsies. While much 
of clinical medicine relies on the clinical examination of 
patients, histopathology is an imaging-focused field, 
like radiology, where much of the focus is on visual 
pattern recognition. 

The term biomarker refers to a biological feature that 
we can use to indicate a clinical outcome. For example, 
prognostic biomarkers are biological features 
associated with good (or bad) prognosis, while 
predictive biomarkers predict response to therapy in 
randomized controlled trials [3]. Typically, when a 
histologic trait is related to outcomes in cancer, it is 
incorporated into the grading criteria, though this is not 

always the case. For example, there has been a strong 
focus on tumor-infiltrating lymphocytes (TILs) as a 
prognostic and predictive biomarker in breast cancer 
and other solid tumors in recent years [4]. This is 
because TILs infiltration can be a somewhat direct 
visualization of how well the host (patient) body can 
respond to the growing tumor by immune cells.  

The majority of breast cancers are carcinomas. Based 
on morphology, breast carcinomas include many 
variants; the most common are infiltrating ductal 
carcinoma (which originates from breast duct 
epithelium) and infiltrating lobular carcinoma (from 
breast acini/glands) [5,6]. There are numerous 
morphological elements within a single breast cancer 
slide. Integrative genomic analysis of breast cancer 
identified four main subtypes, including Luminal-A, 
Luminal-B, Her2-Enriched/Her2+, and Basal [7]. These 
subtypes have distinct alterations and are associated 
with distinct patient survival prospects [8]. TILs are 
particularly prognostic and predictive of therapeutic 
response in basal and Her2+ breast carcinomas [9].  

The stromal TILs score is the fraction of stroma within 
the tumor bed occupied by lymphoplasmacytic 
infiltrates (Fig. 1). TILs are assessed visually by 
pathologists through examination of formalin-fixed 
paraffin-embedded, hematoxylin and eosin (FFPE 
H&E) stained slides from tumor biopsies or resections. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 19, 2023. ; https://doi.org/10.1101/2022.01.08.22268814doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:lee.cooper@northwestern.edu
https://sites.google.com/view/panoptils/home
https://doi.org/10.1101/2022.01.08.22268814
http://creativecommons.org/licenses/by/4.0/


 

They are subject to considerable inter- and 
intraobserver variability, and hence a set of 
standardized recommendations was developed by the 
International Immuno-Oncology Working Group 
[10,11]. Nevertheless, observer variability remains a 
critical limiting factor in the widespread clinical 
adoption of TILs in research and clinical settings. 
Therefore, a set of recommendations was published for 
developing computational tools for TILs assessment 
[12]. A number of existing algorithms have been 
developed to score TILs. However, most diverge from 
clinical scoring recommendations, as summarized by 
Amgad et al. [12]. This report describes MuTILs, an 
interpretable deep-learning model for the panoptic 
segmentation of breast cancer WSIs, with a special 
emphasis on evaluating TILs. 

Methods 

MuTILs jointly segments tissue regions and cell nuclei 
and extends our earlier work on this topic (Fig. 2) [13]. 
It acts as a panoptic segmentation algorithm; that is, it 
detects all tissue regions and nuclei within a slide to 
enable a holistic, context-aware assessment of TILs 
infiltration [14]. MuTILs comprises two parallel U-Nets 
(each with a depth of 5) for segmenting regions and 
nuclei at 1 and 0.5 microns-per-pixel (MPP), 
respectively [15]. Inspired by the HookNet architecture, 
information is passed from the region branch down to 
the nucleus branch, by concatenation, to provide low-
power context [16]. Additionally, region predictions 
from the low-resolution branch are upsampled and 
used to constrain the nucleus predictions in the high-
resolution branch. Thus, region prediction is used to 
infer class-specific attention maps, which are derived 
by modeling the nucleus class prior probability as a 
linear combination of the corresponding region 
probability vector. User-defined manual compatibility 
kernels mask out incompatible predictions. This 
constraint promotes compatible, biologically sensible 
predictions. The model was trained using a multi-task 
loss that gives equal weight to Regions of Interest 
(ROI) ROI and High-Power Field (HPF) region 
predictions, unconstrained HPF nuclear predictions, 
and region-constrained nuclear predictions. 

