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Abstract
The unprecedented SARS-CoV-2 global sequencing effort has suffered from an

analytical bottleneck. Many existing methods for phylogenetic analysis are designed for sparse,
static datasets and are too computationally expensive to apply to densely sampled, rapidly
expanding datasets when results are needed immediately to inform public health action. For
example, public health is often concerned with identifying clusters of closely related samples,
but the sheer scale of the data prevents manual inspection and the current computational
models are often too expensive in time and resources. Even when results are available, intuitive
data exploration tools are of critical importance to effective public health interpretation and
action. To help address this need, we present a phylogenetic summary statistic which quickly
and efficiently identifies newly introduced strains in a region, resulting clusters of infected
individuals, and their putative geographic origins. We show that this approach performs well on
simulated data and is congruent with a more sophisticated analysis performed during the
pandemic. We also introduce Cluster Tracker (https://clustertracker.gi.ucsc.edu/), a novel
interactive web-based tool to facilitate effective and intuitive SARS-CoV-2 geographic data
exploration and visualization. Cluster-Tracker is updated daily and automatically identifies and
highlights groups of closely related SARS-CoV-2 infections resulting from inter-regional
transmission across the United States, streamlining public health tracking of local viral diversity
and emerging infection clusters. The combination of these open-source tools will empower
detailed investigations of the geographic origins and spread of SARS-CoV-2 and other
densely-sampled pathogens.

Introduction
The massive scale of the SARS-CoV-2 sequencing effort has revealed deep

inadequacies in our current methodology for phylogenetic analysis. Tools designed to work on
small, sparse, static datasets have adapted poorly to the demands of a pandemic where tens of
thousands of new genome sequences are generated and shared daily7. Some have made
progress by adopting generalized statistical methods built for large data such as random forest
regression14, but scalable phylogenetic solutions need to be developed. While our group, among
others, has laid the groundwork for pandemic-scale phylogenetics 3,12,13,20,23,25, much remains to
be done to translate evolutionary inferences to public health inference and response.

The unprecedented scale of the genomic sequencing effort requires novel approaches to
evolutionary, medical, and public health inference. Some groups have developed
phylogenetically informed statistics for identifying mutations associated with increased
transmissibility and other fitness-related parameters16,24. In other cases, simple methods- such
as the assaying of groups of identical samples- have been successfully applied to identify
superspreader events and similar infection clusters2,6. Unfortunately, many analyses still lack
scalable or phylogenetically informed approaches.

The intersection of geography and phylogenetics, phylogeography, has often relied on
heavily downsampled and static trees or limiting their analysis to early stages of the
pandemic4,5,9,10,11,18. While useful for assessing transmissions between countries and major
introductions, downsampling limits our ability to assign specific samples to regional infection
clusters or identify clusters of potential interest. Even with heavy downsampling, performing
these analyses often required significant computational power, time and specialized resources15.
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Additionally, much of these analyses are not readily interpretable for an efficient public health
response, lacking intuitive visualization and data exploration tools. There is therefore a
significant need for fast, automated, scalable and interpretable phylogeographic approaches for
an effective public health response to emerging situations.

To address this need, we present here a phylogenetically-informed summary heuristic
(the “regional index”), implementation (matUtils introduce), and data exploration and
visualization tool (Cluster Tracker: https://clustertracker.gi.ucsc.edu/) for identifying introduction
events and associated clusters of descendants in a given region. Our approach can be used to
efficiently identify infection clusters and evaluate transmission dynamics across dozens of
regions and millions of samples. Results obtained using this method are congruent with widely
applied analyses and are accurate when applied to simulated data. Our visualization platform
enables researchers and public health workers to explore new SARS-CoV-2 introductions
across the USA, updated daily with all available global public data. This work will empower real
time research and public-health applications of genomic epidemiology during the SARS-CoV-2
pandemic and beyond.

