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Abstract 

The diagnostic rate of Mendelian disorders in sequencing studies continues to increase, 

along with the pace of novel disease gene discovery. However, variant interpretation in novel 

genes not currently associated with disease is particularly challenging and strategies 

combining gene functional evidence with approaches that evaluate the phenotypic 

similarities between patients and model organisms have proven successful. 

A full spectrum of intolerance to loss-of-function variation has been previously described, 

providing evidence that gene essentiality should not be considered as a simple and fixed 

binary property. Here we further dissected this spectrum by assessing the embryonic stage 

at which homozygous loss-of-function results in lethality in mice from the International 

Mouse Phenotyping Consortium, classifying the set of lethal genes into one of three 

windows of lethality: early, mid or late gestation lethal. 

We studied the correlation between these windows of lethality and various gene features 

including expression across development, paralogy and constraint metrics together with 

human disease phenotypes, and found that the members of the early gestation lethal 

category show distinctive characteristics and a strong enrichment for genes linked with 

recessive forms of inherited metabolic disease. 

Based on these findings, we explored a gene similarity approach for novel gene discovery 

focused on this subset of lethal genes. Finally, we investigated unsolved cases from the 

100,000 Genomes Project recruited under this disease category to look for signs of 

enrichment of biallelic predicted pathogenic variants among early gestation lethal genes and 

highlight two novel candidates with phenotypic overlap between the patients and the mouse 

knockout. 
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Introduction 

The rate of molecular diagnosis through genomics approaches continues to improve. 

However, the diagnostic yield for Mendelian disorders varies significantly, ranging from 25 to 

58%1,2 depending on the age of the proband, the type of disorder, the criteria for patient 

inclusion (e.g. absence of a clear clinical diagnosis, previous attempts to provide a molecular 

diagnosis) and the availability of sequence data from family members e.g. familial versus 

sporadic cases. Despite this progress, a considerable proportion of patients remain without a 

diagnosis. Potential strategies to address the challenge of undiagnosed patients and 

advance our understanding of the molecular basis of these disorders include but are not 

limited to: i) identifying novel Mendelian disease genes3, ii) developing experimental and 

computational approaches to assess the pathogenicity of variants of unknown significance in 

known disease genes, iii) considering expansion of the phenotype of known disease genes4, 

iv) investigating noncoding, regulatory variants, v) assessing the contribution of structural 

variation5, vi) investigating somatic mosaicism and, vii) exploring alternative modes of 

inheritance, i.e. digenic or multigenic2. 

With regard to the first approach, the number of genes currently known to be associated with 

rare disorders comprises 20-25% of the protein coding genome according to OMIM6. There 

are between 200-300 new disease-gene associations published every year7, with many 

more to be uncovered. The number of additional disease-associated genes yet to be 

identified is estimated to be high, up to 1.5-3 times the number of currently known causative 

genes of Mendelian conditions8. 

Combining different sources of information can boost the evidence for new associations. 

Integrating research and clinical datasets has proven to be effective at discovering the 

molecular basis for genetic disorders9,10. Model organism information on viability and cross-

species phenotype comparisons in combination with clinical data constitutes another 

powerful strategy. Some examples include the automatic detection of mouse models for 

human disease and phenotype based variant prioritisation using algorithms such as 

PhenoDigm and Exomiser11-13. Additionally, mouse data on essentiality can be used as a 

discovery and prioritisation tool14,15. We previously developed a gene prioritisation strategy 

focused on neurodevelopmental disorders by integrating evidence of intolerance to loss-of-

function (LoF) variation from multiple resources and bringing in data from large scale 

sequencing programs16. Through this approach combining viability data from mice and 

human cell line screens, we were able to identify a set of developmentally lethal genes, i.e. 

genes not essential for cell proliferation but required for organism development, which were 

enriched for autosomal dominant, developmental disease-associated genes. Investigation of 
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clinical cases with de novo variants in developmental lethal genes and phenotypic overlap 

between the knockout mouse and affected individuals led us to prioritise a set of 9 candidate 

genes. Two of these genes have since been validated17,18. 

To improve and expand these successful strategies to other types of disorders, here we 

again leverage evidence from high-throughput mouse phenotype screens conducted by the 

International Mouse Phenotyping Consortium (IMPC) to further explore the spectrum of 

intolerance to LoF variation. For genes with null alleles that result in a lethal phenotype in a 

primary viability screen (i.e. no live homozygous animals detected at weaning), the IMPC 

performs a secondary embryo viability screen to determine a ’window of lethality’ (WoL). 