We created a panoptic segmentation dataset that 
combined the annotations from two public datasets: the 
Breast Cancer Semantic Segmentation dataset 
(BCSS) and the Nucleus classification, localization, 
and segmentation dataset (NuCLS). We call this 
combined dataset PanopTILs, since it enables the 
panoptic segmentation of tissue regions and cell nuclei 
necessary for robust assessments of TILs (Fig 1). Our 
analysis included WSIs from 125 infiltrating ductal 
breast carcinoma patients from The Cancer Genome 
Atlas [17,18]. Additionally, we supplemented the 
training set with annotations from 85 slides from the 
Cancer Prevention Study II cohort [19]. The slides were 
separated into training and testing sets using 5-fold 
internal-external cross-validation, using the same folds 
as the NuCLS modeling paper [18,20]. For training, we 

extrapolated the nuclear labels from the small 
~256x256 pixel high-power fields to large 1024x1024 
pixel ROIs by using NuCLS models to perform 
inference on the same slides they were trained on to 
obtain bootstrapped “weak” labels. Generalization 
results presented here use manual labels (Fig. 3). 
Each high-power field from the pathologist-corrected 
single-rater NuCLS dataset was padded to 1024x1024 
at 0.5 MPP resolution (20x objective). As a result, each 
ROI had region segmentation for the entire field (from 
the BCSS dataset) and nucleus segmentation and 
classification for the central portion (from the NuCLS 
dataset). Note that the nucleus ground truth contains a 
mixture of bounding boxes and segmentation. The 
fields shown in Fig. 3 are from the testing sets. 

For whole-slide image (WSI) inference, we relied on 
data from 305 breast carcinoma patients for validation, 
269 of whom were infiltrating ductal carcinomas, and 
156 were Her2+. Visual scores were assessed by one 
pathologist (RS) and used as the baseline. The WSI 
accession and tiling workflow used the histolab and 
large_image packages and included: 1. Tissue 
detection; 2. Detection and exclusion of empty space 
and markers/inking; 3. Tiling the slide and scoring tiles 
at a very low resolution (2 MPP); 4. Analyzing the top 
300 tiles [21,22]. Fixing the number of analyzed ROIs 
ensured a near-constant run time of less than two 
hours per slide. Low-resolution tiles with a high 
composition of cellular (hematoxylin-rich) and acellular 
(eosin-rich) regions received a higher informativeness 
score. This favored tiles with more peritumoral stroma. 
Color deconvolution was performed using the Macenko 
method from the HistomicsTK package [23,24]. Each 
of the top informative tiles was assigned one of the 
trained MuTILs models in a grid-like fashion. This 
scheme acted as a form of ensembling without 
increasing the overall inference time. 

Trained MuTILs models were then used to segment 
tissue and nuclear components. A Euclidean distance 
transform was applied to detect stroma within 32 
microns from the tumor boundary. The fraction of 
image pixels occupied by this peritumoral stroma was 
considered a saliency score. We assessed the 
following variants of the TILs score (Fig. 1): 

1. Number of TILs / Stromal area (nTSa) 
2. Number of TILs / Number of cells in stroma (nTnS) 
3. Number of TILs / Total Number of cells (nTnA) 

We obtained these score variants both globally 
(aggregating region and nuclear counts from all ROIs) 
and through saliency-weighted averaging of scores 
obtained for each ROI independently. A simple linear 
calibration was then used to ensure the scores 
occupied a similar range as the visual scores. 
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Results 

MuTILs has a strong emphasis on explainability; it 
segments individual regions and nuclei, which are then 
used to calculate the computational scores.  Table 1 
shows the region segmentation and nucleus 
classification accuracy on the testing sets. Results are 
on testing sets from the internal-external 5-fold cross-
validation scheme (separation by hospital). Fold 1 
contributed to hyperparameter tuning, so it is not 
included in the mean and standard deviation 
calculation. MuTILs achieves a high classification 
performance for components of the computational TILs 
score, including stromal region segmentation 
(DICE=80.8±0.4) as well as the classification of 
fibroblasts (AUROC=91.0±3.6), lymphocytes 
(AUROC=93.0±1.1), and plasma cells 
(AUROC=81.6±6.6). Region segmentation 
performance is variable and class-dependent, with the 
predominant classes (cancer, stroma, and empty) 
being the most accurate. The region constraint 
improves nuclear classification accuracy by ~2-3% 
overall, mainly by reducing the misclassification of 
immature fibroblasts and large TILs/plasma cells as 
cancer. 

The generalization accuracy of MuTILs predictions is 
also supported by a qualitative examination of model 
predictions on the ROIs from BCSS and NuCLS 
datasets (Fig. 3) and the full WSI (Fig. 4). Note that in 
Fig. 4, the predictions show full WSI inference for 
illustration. Our analysis, however, only admitted the 
300 most informative ROIs to the MuTILs model to 
ensure a constant run time of less than two hours per 
slide for practical applicability. ROI “informativeness” 
was measured at a very low resolution (2 MPP) during 
WSI tiling and favored ROIs with more peritumoral 
stroma. 