Results and Discussion
Cluster Concept and Definitions

A cluster is a set of closely-related samples from the same region and descended from a
common ancestor with a regional introduction event. In the phylogenetic tree, they appear as a
set of leaves (samples) from a given geographic region that are descended from a shared
common ancestor. A cluster may be monophyletic or paraphyletic, depending on whether some
descendants of the cluster common ancestor left the geographic region. We consider location,
or region, as a categorical state across the phylogenetic tree. A regional transmission event is
where a child node is from a different region than the parent node. These patterns reflect cases
of infected travelers moving between regions, followed by local transmission and eventual
sampling of a number of descendent infections.

A Heuristic for Identifying Introductions and Clusters
The core of our heuristic is the “regional index”, which is a weighted summary of the

composition of descendants of a node of a phylogenetic tree, roughly corresponding to our
intuition that the virus represented by that node was inside or outside a specific area. It is
defined as

𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝐼𝑛𝑑𝑒𝑥 (𝐶) =  1

1+
𝐷𝑖
𝐿𝑖
𝐷𝑜
𝐿𝑜

where “Li” is the number of downstream leaves that are in a given region, “Di” is the total branch
length to the nearest leaf which is in that region, and “Lo” and “Do” are the same for out-of-region
leaves (Figure 1). On a tree inferred using maximum-parsimony, total branch length is
equivalent to the distance in mutations between the query node and the descendant leaf.
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Figure 1: Example Index Calculation. The focal node at the base has an index value below
0.5, suggesting that it is out-of-region by our heuristic. Our introduction point is therefore along
the long branch below the root, and the ancestor of the downstream in-region sample cluster
would have existed along that branch.

We apply additional rules to handle cases where C is undefined. When a descendent
leaf is genetically identical to the internal node and is in-region, C is 1. Similarly, when a
genetically identical leaf is out-of-region, we treat C as 0. When such identical children exist
both in and out of the region, we treat the node as in-region, as some infection with this genome
must have existed in that region. We do not apply this index calculation to leaf nodes, which do
not have children, and assume simply that the leaf is either in or out of the region as a given.
This requires that each leaf included in the analysis be accompanied by accurate geographic
location metadata.

This heuristic has several useful behaviors. For example, a sample identical to a specific
internal node will always confer complete confidence about the location of that node, as we
have sampled one genome that is identical to the ancestor directly. This can effectively identify
nested clusters, where a new group of infections resulting from a regional introduction in turn
produce clusters in other regions. It also accounts for the number of leaves downstream in our
heuristic, on the assumption that introductions of a strain from one region to another require the
lineage to be locally circulating in the origin region, but not necessarily lead to significant local
transmission in the target region. This reduces the overall number of introductions we infer. Our
heuristic strikes a balance between these two principles, allowing us to efficiently analyze a
large phylogenetic tree with minimal metadata.

Once indices for a given region have been calculated for each node, the second step is
to identify clusters of samples putatively associated with an introduction. This is accomplished
on a per-sample basis. The path from the sample to root is traversed and the indices for each
ancestor being in the focal region is noted. Generally, the index declines from 1 to 0 along the
ancestry path from leaf to root. The introduction point is called where the index for an ancestor
being in-region is below 0.5, or the root, whichever is encountered first.
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As this heuristic is independent and specific to a region, it can be computed for an
arbitrary number of regions across a single tree in parallel. When multiple regions are included,
origins of putative clusters can be identified after introduction points are found by examining
index scores across all other regions for the origin node and noting the region with the highest
index. This metric can be calculated for one region of any size in a single post-order traversal
with dynamic programming (see Methods), which makes it very fast to compute even on
extremely large phylogenies with expansive regions.

Evaluation of Our Heuristic Method
Our implementation is part of the matUtils online phylogenetics package13 and uses the

efficient mutation annotated tree protocol buffer format and associated library23. To test runtime
efficiency conditioned on a tree, we applied random subsampling and recorded time to compute
our heuristic for a single region. We found that it takes less than forty five seconds on a single
thread even for trees of more than two million samples (Supplementary Table 2).