These WoL were defined by examining the survival of homozygous null mutants at up to four 

embryonic developmental time points: embryonic day (E) 9.5, E12.5, E15.5, and E18.5, with 

the WoL being the interval between the last stage at which homozygous null embryos are 

identified and the next latest examined time point15. In the present study we further dissected 

this set of lethal genes in the mouse with the primary aim of investigating how they can 

inform human disease gene discovery.  

First, we explored these WoL and show how they relate to essentiality inferred from human 

cell proliferation assays, gene expression across development, various intolerance to 

variation metrics and duplication events. Secondly, we investigated these WoL in the context 

of human Mendelian disease and found that the set of early-gestation lethal genes in the 

mouse shows a strong correlation with autosomal recessive disease associated genes, in 

particular those involved in inherited metabolic disorders, resulting mainly from enzyme 

deficiencies19. Thirdly, we built a classifier to predict new early-gestation lethal genes and 

developed a strategy using gene similarity to biallelic inborn errors of metabolism genes 

(BIEM), a broad category of genes that function in metabolism and impact, or are impacted 

by most cellular processes20 and describe new candidate genes for these type of disorders. 

Finally, we explored unsolved metabolic disorder cases from the 100,000 Genomes Project 

(100KGP)21 to look for enrichment of biallelic predicted pathogenic variants among those 

genes, and provide a set of prioritised novel genes with shared phenotypes between patients 

and mouse knockouts. 
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Results   

1. Gaining functional knowledge from WoL 

The IMPC measures viability at wean, and for lethal strains employs a high-throughput 

embryonic phenotyping pipeline to examine embryo viability and phenotypes at E9.5, E12.5, 

E15.5, and E18.5. The developmental period during which lethality occurs in the mouse can 

be summarised by establishing a set of WoL. A WoL for a gene was defined by the interval 

between the latest developmental stage at which live homozygous null embryos (mice) are 

identified and the earliest stage at which no live homozygous embryos are found. Complete 

lethality by E9.5 was classified as early-gestation lethal (EL), by E12.5 or E15.5 as mid-

gestation lethal (ML), and viability at E15.5 or E18.5 as late-gestation lethal (LL). These WoL 

approximately correlate with the pre-organogenesis, organogenesis and post-organogenesis 

phases of mouse embryonic development, while also providing sufficient sample sizes to 

perform downstream statistical analyses. Among 895 embryonic lethal genes with one-to-

one human orthologues, nearly half (430, 48%) are EL, 155 (17%) ML, and 310 (35%) are 

LL. A full description of the WoL and the distribution of lines per window can be found in Fig 

1 and Sup File 1. 

1.1. Human cellular essential genes correlate with mouse EL genes 

We previously reported that EL genes show a considerable overlap with human cellular 

essential genes16. Plotting individual gene-based proliferations scores for different human 

cell lines across tissues obtained from CRISPR knockout screens through the Achilles 

pipeline22, we observed a clear distinction between the three WoL. The set of EL genes 

stand alone as a distinctive category from the ML and LL genes that show closer median 

values (shown in Fig 2a for central nervous system cell lines, other lineages in Sup Fig 1a-

b). Considering the average CERES score across cell lines, where lower values indicate 

more depletion and higher essentiality, we observed that all the genes are EL genes for the 

bins with lowest scores, and that the percentage of ML and LL genes increased as we move 

towards higher values of this score (Fig 2b). When cellular essentiality is considered as a 

binary property after categorising the mean scores using a cut-off of -0.45 (≤ -0.45: "cellular 

essential", >-0.45: “cellular non-essential”, see Methods), 73% of EL genes are essential in 

human cell lines, compared to 25% of ML genes and only 6% of LL genes (Fig 2c). 

Alternative thresholds are considered in Sup Fig 1c-d. 
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1.2. EL genes consistently show higher levels of human gene expression 

across organs and developmental stages 

Examination of human gene expression data23 showed a consistent pattern across organs 

and developmental stages with the human orthologues of mouse EL genes being expressed 

at higher levels, on average, compared to the orthologues of mouse ML and LL genes (Fig 

2d). High levels of expression may help identify key developmental process. To that end, 

gene expression patterns during early human development have been used to predict 

essential genes lacking a known human disease association24. To assess whether the organ 

development trajectories for these genes differ substantially between mouse and human, we 

investigated the similarity of spatiotemporal gene expression profiles for the two species. We 

found that 78 and 82% of the entire set of genes under study showed the same trajectory for 

cerebellum and brain respectively, with no significant differences observed between WoL, 

and in concordance with what was observed for the entire set of genes with data available25 

(Sup Fig 2). Similarities in gene expression will not always imply conserved phenotypes 

between mouse and human, but they can serve as a proxy for how translatable to human 

disease the findings for these genes are. 