Computational TILs score variants had a modest-to-
high correlation with the visual scores (Spearman R 
ranges between 0.55 - 0.58) (Fig. 5). Visual scores 
were obtained from one pathologist using clinical 
scoring recommendations from the TILs Working 
Group. Two variants of computational scores were 
obtained: either the number of stromal TILs was 
divided by the stromal region area, or the number of 
TILs was divided by the total number of cells within the 
stromal region. We then calibrated these numbers to 
the visual scores for easy comparison. Note that while 
the scatter plots in Fig. 5 show the calibrated scores, 
the correlation coefficients were obtained using the raw 
scores to avoid optimistic results. In that figure, points 
in red are outliers that contributed to the correlation 
metric but not to the calibration. Some slides were 
outliers with discrepant visual and computational 
scores; the causes for this discrepancy are discussed 
below. Both global and ROI saliency-weighted scores 
were significantly correlated with the visual scores 
(p<0.001).  

We examined the prognostic value of MuTILs on 
infiltrating ductal carcinomas and Her2+ carcinomas. 
While we had access to visual scores from the basal 
cohort, the number of outcomes was limited, and 
neither visual nor computational scores had prognostic 
value. Progression-free interval (PFI) is the endpoint 
used per recommendations from Liu et al. for TCGA, 
with progression events including local and distant 
spread, recurrence, or death  [25]. First, we examined 
the Kapan-Meier curves for patient subgroups using a 
TILs-score threshold of 10% for stromal TILs score and 
the median value for the nTnA computational score 
variant (Fig. 6). A threshold of 10% was used for visual 
and calibrated computational scores consistent with 
some of the research literature. Note that there is no 
recommended threshold for stromal TILs scoring, and 
so these results should be considered along with 
continuous results used in Cox regression modeling. 
For comparison, we also included a metric that looks 
into the predictive value of TILs when the denominator 
includes all cells, not just those in the stromal 
compartment.  All metrics in Fig. 6 were obtained by 
weighted averaging of computational scores from 300 
ROIs. Both visual and computational scores had good 
separation within the infiltrating ductal cohort, although 
only the nTnS and nTnA computational scores had 
significant log-rank p-values (p=0.009 and p=0.006, 
respectively). Within the Her2+ cohort, all metrics had 
good separation on the Kaplan-Meier, although the 
visual score had a borderline p-value. All 
computational scores were significant within this cohort 
(p=0.018 for nTSa, p=0.002 for nTnS, and p=0.006 for 
nTnA). 

We also examined the prognostic value of the 
continuous (untresholded) TILs scores using Cox 
proportional hazards regression, with and without 
controlling for clinically-salient covariates, including 
patient age, AJCC pathologic stage, histologic 
subtype, and basal status (Table 2). The analysis was 
restricted to slides where visual TILs scores were 
available for a fair comparison. In the multivariable 
setting, each metric was part of an independent model 
along with clinically-salient covariates. We controlled 
all multivariable models for patient age and AJCC 
pathologic stage I and II status. Additionally, we 
controlled models using the infiltrating ductal 
carcinoma subset for basal genomic subtype status, 
and we controlled models using the Her2+ subset for 
infiltrating ductal histologic subtype status. Within the 
infiltrating ductal cohort, the only metric with significant 
independent prognostic value on multivariable analysis 
was the nTnS computational score. Within the Her2+ 
cohort, the visual score was not independently 
prognostic (p=0.158), while the computational scores 
all had independent prognostic value, with the most 
prognostic being the nTnS variant (p=0.003, 
HR<0.001). Saliency-weighted ROI scores almost 
always had better prognostic value than global 
computational scores. 
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Discussion 

One of the difficulties facing widespread adoption of 
state-of-the-art DL in medical domains is their opacity. 
There is a broad consensus that explainability is critical 
to trustworthiness, especially in clinical applications 
[1,12,26–28]. The standard application of DL models in 
histopathology involves the direct prediction of targets 
from the raw images. For example, we may predict 
patient survival given a WSI scan [29]. However, an 
alternative paradigm is beginning to emerge that 
combines the strong predictive power of opaque DL 
models and the interpretable nature of handcrafted 
features, a technique called Concept bottleneck 
modeling [30]. The fundamental idea is simple: 1. Use 
DL to delineate various tissue compartments and cells; 
2. Extract handcrafted features that make sense to a 
pathologist; 3. Learn to predict the target variable, say 
patient survival, using an interpretable ML model that 
takes handcrafted features as its input. Hence, the 
most challenging task is handled using powerful DL 
models, while the terminal prediction task uses highly 
interpretable models.  