To validate our results, we performed simulations consistent with viral evolutionary
dynamics with inter-region dispersal events using the tools VGSim20 and phastSim12 (see
Methods). We found that our heuristic with default parameters recovered the true geographic
location of internal nodes up to 99.8% of the time under realistic conditions for SARS-CoV-2
across an exactly correct bifurcating tree. We further attempted to model our ability to correctly
recover clusters on a simulated tree with collapsed branches and realistic mutation rates for
SARS-CoV-2. In comparing the clusters we recovered with the true set, we obtained an
adjusted Rand index of up to 0.999. This suggests that our approach is generally quite accurate,
though high migration rates or extremely low mutation rates can be confounding, as these
scenarios are associated with minimal geographic and phylogenetic signal respectively
(Supplementary Table 1; See Methods). More practically, this implies that our method will
perform best when within-region transmission is substantially more common than
between-region transmission (as in e.g., country-level or state-level analyses).

To compare our results to widely used but much slower (days to months) analyses, we
used our method to replicate a published phylogeographic analysis for the SARS-CoV-2
pandemic. Alpert et al1 used Bayesian phylogeography to identify 23 distinct introductions of
B.1.1.7 into the United States as of March 4th 2020. We obtained their subsampled tree and
applied our heuristic using country labels to define the relevant regions (see Methods). With our
method, we exactly replicated their identified clusters (Adjusted Rand Index 1.0). Alpert et al1

additionally predicted “sink” states, or the state to which each of the 23 introductions initially
transmitted. We find that for all 23 clusters, samples in the identified sink state are closest or
tied for closest in branch length to our inferred introduction point. This suggests that our
approach can produce results congruent with more complex statistical models in a fraction of
the time.
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Figure 2: Global Distribution of SARS-CoV-2 Transmission Clusters. A: The log count of
clusters detected across each of the 102 countries surveyed. The number of clusters detected is
largely a function of total local sequencing effort. B: The five countries with the highest
representation in the data. The USA and England together constitute more than half of all
available sequences. C: Cluster sizes are consistent across countries. Most clusters are small,
implying most newly introduced SARS-CoV-2 lineages quickly die out.

Global SARS-CoV-2 Transmission Dynamics and Infection Clusters
Using our method, we traced transmission clusters in 102 countries from across the

world (Figure 2A) using the global parsimony phylogenetic tree, built from 5,563,847 available
sequences on GISAID21, GenBank19, and COG-UK25 on 11-28-2021 (see Methods). Cluster size
is highly skewed (Figure 2C), with approximately 20% of distinct regional clusters containing
89% of samples. This suggests that the majority of novel introductions do not lead to the
establishment of a new locally-circulating strain, consistent with previous findings5.

Global contributions to sequence repositories are notably biased, with 51% of all
samples belonging to either the USA or the United Kingdom (Figure 2B). This is a significant
restriction on global transmission analysis, especially as the inference of the origin of a cluster is
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highly dependent on robust sequencing at the origin (see Methods). We therefore narrowed the
next step of our analysis to the United States, which has robust and relatively comprehensive
sequencing across each state as well as detailed state-level metadata for the vast majority of
available samples.

SARS-CoV-2 Transmission Into and Across the USA
We identified more than three hundred thousand distinct state-level SAR-CoV-2 infection

clusters in the United States over the course of the pandemic, as of November 2021 (Figure 3).
Approximately 84% of these clusters have an assigned origin using our method (see Methods).
Only 7% of our clusters appear to be of international origin, with the majority reflecting
transmission within the USA. Mexico and Canada are among the most common international
origin regions, in line with expectations given their long land borders (Supplementary Table 3).
England is also relatively common, likely because it is very well sampled. This indicates that it is
possible that some clusters originate from less sampled intermediate regions and are assigned
to the UK or other highly sampled locations. This suggests that relative sequencing effort in a
given region is an important bias with respect to accurately identifying the origins of newly
identified clusters and results should be interpreted with caution. International introductions
rates are correlated with higher total sampling and therefore population size, particularly for
California, Texas, New York, Massachusetts, and Florida (Figure 3B).
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Figure 3: International and Interstate Introductions across the USA. A: The log count of
clusters identified across the continental USA. California, Texas, Florida, and New York are
associated with the greatest number of unique clusters. B: The proportion of international
introductions in each state plotted against total samples collected in that state. This relationship
is largely linear, reflecting the correlation between sampling, population size, and levels of
international travel. PR (Puerto Rico) exhibits relatively more international introductions for its
sampling than other territories and states of the United States. C: The distribution of cluster
sizes across states. These are largely consistent with clusters identified at the international
level.