1.3. Intolerance to LoF variation differs across WoL 

EL genes are more intolerant to homozygous LoF variation based on human population 

sequencing data when compared to LL genes, as shown by a higher frequency of probability 

of intolerance to homozygous LoF variation (pRec) values close to 1 (Fig 2e). Consistently, 

human orthologues of EL genes also show an underrepresentation among genes with 

intolerance to heterozygous LoF as indicated by a lower frequency of high probability of 

intolerance to heterozygous (pLI) scores (Fig 2f). Albeit not statistically significant, this 

observation agrees with our previous findings that developmental lethal genes, which 

broadly correlate with ML or LL genes are more intolerant to heterozygous LoF variation. 

Similar results were obtained when we explored DOMINO scores that compute the likelihood 

of a gene to be associated with autosomal dominant disorders, i.e. EL genes were more 

likely to be linked to autosomal recessive disease compared to LL genes (Sup Fig 3a). 

1.4. Gene duplicates and time of duplication event are distinctive features of EL 

genes 

EL genes have the highest proportion of genes with no paralogues (singletons). This 

proportion decreases gradually from ML to LL genes (Fig 2g). Not only are EL genes more 

likely to be singletons, but also, for those genes that do have paralogues, the number of 
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paralogues is lower and the paralogues are more likely to be older, with longer times 

tracking back to the duplication event when compared to ML or LL genes, which suggests 

more time to evolve new functions (Fig 2h, 2i). Thus, not only do gene duplications, or the 

lack thereof, seem to play a role in essentiality but so do the number of paralogues and the 

time of the duplication event. Similar observations were made by others using different 

species and/or definitions of essentiality26,27. Paralogues of EL genes are also more likely to 

be EL, and similarly paralogues of ML/LL genes are more likely to be ML/LL. This implies 

that paralogues are predominantly essential at the same developmental stage, potentially 

reflecting similar key functions at the cellular level and early stages of organism 

development (Fig 2j). Additionally, when genes are divided into singletons and duplicates, 

the proportion of genes that are cellular essential is higher among the singletons compared 

to those genes with paralogues, and this observation is consistent for the three WoL (Sup 

Fig 3b). However, other studies investigating the relationship between essentiality, 

developmental expression, and gene duplication have suggested that timing of 

developmental expression influences the ability of a gene in a paralogue pair to compensate 

for the loss of function of the other gene28.  

2. WoL and Mendelian disease 

It is well established that there is an association between lethal genes in the mouse and 

human disease genes15,29. Our previous study showed that this enrichment was mainly 

driven by developmental lethal genes16 so we hypothesised that the distribution of disease 

genes across WoL may not be uniform and that information about WoL could highlight 

additional correlations. When translating our WoL to relevant developmental stages in 

humans, the EL mouse category broadly correlates with the human pre-organogenesis stage 

occurring during the first two weeks of development. The ML class relates to human 

organogenesis occurring during the embryonic period from weeks three through eight, and 

ending in the early first trimester, around week nine of gestation. Lastly, the LL category 

aligns with the human foetal stage, from the ninth week until birth30. 

We used the Genomics England PanelApp, a publicly available knowledgebase containing 

expert curated gene panels related to human disorders, as the source of Mendelian genes to 

perform subsequent analyses31. Genes are rated according to level of evidence to support 

the phenotype association: ‘green’ means high level of evidence from several unrelated 

families and/or strong additional functional data, ‘amber’ moderate evidence, and ‘red’ not 

enough evidence. The advantages of using this source of diagnostic genes include the high 

level disease categorisation and allelic requirement annotations that allows for tailored 
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analysis, the categorisation of genes according to the level of evidence for the gene-disease 

association, and the potential to map directly to patient data recruited in the 100KGP. 

2.1. Disease category and mode of inheritance are not uniformly distributed 

among WoL 

Although the three WoL are all enriched for Mendelian disease genes, their properties differ. 

The proportion of genes associated with rare disorders is lowest among the EL, followed by 

the ML and LL genes (Fig 3a). When allelic requirement is considered, a similar pattern is 

found for monoallelic (dominant) disease-associated genes. However, this trend is reversed 

for recessive disorder-associated genes, where the EL fraction showed a significantly higher 

number of biallelic genes (Fig 3b).  