MuTILs is a concept bottleneck model; it learns to 
predict the individual components that contribute to the 
TILs score (i.e., peritumoral stroma and TILs cells) and 
uses those to make the final predictions [30]. This 
setup makes its predictions explainable and helps 
identify sources of error. The region constraint helped 
provide context for the nuclear predictions at high 
resolution, which helped reduce the misclassification of 
immature fibroblasts and plasma cells as cancer (Fig. 
7). The training dataset contained several 
subclassifications for region and nuclear data with 
unreliable or variable ground truth. Hence, we 
assessed performance at the level of grouped classes 
with reliable ground truth (tumor, stroma, TILs) at 
evaluation. The low representativeness of normal 
breast acini in training makes raw MuTILs predictions 
unreliable for differentiating normal and cancerous 
epithelial tissue (Fig. 7, bottom row). This issue can be 
mitigated by expanding the training set or downstream 
modeling of architectural patterns, which is beyond the 
scope of this work. Note how the region constraint 
improves nuclear classifications (Fig. 7, third vs fourth 
column). This improvement is most notable for large 
TILs (Fig 7, first row) and immature fibroblasts (Fig. 7, 
second row), which are misclassified as cancer without 
the region constraint. 

A qualitative examination of slides with discrepant 
visual and computational TILs scores shows there are 
three major contributors to discrepancies:  

1. Misclassifications of some benign or low-grade 
tumor nuclei as TILs. 

2. Variations in TILs density in different areas within the 
slide, which cause inconsistencies in visual scoring. 
This phenomenon is also a well-known contributor to 
inter-observer variability in visual TILs scoring [11]. 

3. Variable influence of tertiary lymphoid structures on 
the WSI-level score. 

Our results show that the most prognostic TILs score 
variant (nTnS) is derived from dividing the number of 
TILs cells by the total number of cells within the stromal 
region. The visual scoring guidelines rely on the nTSa, 
which is reflected in the slightly higher correlation of the 
nTSa variant with the visual scores compared to nTnS  
[10].  So why is nTnS more prognostic than nTSa? 
There are two potential explanations. First, it may be 
that nTnS is better controlled for stromal cellularity 
since it would be the same in low- vs. high-cellularity 
stromal regions as long as the proportion of stromal 
cells that are TILs is the same. Second, nTnS may be 
less noisy since it relies entirely on nuclear assessment 
at 20x objective, while stromal regions are segmented 
at half that resolution.  

Finally, we note that this validation was done only using 
the TCGA cohort, and future work will include 
validation on more breast cancer cohorts. In addition, 
we note that MuTILs cannot distinguish cancer from 
normal breast tissue at low resolution, which may 
necessitate manual curation of the analysis region, 
especially for low-grade cases. 

Conclusion 

MuTILs is a lightweight deep-learning model for 
reliable assessment of TILs in breast carcinomas. It 
jointly classifies tissue regions and cell nuclei at 
different resolutions and uses these predictions to 
derive patient-level scores. We show that MuTILs can 
produce predictions with good generalization for the 
predominant tissue and cell classes relevant for TILs 
scoring. Furthermore, computational scores correlate 
significantly with visual assessment and have strong 
independent prognostic value in infiltrating ductal 
carcinoma and Her2+ cancer. 

Data Availability Statement 
 

The PanopTILs dataset is made public at: 
https://sites.google.com/view/panoptils/.  

 

Code availability 
 

Relevant code is publicly available at: 
github.com/PathologyDataScience/MuTILs_Panoptic  
 

Ethics statement 
 

All data was shared with investigators in a deidentified 
form. All patients participated voluntarily and provided 
written informed consent. CPS-II data sharing was 
approved through the Emory University Institutional 
Review Board, approval number IRB00045780.  
 

Acknowledgments 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 19, 2023. ; https://doi.org/10.1101/2022.01.08.22268814doi: medRxiv preprint 

https://sites.google.com/view/panoptils/home
https://github.com/PathologyDataScience/MuTILs_Panoptic
https://doi.org/10.1101/2022.01.08.22268814
http://creativecommons.org/licenses/by/4.0/


 

This work was supported by the U.S. NIH NCI grants 
U01CA220401 and U24CA19436201. We 
acknowledge support from Dr. David Gutman and the 
American Cancer Society, including Dr. Mia M. 
Gaudet, Dr. Samantha Puvanesarajah, Dr. Lauren 
Teras, James Hodge, and Elizabeth Bain. 
 

Conflicts of Interest 
 

None to disclose. 

 

Author Contributions 
 

MA: Idea conception, model implementation, 
validation, and manuscript review. RS: manual scoring 
of TILs, manuscript writing. LAD:  Idea conception, 
manuscript writing. 
 