Within the USA, introductions come from a mix of neighboring states and high-population
travel centers (Supplementary Table 3). We attempt to mitigate sampling biases- resulting from
larger populations, higher case rates, increased sequencing, or other factors that are not
specific to geography- by calculating a log-fold enrichment for rates of introduction from a given
source region (see Methods; Figure 4). Note that while log-fold enrichment may reveal spatial
relationships, it does not reflect the absolute importance of a region as a source or sink of viral
transmission.
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Figure 4: Log-Fold Interstate Transmission. A: Interstate introductions of COVID-19 into
California are relatively more likely to originate on the West Coast, particularly from Nevada. B:
Interstate introductions of COVID-19 into Illinois are relatively more likely to come from the
immediate surroundings, particularly Iowa and Missouri.

As with results from international introductions, we also find an enrichment for
introductions that originate in geographically adjacent states. Log-fold enrichment is more than
five times greater for neighboring states than for non-neighboring states within the USA
(p=1.5e-117, Mann-Whitney U). Simple counts of inferred introductions are also enriched to a
lesser extent between geographically adjacent states (p=2.2e-16, Mann-Whitney U). This
suggests that SARS-CoV-2 transmission over interstate land borders is a major mechanism for
spread within the USA. These results are largely in line with previous results in other viruses8
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and SARS-CoV-222, suggesting that this heuristic is capturing and summarizing true geographic
structure within the global SARS-CoV-2 phylogenetic tree.

A Daily-Updated Website To Explore SARS-CoV-2 Clusters in the USA
To make the results of this work broadly useful for the research and public health

community, we have developed a visualization and exploration platform. Cluster-Tracker is a
publicly-available, daily-updated website displaying the latest results for applying our heuristic to
sequences collected from across the United States of America interactively
(clustertracker.gi.ucsc.edu; see Methods; Figure 5). Cluster-Tracker is open-source with a
flexible backend pipeline that allows any user to construct a similar site for any set of regions
they have geographic information and sample identification for
(https://github.com/jmcbroome/introduction-website).

Figure 5: the Cluster-Tracker site. The Cluster-Tracker tool is updated daily at
clustertracker.gi.ucsc.edu. Users can interactively explore the latest results of our heuristic
applied to each of the continental United States, by sorting the interactive table, selecting states
to focus on in the map, and using the Taxonium tree-viewing platform to examine clusters of
interest in detail.

Cluster Tracker is composed of two primary sections and some descriptive text (Figure
5). The first section is an interactive map of the United States. In the default view, this map is
colored by the number of clusters detected across each state throughout the course of the
pandemic. The true number of introductions into a given region is likely to be substantially larger
because many small clusters will not be sampled by ongoing viral surveillance efforts, but major
local transmission clusters should be represented. By clicking on a state, the site changes to a
view specific to that state. In this view, the map is colored by the log-fold enrichment of
introductions from each other state to that state.
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The second section is a sortable, searchable table display of the highest priority clusters.
In the default view, these are the top 100 clusters overall as sorted by “growth score”. We define
“growth score” as the square root of the number of samples divided by the number of weeks
since the introduction occurred. The goal of this metric is to weight clusters by relative size and
how recently they entered a given area, so that clusters of interest to public health appear first.
When a state is selected, this table changes to the top 100 clusters obtained from that particular
state. Basic information including clade, lineage, the earliest and latest dates of detection, and
inferred origins are displayed for each cluster. The “inferred origin confidences” column is the
highest or tied for highest regional index among all other regions for the parent node to the
cluster origin, with a floor of 0.05 below which the cluster is simply marked “indeterminate”. The
“inferred origins” column is the regions which match these scores, and generally represents our
best guess at the origin of this cluster. The last column of the table contains links to the
Taxonium viewer (https://github.com/theosanderson/taxonium) which will automatically render
the full tree and zoom to the cluster of interest when opened (Figure 6). Full results and the
taxonium protocol buffer file, which encodes the tree and all cluster IDs, are available to be
downloaded at the bottom of the page.
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Figure 6: Example clusters in the taxonium viewer. (A) An example cluster in Texas (circled
in red) that is inferred to have originated from California (Regional Index = 0.94). There are
many samples from California closely related to the cluster’s common ancestor, supporting
California as the most likely origin. (B) A different, much larger, 9,533 leaf cluster in California.
This represents a lineage of SARS-CoV-2 commonly circulating in California, descended from
one of the original introductions of the Delta variant into California in mid June 2021.
Descendants from this cluster have transmitted to other regions many times, but members of
this cluster have been found in California as recently as December 7th 2021.