Further dissection of disease genes according to PanelApp high level disease categories 

showed that: 1) the proportion of neurodevelopmental disorder associated genes is higher 

than expected among the three WoL compared to baseline, with the highest percentage 

among LL genes, 2) the proportion of genes associated to metabolic disorders follows the 

inverse pattern, with EL genes showing the highest percentage of inherited metabolic 

disease genes (46%), followed by ML (28%) and showing the lowest percentage among the 

LL (18%) (most notably, this is the only disease category where we found a higher 

percentage of disease genes among the EL compared to ML and LL), 3) skeletal disorders 

are predominant among the ML, and 4) for the remaining disease categories, the frequency 

of disease genes among the EL genes show values comparable to baseline or even lower, 

indicative of depletion of these disease categories among the EL genes (Fig 3c). Only the 6 

most frequent disease categories are shown here (additional disease categories in Sup Fig 

4). Odds Ratio were computed for EL genes, where non-EL genes included ML, LL, 

subviable, and viable categories (See Methods). Three disease categories showed 

significant OR > 1: metabolic disorders (OR = 4.4; P value = 3.34e-16), dysmorphic and 

congenital abnormality syndromes (OR = 2.3; P value = 0.034), and neurology and 

neurodevelopmental disorders (OR = 2; P value = 2.56e-05) (Fig 3d). 

Given that most inborn errors of metabolism (IEM) show neurological manifestations, and 

neurodevelopmental disorders are still the most predominant disease category across the 

three WoL, we further explored the gene overlap between neurodevelopmental and 

metabolic disease categories to assess any potential confounding effect. The combination of 

genes associated with both metabolic and neurodevelopmental disorders was found to be 

predominant among the EL class, opposite to what we observed among the ML and LL 
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windows, where neurodevelopmental only genes are the prevalent disease class, and thus 

providing additional evidence for the inborn errors of metabolism association (Fig 3e, 3f, 3g). 

The analysis of Human Phenotype Ontology (HPO) phenotypes associated with known 

inborn error of metabolism genes showed that the five most frequent physiological systems 

affected are: nervous system, followed by musculoskeletal, metabolism/homeostasis, growth 

abnormality, and digestive. An enrichment analysis showed no significant differences in the 

frequency of any particular phenotype for EL genes when compared to ML and LL (Fig 3h, 

Sup Table 3). 

2.2. Evidence of prenatal and perinatal lethality in humans 

Among the wide range of Mendelian phenotypes observed in humans, prenatal lethality 

poses a unique challenge in terms of providing a molecular diagnosis. Development failure 

may occur at any point between fertilisation and birth. Estimates suggest that 20-30% of 

implanted embryos fail to develop beyond week six32, similarly early embryo losses occurring 

between implantation and clinical recognition could be around 10–25%33. A proportion of first 

trimester miscarriages where no chromosomal abnormalities are detected could have a 

Mendelian or polygenic origin34,35.  

We previously hypothesised that many human genes contributing to prenatal lethality are 

likely unidentified and not captured in current disease databases due to early embryo losses 

and miscarriages either being unnoticed, or when they are detected, the difficulty in 

determining the molecular basis of this extreme phenotype. Here, we used a set of 624 

genes associated with early lethality in humans curated from OMIM6,29. 19 % of EL disease 

associated genes are linked to pre and perinatal lethality. For LL genes, this percentage is 

31% (Fig 3i). Based on our hypothesis that most genes associated to early gestation 

lethality in humans remain unrecognised, the set of EL in the mouse constitutes a source of 

candidates of interest in the field of foetal precision medicine. 

2.3. Predicting new EL genes in the mouse 

Since the number of IMPC mouse lines that have undergone the primary viability 

assessment is higher than those with a secondary evaluation to identify the embryonic stage 

at which lethality occurs, we tried to predict additional EL genes among lethal genes without 

secondary viability data to have a larger pool of candidate genes. For this we used a 

penalised likelihood approach to fit a generalised additive model using proliferation 

(essentiality) scores from multiple human cell lines as predictors22 and subsequently used 

that model to make the predictions. This added an additional set of 362 predicted EL genes 
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(out of 725 lethal genes with no secondary viability assessment) to the previous 430 EL 

genes assessed through embryo viability screening. Details on the model, predictive 

accuracy, and predictor variables can be found in Methods and Sup Fig 5. Out of 33 genes 

in our prediction set that were externally assessed as EL36, 29 were correctly predicted by 

the classifier (87.9%) (See Sup File 2). CRISPR knockout screens to identify those genes 

affecting cell survival across hundreds of genomically characterized cancer cell lines37 can 

consequently assist the identification of early gestation lethal lines in the mouse. 

2.4. Similarity with known BIEM genes 

A gene similarity strategy was applied to 792 (assessed and predicted) EL genes based on 

features shared with 552 diagnostic-grade BIEM genes from PanelApp. This approach was 

based on the unknown gene sharing at least one of 5 attributes: p1) being a paralogue of a 

known BIEM gene; p2) sharing a pathway with a BIEM gene; p3) belonging to the same 

protein complex as a known BIEM gene; p4) interacting with another gene in the protein-

protein interaction network of a known BIEM gene; and/or p5) sharing a PFAM protein family 

with a known BIEM gene. This gene ranking approach serves a dual purpose: 1) to identify 

completely novel disease genes, and 2) to bring additional proof for those genes in 

PanelApp that are not considered diagnostic-grade genes, i.e. ‘amber’ and ‘red’ genes. 