References 
 

1. Abels E, Pantanowitz L, Aeffner F, Zarella MD, 
Laak J, Bui MM, et al. Computational pathology 
definitions, best practices, and recommendations 
for regulatory guidance: a white paper from the 
Digital Pathology Association. J Pathol. 2019 Nov 
3;249(3):286–94.  

2. van der Laak J, Litjens G, Ciompi F. Deep learning 
in histopathology: the path to the clinic. Nat Med. 
2021 May 14;27(5):775–84.  

3. Ballman K v. Biomarker: Predictive or Prognostic? 
Journal of Clinical Oncology. 2015 Nov 
20;33(33):3968–71.  

4. Savas P, Salgado R, Denkert C, Sotiriou C, Darcy 
PK, Smyth MJ, et al. Clinical relevance of host 
immunity in breast cancer: from TILs to the clinic. 
Nat Rev Clin Oncol. 2016 Apr 15;13(4):228–41.  

5. Molavi DW. The Practice of Surgical Pathology: A 
Beginner’s Guide to the Diagnostic Process. 2nd 
ed. 2017.  

6. Amin MB, Greene FL, Edge SB, Compton CC, 
Gershenwald JE, Brookland RK, et al. The Eighth 
Edition AJCC Cancer Staging Manual: Continuing 
to build a bridge from a population-based to a 
more “personalized” approach to cancer staging. 
CA Cancer J Clin. 2017 Mar;67(2):93–9.  

7. Comprehensive molecular portraits of human 
breast tumours. Nature. 2012 Oct 
23;490(7418):61–70.  

8. Fallahpour S, Navaneelan T, De P, Borgo A. 
Breast cancer survival by molecular subtype: a 
population-based analysis of cancer registry data. 
CMAJ Open. 2017 Sep 25;5(3):E734–9.  

9. Savas P, Salgado R, Denkert C, Sotiriou C, Darcy 
PK, Smyth MJ, et al. Clinical relevance of host 
immunity in breast cancer: from TILs to the clinic. 
Nat Rev Clin Oncol. 2016 Apr 15;13(4):228–41.  

10. Salgado R, Denkert C, Demaria S, Sirtaine N, 
Klauschen F, Pruneri G, et al. The evaluation of 
tumor-infiltrating lymphocytes (TILs) in breast 
cancer: recommendations by an International TILs 
Working Group 2014. Annals of Oncology. 2015 
Feb;26(2):259–71.  

11. Kos Z, Roblin E, Kim RS, Michiels S, Gallas BD, 
Chen W, et al. Pitfalls in assessing stromal tumor 
infiltrating lymphocytes (sTILs) in breast cancer. 
NPJ Breast Cancer. 2020 May 12;6(1):17.  

12. Amgad M, Stovgaard ES, Balslev E, Thagaard J, 
Chen W, Dudgeon S, et al. Report on 
computational assessment of Tumor Infiltrating 
Lymphocytes from the International Immuno-
Oncology Biomarker Working Group. NPJ Breast 
Cancer. 2020 May 12;6(1):16.  

13. Amgad M, Sarkar A, Srinivas C, Redman R, Ratra 
S, Bechert CJ, et al. Joint region and nucleus 
segmentation for characterization of tumor 
infiltrating lymphocytes in breast cancer. In: 
Tomaszewski JE, Ward AD, editors. Medical 
Imaging 2019: Digital Pathology. SPIE; 2019. p. 
20.  

14. Kirillov A, He K, Girshick R, Rother C, Dollar P. 
Panoptic Segmentation. In: Proceedings of the 
IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (CVPR). 2019. p. 9404–13.  

15. Ronneberger O, Fischer P, Brox T. U-Net: 
Convolutional Networks for Biomedical Image 
Segmentation. In 2015. p. 234–41.  

16. van Rijthoven M, Balkenhol M, Siliņa K, van der 
Laak J, Ciompi F. HookNet: Multi-resolution 
convolutional neural networks for semantic 
segmentation in histopathology whole-slide 
images. Med Image Anal. 2021 Feb;68:101890.  

17. Amgad M, Elfandy H, Hussein H, Atteya LA, 
Elsebaie MAT, Abo Elnasr LS, et al. Structured 
crowdsourcing enables convolutional 
segmentation of histology images. Bioinformatics. 
2019 Sep 15;35(18):3461–7.  

18. Amgad M, Atteya LA, Hussein H, Mohammed KH, 
Hafiz E, Elsebaie MAT, et al. NuCLS: A scalable 
crowdsourcing approach and dataset for nucleus 
classification and segmentation in breast cancer. 
Gigascience. 2022 May 17;11.  

19. Calle EE, Rodriguez C, Jacobs EJ, Almon ML, 
Chao A, McCullough ML, et al. The American 
Cancer Society Cancer Prevention Study II 
Nutrition Cohort. Cancer. 2002 May 1;94(9):2490–
501.  