The goal of this resource is to make cluster identification, exploration, and prioritization
more accessible and digestible for public health offices and policy makers. A significant
roadblock for public health action is the sheer quantity of daily new data and the speed with
which we can draw inferences from these data. Cluster-Tracker can assist exploration and
prioritization of the latest genome sequences, quickly identifying the clusters most likely to be of
interest for public health action for a given region. Our construction pipeline is flexible and can

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 10, 2022. ; https://doi.org/10.1101/2022.01.07.22268918doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.07.22268918
http://creativecommons.org/licenses/by-nc-nd/4.0/


be applied for any set of regions (e.g., county-level), allowing groups anywhere to construct web
interfaces for intuitive SARS-CoV-2 phylogenetic data exploration.

Conclusion
The pandemic has made the need for rapid and powerful tools to unlock the potential of

pandemic-scale genomic epidemiology. The method we developed and the efficient software
package we provide will empower researchers worldwide to make fast inferences from vast
sequence datasets. Our results have revealed geographic structure at scales below the level of
pango-lineage14 within the global SARS-CoV-2 phylogeny. We have provided tools and
resources with which to explore this geographic structure and draw useful inferences for specific
areas. Additionally, to empower public health officers and the public to explore the spread of
SARS-CoV-2 across the USA, we developed an accessible open-source interactive interface for
our results, which can automatically compute and display introductions and clusters with each
update to the global phylogenetic tree. Our work can support public health groups across the
world to quickly understand and apply insights obtained from the latest genomic data.

Methods

matUtils Implementation
We implemented a calculation of this heuristic as a part of our online phylogenetics

package, matUtils, under the command “matUtils introduce”13 (https://github.com/yatisht/usher).
Our implementation uses dynamic programming based on a post-order traversal to compute the
regional index for each node in the tree in a single pass for each region (equation 1). This is
because the four parameters which define regional index- distance to the nearest descendent
and total descendents for in-region and out-of-region- can be computed from these same
metrics for each child of a node plus the branch length to each child. The total number of leaves
descended from a query parent node is the sum of all leaves descended from each of their
children, and the shortest distance traversed to a leaf is the minimum of each child’s minimum
distance traversed plus the branch length between that child and the query parent. Therefore,
by computing it first for nodes with only leaf children, then progressively deeper internal nodes,
we only have to reference the children of each internal node and check their stored values
instead of having to traverse from each node. This step is optionally parallelized across distinct
regions, if multiple regions are passed.

The secondary step is an ancestry traversal for each sample in the tree, identifying the
most recent ancestor which has a regional index below the set threshold, which is inferred to be
the introduction point for this lineage. Once introduction points have been inferred for each
sample, samples are grouped by shared introduction points into clusters, basic statistics and
information are computed, and results are reported.

Ultimately, our implementation can compute this heuristic, identify clusters, and report all
results in less than two minutes for a tree containing more than two and a half million samples
(Supplementary Table 2). The speed of calculation is a major attraction of this heuristic
approach over more complex Bayesian models. Calculating in minutes on minimal computing
resources makes this method accessible and applicable to update results daily, identifying
clusters and introductions as they occur and new data is uploaded globally. Accordingly, this
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implementation underlies our website Cluster-Tracker, which is updated with all new uploaded
data each day and a recalculation of our heuristic.