Among novel EL genes not associated with any disease in PanelApp, 53 - 60% share at 

least one of the five attributes with a BIEM gene. This percentage increases to 69 - 74% 

when the non-diagnostic-grade genes in PanelApp excluding the IEM panel are examined 

and to 100% for the non-diagnostic grade genes on the IEM panel (Fig 4a). 

Ten of the EL non-disease-associated genes are of particular interest as they share 4 of the 

5 attributes with BIEM genes: CHKA, FDX1, GGPS1, GLRX3, HMGCS1, MGAT1 and 

SLC39A10 are paralogous and direct interactors as well as belonging to the same protein 

family(ies) and pathway(s) whilst MRPS25, PRMT1, and RPA1 are interactors, share a 

protein family(ies) and pathway(s) and are also part of the same protein complex(es). The 

complete gene list and annotations are provided in Sup File 3. Four of these genes, 

GGPS1, MRPS25, PRMT1, and RPA1 show abnormal metabolic phenotypes in the 

heterozygous viable mouse. MRPS25 is a member of the human mitochondrial ribosomal 

protein gene family, with evidence from mouse embryos indicating compromised 

mitochondrial function38. Several other mitochondrial ribosomal small (MRPS) and large 

(MRPL) subunit genes are associated with different metabolic disorders, and many of the 

remaining MRPS genes are also potentially associated with disease39. Evidence of 

pathogenicity of homozygous missense variants in this gene has been reported40. In the 

case of PRMT1, encoding a member of the protein arginine N-methyltransferase (PRMT) 
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family, additional neurological phenotypes imply a high phenotypic similarity with neonatal 

disorders including several defects of the metabolism as computed by PhenoDigm (Fig 4b). 

Emerging evidence supports the role of this family of enzymes in skeletal muscle and 

metabolic disease41.  

Importantly, we found a significant association between sharing any of these 5 attributes with 

a BIEM gene and being EL (1.64 fold-increase, P value = 2.7e-06). When these attributes 

were considered separately, the strongest association was observed for being part of the 

same protein complex as a BIEM gene (13.9 fold-increase, P value = 6.5e-20). Significant 

results were also obtained for sharing a pathway and interacting with a BIEM gene. EL 

genes were less likely to be a paralogue of a BIEM gene (OR = 0.49, P value = 0.018), 

which can be explained by the enrichment for singletons among this set of genes (Sup Fig 

6). 

Disaggregating the set of EL genes by disease association showed that the closer to the 

IEM disease class, the higher the percentage of genes in that category sharing attributes 

with BIEM genes. Consistently, EL genes are more likely to share attributes with BIEM 

genes compared to non-EL genes. 

2.5. Undiagnosed cases of inherited metabolic disorders from the 100KGP 

An alternative approach, based on patient data, was also used to identify potential metabolic 

disease genes among the set of EL genes in the mouse. Cases recruited under the 

‘undiagnosed metabolic disorder’ and ‘mitochondrial disorders’ categories in the 100KGP 

were investigated for rare, segregating, and biallelic LoF or predicted pathogenic missense 

variants in EL genes, using the Exomiser variant prioritisation tool11. Observed versus 

expected ratios (oe) per gene were computed by comparing the number of biallelic variants 

observed in these patients to those observed on a set of pseudo controls, i.e., patients 

recruited under other disease categories. Predicted homozygous or compound heterozygous 

pathogenic variants were found in 21 EL genes (13 assessed, 8 predicted) with oe ratios > 1 

and observed in ≤ 2 controls. Three involved biallelic LoF, 6 had biallelic LoF/missense, and 

12 had biallelic missense variants. Five of these genes are already classified as diagnostic 

grade genes in the IEM panel (COQ4, ELAC2, MRPL44, MSTO1, and SKIV2L) and three 

others are diagnostic grade genes in different neurology and neurodevelopmental disorder 

gene panels (EIF2B4, ELP1, EXOSC8). ALG2, NDUFA8, and RNASEH2A are classified as 

amber or red in the IEM panel. For the cases associated with these 11 known disease 

genes, only those associated with MRPL44 and ALG2 biallelic variants have been 

diagnosed with these variants so far, with the others currently classified as variants of 
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uncertain significance. For the remaining 10 genes (AFDN, CDK12, COQ3, GINS4, 

GPATCH1, INTS11, KIF2C, NUFIP1, PTPMT1, RCC1) there is no current evidence for a 

disease association in PanelApp or OMIM.  