20. Steyerberg EW, Harrell FE. Prediction models 
need appropriate internal, internal–external, and 
external validation. J Clin Epidemiol. 2016 
Jan;69:245–7.  

21. Marcolini A, Bussola N, Arbitrio E, Amgad M, 
Jurman G, Furlanello C. histolab: A Python library 
for reproducible Digital Pathology preprocessing 
with automated testing. SoftwareX. 2022 
Dec;20:101237.  

22. Kitware Inc. large_image. 
https://github.com/girder/large_image.  

23. Gutman DA, Khalilia M, Lee S, Nalisnik M, Mullen 
Z, Beezley J, et al. The Digital Slide Archive: A 
Software Platform for Management, Integration, 
and Analysis of Histology for Cancer Research. 
Cancer Res. 2017 Nov 1;77(21):e75–8.  

24. Macenko M, Niethammer M, Marron JS, Borland 
D, Woosley JT, Xiaojun Guan, et al. A method for 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 19, 2023. ; https://doi.org/10.1101/2022.01.08.22268814doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.08.22268814
http://creativecommons.org/licenses/by/4.0/


 

normalizing histology slides for quantitative 
analysis. In: 2009 IEEE International Symposium 
on Biomedical Imaging: From Nano to Macro. 
IEEE; 2009. p. 1107–10.  

25. Liu J, Lichtenberg T, Hoadley KA, Poisson LM, 
Lazar AJ, Cherniack AD, et al. An Integrated 
TCGA Pan-Cancer Clinical Data Resource to 
Drive High-Quality Survival Outcome Analytics. 
Cell. 2018 Apr;173(2):400-416.e11.  

26. Amgad M, Atteya LA, Hussein H, Mohammed KH, 
Hafiz E, Elsebaie MAT, et al. Explainable nucleus 
classification using Decision Tree Approximation 
of Learned Embeddings. Bioinformatics. 2022 Jan 
3;38(2):513–9.  

27. Rudin C. Stop explaining black box machine 
learning models for high stakes decisions and use 

interpretable models instead. Nat Mach Intell. 
2019 May 13;1(5):206–15.  

28. Kundu S. AI in medicine must be explainable. Nat 
Med. 2021 Aug;27(8):1328.  

29. Mobadersany P, Yousefi S, Amgad M, Gutman 
DA, Barnholtz-Sloan JS, Velázquez Vega JE, et 
al. Predicting cancer outcomes from histology and 
genomics using convolutional networks. 
Proceedings of the National Academy of 
Sciences. 2018 Mar 27;115(13).  

30. Wei Koh P, Nguyen T, Siang Tang Y, Mussmann 
S, Pierson E, Kim B, et al. Concept Bottleneck 
Models. In: Proceedings of the 37th International 
Conference on Machine Learning, PMLR . 2020. 
p. 5338–48.  

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 19, 2023. ; https://doi.org/10.1101/2022.01.08.22268814doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.08.22268814
http://creativecommons.org/licenses/by/4.0/


 

Table 1. Generalization accuracy for region segmentation and nucleus classification using manual ground truth. Results are 

on testing sets from the internal-external 5-fold cross-validation scheme (separation by hospital). Fold 1 contributed to hyperparameter 

tuning, so it is not included in the mean and standard deviation calculation. MuTILs achieves a high classification performance for 

components of the computational TILs score. Region segmentation performance is variable and class-dependent, with the 

predominant classes (cancer, stroma, and empty) being the most accurate. The region constraint improves nuclear classification 

accuracy by ~2-3% overall, mainly by reducing the misclassification of immature fibroblasts and large TILs/plasma cells as cancer 

(see qualitative examination figure). 

* Classes that contribute to the computational TILs score.  

† Performance for Necrosis/Debris and TILs-dense regions is modest, primarily because of the inherent subjectivity of the task and 

variability in the ground truth. For example, how dense should the infiltrate be to be considered “dense”? Necrotic regions also often 

have TILs infiltrates at the margin or adjacent areas of fibrosis, which are inconsistently labeled as necrosis, stroma, or TILs-dense in 

the ground truth. Nonetheless, classifying cells/material that comprise necrotic regions (neutrophils, apoptotic bodies, debris, etc.) is 

reasonable at higher magnification.  

‡ From the table, it is clear that the model essentially fails to segment normal breast acini at 10x magnification. This failure is likely 

caused by: 1. The low representation of normal breast tissue in the validation data from NuCLS and BCSS datasets; 2. Inconsistency 

in defining “normal,” which is sometimes used in the sense of “non-cancer” (including benign proliferation), and sometimes only refers 

to terminal ductal and lobular units (TDLUs). At high resolution, the distinction between cancer versus normal/benign epithelial nuclei 

is reasonable.  