Handling Nested Clusters and Unstructured Regions
We implemented a few additional parameters that can be used to control behavior at the

secondary cluster identification step. Once that is useful is setting a short-range maximum index
requirement- that is, looking ahead at some additional number of ancestors and ensuring that
each of those have a lower regional index than the intended ancestor node. Setting this
parameter causes small nested clusters to be merged into larger overarching clusters. Another
useful parameter is a minimum required branch length between the ancestor inferred to be
in-region to its parent; if the branch length is less than the minimum, then the parent instead of
the in-region node is inferred as the introduction point. Setting this parameter allows sibling
clusters to be merged if both of their branch lengths are below minimum; this also resolves
unstructured parts of the tree where large polytomies of identical samples with branch length 0
both in and out of a region are included.

Prioritization and Bias Handling
Another significant point of consideration is cluster prioritization. This cluster

identification method is based solely on the phylogenetic tree and simple sample-region
association, and while this makes it lightweight and flexible, identifying clusters which died out
locally months ago is not of use to public health offices doing real-time transmission cluster
tracking. We therefore in our implementation sort the output by a “growth score”, defined as the
square root of the number of samples associated with the cluster divided by the time in weeks
from the oldest sample in the cluster to the current date plus one. This means that large, recent
clusters will appear at the top of any output tables, and makes the method more easily
accessible when thousands of clusters are being inferred simultaneously.

When using this method to examine inter-region transmission dynamics, we rely on
comparable and significant levels of sequencing in order to identify introduction origins.
Intuitively, the less sequencing is performed in a region, the less likely we are to recognize
sequences from that region when they appear in another region. We can compensate for this
bias to an extent by calculating log-fold enrichment of introductions between regions. This is
computed as

𝐿𝑜𝑔 𝐹𝑜𝑙𝑑 𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 (𝐿𝐹𝐸) = 𝑙𝑜𝑔
10

(
 𝐼𝑎𝑏×𝐼𝑥𝑥  

 𝐼𝑎𝑥×𝐼𝑥𝑏 )

Where Iab is introductions from region A to region B, Ixx is introductions from any region to any
region, Iax is introductions from region A to any other region, and Ixb is introductions from
anywhere to region B. This computation can remove biases in rates of detected introduction
which would apply to any pair of regions, but requires many regions to be computed as points of
comparison. This score is used to color the map on Cluster-Tracker when a state is selected
and has a very strong correlation with geographic distance.
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Simulation for Validation
To assay the performance of our heuristic, we fully simulated a pandemic phylogeny with

VGsim20 and phastSim12. From the resulting mutation-annotated tree, we calculated true node
region states based on VGsim’s migration event output and applied our heuristic with matUtils13.
We then computed accuracy as the proportion of internal nodes which have a heuristic value
above 0.5 for the true state. Leaves are excluded from this calculation as they are taken as an
input in our heuristic and will always be 100% accurate.

For our specific results, we simulated a one-million-leaf SARS-CoV-2 tree under a simple
model with two equivalently-sized regions with an even rate of migration between them, no
strain or site selection and complete immunity for recovered individuals (Supplementary Table
1). We included a lockdown parameter starting at 5% infected and ending at 1% infected, with a
10-fold reduction in transmissivity under lockdown, and a sampling multiplier of 0.2 in order to
deepen the tree by effectively extending the time for one million samples to be collected.

ARI (Adjusted Rand Index) and IAC (Internal Assignments Correct) are our quality
metrics. ARI represents how well our method correctly groups samples into true clusters
descended from a single introduction event. ARI performs best when migration is low, leading to
large and clean clusters which are easily separated heuristically, and performs somewhat better
when scale is increased. IAC is the proportion of internal nodes which are assigned to the true
region by our heuristic across the bifurcating tree. It is computed on the correct bifurcating tree
because collapsing true nodes from different regions leads to nodes that are naturally
indeterminate. IAC is generally robust, only performing slightly worse with an increased
migration rate, likely as deeply set internal nodes tend towards indeterminacy with high
distances to many leaves across different regions. This suggests that the primarily limitation of
our heuristic is simply the number of mutations available to distinguish samples from across
varying regions rather than any structural or fundamental issues.