For two of the amber or red genes in the inborn errors of the metabolism panel, ALG2 and 

NDUFA8, IMPC heterozygous knockout mice have neurological and metabolic phenotypes, 

providing additional evidence to validate this gene-disease association. In addition, ALG2 

shares 4 features with known BIEM genes: protein family (2 genes), pathway (10 genes), 

paralogue (1 gene), and protein-protein interaction (9 genes). Similarly, NDUFA8 shares 3 

features: protein complex (17 genes), pathways (44 genes), and protein-protein interaction 

(28 genes).  

Four non-disease associated genes have IMPC data for null alleles with heterozygous 

mouse mimicking some of the clinical features observed in patients. AFDN and NUFIP1 

show neurological phenotypes in the mouse embryo or early adult. COQ3 and CDK12 also 

show neurological and other physiological system phenotypes shared between the 

undiagnosed patients and the knockout mouse. They are of particular interest as several 

other genes from the same family have already been associated with similar disorders, and 

the IMPC lines are the first reported mouse models with abnormal phenotypes observed in 

the early adult heterozygous knockout (Fig 5). 

COQ3 (coenzyme Q3, methyltransferase) is one of the genes required for the biosynthesis 

of Coenzyme Q10, which has many vital functions. Several genes involved in this pathway 

are associated with Primary CoQ10 Deficiency, including PDSS1, PDSS2, COQ2, COQ4, 

COQ5, COQ6, COQ7, COQ8A, COQ8B and COQ942. The heterozygous IMPC mouse 

shows several neurological / behavioural phenotypes including abnormal locomotor 

behaviour, abnormal vocalization, and decreased grip strength. No homozygous LoF 

variants have been observed for this gene according to gnomAD (pLI = 0; pRec = 0.283; 

DOMINO = Very likely recessive). The homozygous frameshift variant observed in the 

100KGP cohort is present in gnomADv2.1.1 (p.Lys366SerfsTer2), with an allele frequency of 

6.04e-04 but with no homozygous individuals for that allele. The o/e ratio in our 100KGP 

study cohort is 18.7, with the other two different variants found in the set of pseudo controls 

recruited under the ‘unexplained sudden death in the young’ and ‘ultra-rare undescribed 

monogenic disorders’. 

CDK12 (cyclin dependent kinase 12) is one of the cyclin-dependent kinases with a key role 

in molecular processes relevant during development. Several other protein kinases are 

involved in developmental disorders: CDK5, CDK6, CDK8, CDK10, CDK13 and CDK1943. 
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The phenotypic abnormalities observed in heterozygous IMPC mice include cardiac, 

hematopoietic, metabolic (decreased circulating HDL cholesterol level), and neurological 

features (decreased exploration in new environment) (Fig 5b). The homozygous splice 

acceptor variant (c.1047-2A>G) is present in gnomADv2.1.1, with an allele frequency of 

4.06e-4 and one homozygote observed in the South Asian population. This gene is in fact 

predicted to be highly intolerant to heterozygous LoF variation (pLI = 1; pRec = 0; DOMINO 

= Very likely dominant). The o/e ratio computed with biallelic variants in our GEL study 

cohort for this gene is 56.14 with no variants meeting the criteria described found in 

controls.  

A note of caution is needed when interpreting the impact of these two LoF variants due to 

their position on the transcript, as indicated by gnomAD. Where available, gene expression 

across development data for the four genes confirm similar trajectories across mouse and 

human for brain and development and intolerance to LoF variation.  

The approach described here is based on the premise that biallelic LoF in a gene leads to 

early embryonic lethality in mice but that biallelic LoF or missense variants in humans lead to 

recessively inherited metabolic disorders with related phenotypes in humans (Fig 3b, 3c). In 

fact, for the four candidate genes highlighted in our study, it is the heterozygous mouse 

model which is mimicking the phenotypes observed in patients carrying biallelic mutations. 

This somehow counterintuitive observation has been reported for other IEM disorders44,45. 

When exploring early lethality annotations in humans, up to 39% of the known biallelic IEM 

genes have records of lethality before or shortly after birth, showing that a considerable 

proportion of these conditions in humans are life threatening, leading to early death if 

untreated. Consistent with this observation, two of the genes in the same pathway or gene 

family of our candidate genes (COQ9, PDSS2) have been associated with early lethality in 

humans46,47. 