 

 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std 

Regions at 10x objective (DICE) 

Cancer 84.4 82.1 83 82.8 82.8 82.7 0.4 

Normal ‡ 1.6 2.3 2.1 2.3 2.3 2.3 0.1 

Stroma * 81.3 80.2 81 80.8 81 80.8 0.4 

TILs-dense † 64.8 64 65.3 65.6 65.6 65.1 0.8 

Necrosis/Debris † 64.1 55.6 56.7 57.3 57.1 56.7 0.8 

Empty 83.5 83.5 84 84.2 84.3 84.0 0.4 

Nuclei at 20x objective (AUROC) 

Cancer 96.5 97.2 98 97.4 91.1 95.9 3.2 

Normal ‡  84.6 89.3 80 74.7 82.2 6.3 

Fibroblast * 90.4 93 91.8 93.5 85.8 91.0 3.6 

Lymphocyte * 93.3 92.3 93.6 91.9 94.2 93.0 1.1 

Plasma Cell * 80.9 73.5 88 78.9 85.8 81.6 6.6 

Debris † 82.8 84.9 80.1 93.9 57.1 79.0 15.7 

Micro-avg. 91.9 92.2 95.6 93.5 88.9 92.6 2.8 

Macro-avg. 85.4 83.9 86.3 85.2 75.3 82.7 5.0 

Nuclei without region constraint (AUROC) 

Micro-avg. 90.5 91.1 95.4 91.9 86.2 91.2 3.8 

Macro-avg. 84.5 78.1 86.9 81.5 73.1 79.9 5.8 
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Table 2. Cox regression survival analysis of the predictive value of visual and computational TILs scores for breast cancer progression. The analysis was restricted to slides 

where visual TILs scores were available for a fair comparison. In the multivariable setting, each metric was part of an independent model along with clinically-salient covariates. We 

controlled all multivariable models for patient age and AJCC pathologic stage I and II status. Additionally, we controlled models using the infiltrating ductal carcinoma subset for basal 

genomic subtype status, and we controlled models using the Her2+ subset for infiltrating ductal histologic subtype status. Significant p-values are outlined in bold, using a significance 

threshold of 0.05. The * symbol indicates values < 0.001. Abbreviations used: HR, Hazard Ratio; 95%CI, upper and lower bounds of the 95% confidence interval; C-index, concordance 

index; No., number; Avg, weighted average. 

 

Metric Type 
Univariable Multivariable 

HR 95% CI P-value C-index HR 95% CI P-value C-index 

Infiltrating ductal carcinoma (N=269) 

Visual score  0.466 0.074 2.951 0.418 0.520 0.334 0.039 2.881 0.318 0.681 

No of TILs / Stromal area Global * *  0.287 0.548 * * * 0.321 0.667 

No of TILs / No of cells in stroma Global 0.098 0.004 2.711 0.170 0.546 0.081 0.002 3.428 0.188 0.670 

No of TILs / Total No of cells Global 0.078 * 16.98 0.353 0.526 0.073 * 29.87 0.393 0.667 

No of TILs / Stromal area ROI avg. * *  0.159 0.577 * * * 0.192 0.668 

No of TILs / No of cells in stroma ROI avg. 0.005 * 0.832 0.042 0.600 0.002 * 0.722 0.038 0.675 

No of TILs / Total No of cells ROI avg. 0.001 * 11.56 0.151 0.579 0.001 * 18.33 0.164 0.679 

Her2+ carcinoma (N=156) 

Visual score  0.073 0.001 3.919 0.198 0.581 0.029 * 3.952 0.158 0.725 

No of TILs / Stromal area Global * *  0.039 0.644 * * * 0.011 0.816 

No of TILs / No of cells in stroma Global * * 0.201 0.015 0.673 * * 0.057 0.007 0.813 

No of TILs / Total No of cells Global * * 0.719 0.045 0.621 * * 0.001 0.007 0.800 

No of TILs / Stromal area ROI avg. * *  0.020 0.679 * * * 0.010 0.837 

No of TILs / No of cells in stroma ROI avg. * * 0.010 0.005 0.704 * * 0.002 0.003 0.837 

No of TILs / Total No of cells ROI avg. * * 0.014 0.021 0.660 * * * 0.006 0.833 
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a.                                                                                                    b. 

          
c.                                                                                   d. 