All code for this simulation is available as a modular and reproducible Snakemake
pipeline at github.com/jmcbroome/pandemic-simulator.

Global Phylogenetic Tree Construction
At UCSC we maintain a large phylogeny of all GISAID21, GenBank19, and COG-UK25

sequences using the script
https://github.com/ucscGenomeBrowser/kent/blob/master/src/hg/utils/otto/sarscov2phylo/update
Public.sh and the UShER online phylogenetics suite12,21. Updates are performed daily by
obtaining all newly uploaded sequences from each database and placing them on the previous
day’s global phylogenetic tree with UShER (see McBroome et al)13.Starting with our phylogeny
updated on 11-28-2021, we pruned all samples with long branch lengths and path lengths using
the matUtils parameters --max-branch-length 45 and --max-path-length 100 and performed a
round of optimization with an SPR radius of 8. The resulting phylogeny contained 5563847
samples with a total tree parsimony of 4847954.

Computing USA state transmission
We obtained the latest mutation-annotated phylogenetic tree representing the entirety of

all public samples and all samples available on GISAID on 11-28-2021. As the standard format
for publicly uploaded SARS-CoV-2 sequence identifiers is
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“Country/(Area)-CollectingAgencyInfo/Year|Date”, we extracted sample labels for samples in the
USA by identifying samples with names beginning with “USA/“ and then extracting the two-letter
state code, if it matches with a two-state letter code. This resulted in 1764019 labeled samples
belonging to the USA. Samples from outside the USA were labeled by country; countries and
ambiguous labels with less than 500 samples in GISAID and public data were excluded and
their samples removed. Samples from “mink” were additionally excluded as they may not be
from human sources. The resulting tree contained 5237796 of the total of 5563847 samples
available, reflecting more than 94% of all SARS-CoV-2 genomic data collected and incorporated
to date.

We applied matUtils introduce with default parameters to this tree and sample set and
produced the full by-sample output. After computing basic statistics, we calculated log-fold
enrichment of introductions between all pairs of states, and a selection of other countries to and
from the USA. All code for this paper is provided at
https://github.com/jmcbroome/cluster-heuristic).

Cluster-Tracker Website Development
All relevant javascript and some example data files are provided at

(https://github.com/jmcbroome/introduction-website). This github includes a brief description of
how to set up a local test site and run the backend pipeline for generating new results to display
for your regions of interest. It is based on Leaflet (https://leafletjs.com/) and DataTables
(https://datatables.net/) for the primary view, and includes links to the Taxonium tree viewer
(https://taxonium.org/) for detailed cluster exploration.

We include Python scripts to create the backend data for the website display, contained
in the “data” directory. This includes two versions of the primary pipeline, one specific to the
United States which fills in many default parameters and uses data included in the repository,
and one more flexible pipeline which given a tree, labels, and a geojson can create an
equivalent website for any set of regions.

Comparison with Published Studies
To compare our approach to that of Alpert et al 20211, we retrieved the Auspice JSON

they used to generate Figure 3 from (https://github.com/grubaughlab/CT-SARS-CoV-2) and
obtained table S3 from their supplementary data online, which contains cluster labelings for
samples from the tree represented by the JSON. We converted the Auspice JSON to the
UShER MAT protobuf format using python. We labeled all samples in the resulting tree by their
country of origin and ran matUtils introduce with default parameters. The resulting labels were
compared to the cluster labels presented in table S3 and the Adjusted Rand Index was
computed across all labeled samples with scikit-learn16. We performed this analysis twice- once
including all samples in their tree from any region and once excluding samples from the USA in
their tree that were excluded from their clusters. The first method resulted in an ARI of 0.9 and
the second a perfect 1.0; this discrepancy results from a single difference where a pair of large
clusters, sibling to one another, are merged by our results when samples excluded from their
clusters are included in our analysis. This is because a sample identical to the parent node of
these two sibling clusters from the USA is excluded from Alpert et al’s 1 clusters. In any case, the
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clusters we identify are highly concordant with Alpert et al’s1 results. All code for this analysis is
available on (https://github.com/jmcbroome/cluster-heuristic).
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