Discussion  

Many predicted LoF variants identified in Mendelian disease sequencing studies are found in 

genes not previously associated with disease, making assessment of pathogenicity 

particularly challenging. High throughput mouse standardised phenotyping screens including 

viability assessment contribute to acquiring new knowledge about orthologues of such genes 

with limited functional data48,49. By also exploring correlations between abnormal 

phenotype(s) in the knockout mouse and disease features in the human orthologues, we are 

able to identify novel candidates for Mendelian conditions.  
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Previously we developed a successful framework to prioritise gene candidates for 

neurodevelopmental disorders using mouse phenotyping data, with two of the top 9 

candidate genes, VPS4A and SPTBN1, already having been recently validated. In both 

cases, a causal link has been found between heterozygous, predominantly de novo 

mutations and distinctive developmental syndromes16-18. Here we present another example 

of how the IMPC data resource can be combined with other sources of evidence to develop 

a tailored approach for disease-gene discovery and variant prioritisation to assist the 

diagnosis of inherited metabolic disorders. 

The requirement of a gene for the survival of an organism, i.e. gene essentiality, can be 

disaggregated into more granular categories/WoL according to the embryonic period during 

which lethality occurs. In the present study, we show that these categories, correlate with 

different gene features, including gene expression across development and intolerance to 

LoF variation. Additionally, the distribution of singleton and duplicated genes across these 

WoL support hypotheses about genetic compensation. EL genes are more likely to be 

singletons, and when paralogues exist they tend to have originated earlier, suggesting more 

time to evolve new functions26,27. 

By looking at different features of human disease genes across the windows, two 

observations stand out. First, the set of lethal genes in the mouse is enriched for Mendelian 

disease genes15, but the proportion of genes associated with disease is not consistent 

across WoL and this enrichment is mainly driven by LL genes. The lower proportion of 

disease genes among the EL compared to LL genes was previously reported when 

comparing cellular lethal with developmental lethal genes16, as well as other categorisations 

of essential genes29,50. The contribution of lethal genes to human disease, including 

embryonic lethality as a genuine Mendelian phenotype51, is probably understated, and the 

lower proportion of disease genes among the EL is potentially due to an underrepresentation 

of genes leading to embryonic lethal human phenotypes in current disease databases. 

Second, we identified a strong association between EL genes and inherited metabolic 

disorders. This includes genes that are needed to maintain the metabolic machinery required 

to provide energy and basic components for cell survival. Most of the EL lines die prior to 

implantation or gastrulation, and differentiation into disease associated tissues occurs at a 

later stage. This could explain why non-metabolic disease categories are underrepresented 

among the set of EL genes. 

Building on this finding, we focused on the EL genes and gathered additional information on 

similarity with known disease genes associated with biallelic forms of inborn errors of 

metabolism (BIEM). It is already known that members of paralogous gene families where 
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one gene is associated to human disease are more likely to be associated with Mendelian 

disorders themselves52. Similarly, disease associated variants are enriched at sites 

conserved among paralogues53,54. We used these and other observations to identify the EL 

genes showing most similarity to existing BIEM genes and, hence, most likely to be novel 

BIEM disease genes. 

Inherited metabolic disorders comprise a large group of ~1,450 disorders in which the 

primary alteration of a biochemical pathway leads to a set of biochemical, clinical, and/or 

pathophysiological features55. The majority manifest in new-borns, show predominantly 

neurological manifestations and can lead to sudden premature death56. By investigating 

patients recruited under this disease category from the 100KGP and looking at EL genes in 

the mouse for evidence of enrichment of biallelic LoF or predicted pathogenic missense 

variants, we were able to identify a set of candidate genes where the heterozygous knockout 

mouse mimicked some neurological and/or metabolic phenotypes observed in patients.  

Two of the genes identified through our analysis, COQ3 and CDK12, belong to pathways 

and extended gene families of genes which are associated with similar disorders, which 

strongly supports their involvement in the disease process. Further functional 

characterisation of these and other predicted pathogenic variants, together with the 

identification of additional probands with biallelic variants segregating with similar 

phenotypes are still needed to establish a causal link, to confirm that the candidate LoF 

variants result in the lack of protein product and/ or have a discernible clinical phenotypic 

effect. 

Comparing lethality outcomes between mouse and human presents several limitations. 

Monoallelic mutations required for early development (dominant lethals) are missing from 

our set of mouse embryonic lethal knockouts since they would not result in lines, introducing 

a bias towards recessive lethal genes. Prenatal lethality is the most severe phenotypic 

manifestation found in monogenic forms of disease. Disrupted gene function may lead to 

embryonic lethality in humans at very early stages, which makes it difficult to recognise, 

since many of these early pregnancy losses go undetected57. Most metabolic disorders 

represent a spectrum of phenotypes. According to OMIM clinical records, more than a third 

of BIEM genes are associated with lethality before or soon after birth. This may help explain 

the differences between mouse and human, with the homozygous knockout showing early 

embryonic lethality and the heterozygous mouse mimicking patient phenotypes. 