 
 

Fig 1. Construction of the PanopTILs dataset to facilitate computational scoring of TILs. a. Components of various variants of 

the computational TILs score. b. Logo of our Panoptic segmentation dataset, PanopTILs, which reconciles and expands the region-

level and cell-level annotations from the BCSS and NuCLS datasets to better suit the task of densely mapping the tumor 

microenvironment for TILs assessment. PanopTILs is openly accessible at: sites.google.com/view/panoptils. c. The result of 

combining annotations from the BCSS tissue region annotation dataset with the NuCLS nucleus segmentation dataset. This variant 

of PanopTILs was used for calculating validation accuracy metrics for our panoptic segmentation model. d. Expansion of  
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Fig 2. MuTILs model architecture. a. The MuTILs architecture utilizes two parallel U-Net models to segment regions at 1 MPP and 

nuclei at a 0.5 MPP resolution. Inspired by HookNet, we passed information down from the low-resolution branch to the high-resolution 

branch by concatenation. Additionally, region predictions from the low-resolution branch are upsampled and used to constrain the 

nucleus predictions in the high-resolution branch. The model was trained using a multi-task loss that gives equal weight to ROI and 

HPF region predictions, unconstrained HPF nuclear predictions, and region-constrained nuclear predictions. b. Region predictions 

are used to constrain nucleus predictions to enforce compatible cell predictions through class-specific attention maps. Attention maps 

are derived by modeling the nucleus class prior probability as a linear combination of the corresponding region probability vector. 

User-defined manual compatibility kernels mask out incompatible predictions. 
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Fig 3. Reconciliation of manual region and nucleus ground truth to produce the PanopTILs validation dataset. Each high 

power field from the pathologist-corrected single-rater NuCLS dataset was padded to 1024x1024 at 0.5 MPP resolution (20x objective). 

As a result, each ROI had region segmentation for the entire field (from the BCSS dataset) and nucleus segmentation and classification 

for the central portion (from the NuCLS dataset). Note that the nucleus ground truth contains a mixture of bounding boxes and 

segmentation. The fields shown here are from the testing sets.  
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Fig 4. Sample whole-slide predictions from trained MuTILs models. The predictions show full WSI inference for illustration. Our 

analysis, however, only admitted the 300 most informative ROIs to the MuTILs model to ensure a constant run time of less than two 

hours per slide for practical applicability. ROI “informativeness” was measured at a very low resolution (2 MPP) during WSI tiling and 

favored ROIs with more peritumoral stroma.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 19, 2023. ; https://doi.org/10.1101/2022.01.08.22268814doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.08.22268814
http://creativecommons.org/licenses/by/4.0/


 

 

 
 

Fig 5. Correlation between visual and computational TILs assessment scores. Visual scores were obtained from one pathologist 

using clinical scoring recommendations from the TILs Working Group. MuTILs is a concept bottleneck model with a strong emphasis 

on explainability; it segments individual regions and nuclei, which are then used to calculate the computational scores. Two variants 

of computational scores were obtained: either the number of stromal TILs was divided by the stromal region area, or the number of 

TILs was divided by the total number of cells within the stromal region. We then calibrated these numbers to the visual scores for easy 

comparison. While this scatter plot shows the calibrated scores, the correlation coefficients were obtained using the raw scores to 

avoid optimistic results. Each point represents a single patient. Points in red are outliers that contributed to the correlation metric but 

not to the calibration. a. Computational scores are computed globally by aggregating data from all ROIs. b. Computational scores are 

computed independently for each ROI, and the slide-level score is calculated by weighted averaging. 

 

 
 

Fig 6. Kaplan-Meier analysis of visual and computational TILs assessment in predicting breast cancer progression. A 

threshold of 10% was used for visual and calibrated computational scores consistent with some of the research literature. Note that 

there is no recommended threshold for stromal TILs scoring, and so these results should be considered along with continuous results 

used in Cox regression modeling. For comparison, we also included a metric that looks into the predictive value of TILs when the 

denominator includes all cells, not just those in the stromal compartment.  All metrics were obtained by weighted averaging of 

computational scores from 300 ROIs.  
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Fig 7. Qualitative examination of sample testing set predictions and sources of misclassification. The training dataset 

contained several subclassifications for region and nuclear data with unreliable or variable ground truth. Hence, we assessed 

performance at the level of grouped classes with reliable ground truth (tumor, stroma, TILs) at evaluation. The low representativeness 

of normal breast acini in training makes raw MuTILs predictions unreliable for differentiating normal and cancerous epithelial tissue 

(bottom row). This issue can be mitigated by expanding the training set or downstream modeling of architectural patterns, which is 

beyond the scope of this work. Note how the region constraint improves nuclear classifications (third vs fourth column). This 

improvement is most notable for large TILs (first row) and immature fibroblasts (second row), which are misclassified as cancer without 

the region constraint. 
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