Underestimation of prenatal lethality as the most severe phenotype among a broader range 

of severe clinical manifestations reported in humans seems a plausible hypothesis for some 

15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 7, 2022. ; https://doi.org/10.1101/2022.01.07.22268899doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.07.22268899
http://creativecommons.org/licenses/by-nc-nd/4.0/


discrepancies in lethality observed between the two species. Similarly, while in the mouse 

knockouts the observed phenotype is most likely due to the loss of protein function, other 

types of mutation may lead to different molecular mechanisms and thus different phenotypic 

outcomes. True loss of protein function in these genes may be early embryonic lethal in 

humans whereas postnatal phenotypes could be caused by hypomorphic variants leading to 

partial LoF58,59. Other explanations include potential mechanisms of compensation through 

other genes in the pathway in humans or differences in essentiality between the two species. 

Even when gene essentiality does not perfectly correlate, the mouse models provide 

knowledge on the molecular functions and biological processes60. Given the number of 

genes associated with lethality in the mouse (35% of the knockout lines are classified as 

lethal or subviable according to IMPC primary viability screening)15,16, monogenic factors 

could explain a proportion of the high and often understated level of occurrence of 

miscarriages in human34. Therefore, the set of lethal genes in the mouse constitutes an 

invaluable resource to identify relevant genes in humans, including those in which LoF 

variation may lead to pregnancy loss and other severe phenotypes with an early 

manifestation29,57. 

In summary, the embryonic stage at which lethality occurs in the mouse can be used to 

inform human disease. Integration of multi-species datasets and the extended use of 

standardised phenotypes is key to building novel Mendelian gene discovery approaches3,61. 

This, coupled with the availability of large-scale sequencing programs that allow for bespoke 

computational and statistical analysis for variant prioritisation constitutes a powerful 

instrument for increasing the molecular diagnostic rate21. Every time a new gene is linked to 

a specific Mendelian condition, numerous series of undiagnosed patients could be revisited 

world-wide, which may translate into new genetic diagnoses. The findings of this study and 

previous research will expedite the development of new gene identification strategies 

tailored to specific types of disorders. Additionally, the set of genes essential for embryonic 

development in the mouse may constitute an additional source of evidence for diagnosis of 

lethal foetal disorders29,62,63. Whether this is the only observable outcome or the most 

extreme phenotype within a wider range of clinical features observed in patients, it will be 

crucial to catalogue these genes. 

Ultimately, our work complements other strategies for identification of novel genes 

underlying Mendelian conditions. It also highlights the power of cross-species phenotype 

analysis by integrating model organism resources with data from large scale sequencing 

programs. 

 

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 7, 2022. ; https://doi.org/10.1101/2022.01.07.22268899doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.07.22268899
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods 

Data sources 

IMPC mouse data 

Mouse primary and secondary viability data were obtained from the IMPC resource64. 

Primary viability data: http://ftp.ebi.ac.uk/pub/databases/impc/all-data-releases/release-

15.0/results/viability.csv.gz (DR15) [Downloaded 28.09.21] 

Phenotype annotations: https://www.mousephenotype.org/ (DR15.1) [Accessed 02.11.21] 

Embryonic viability data: Detailed information on the primary and secondary viability 

pipelines, including definitions, procedures, and protocols can be found at 

https://www.mousephenotype.org/impress/index. These include: Viability Primary Screen, 

Viability E9.5 Secondary Screen, Viability E12.5 Secondary Screen, Viability E14.5-E15.5 

Secondary Screen, Viability E18.5 Secondary Screen, Homozygote Viability at Weaning 

Screen. 

Entire set of human protein coding genes with the corresponding mouse orthologs 

One to one human orthologues with the corresponding HGNC identifiers were obtained from 

the HUGO Gene Nomenclature Committee (HGNC) resource65: 

http://ftp.ebi.ac.uk/pub/databases/genenames/hgnc/tsv/locus_groups/protein-

coding_gene.txt [Downloaded 28.09.21]. All the following gene features used in this study 

correspond to human gene annotations. Gene symbols, Ensemble and Uniprot ids were 

converted into HGNC unique identifiers. Where there was any ambiguity about gene id 

mapping, the annotation was discarded.  

Human cell proliferation scores  

CRISPR knockout screens from the Achilles pipeline (release 21Q3) for 902 cell lines and 

the corresponding cell line information were obtained from the DepMap portal22: 

https://depmap.org/portal/download/all/  (Achilles_gene_effect_CERES.csv) [Downloaded 

28.09.21]. Gene effect scores are direct estimates of the effect of a gene knockout on 

viability. Thus, a more negative CERES score indicates more depletion in the cell line. 

Average scores per gene were computed. In order to establish a binary threshold to classify 

genes as cellular essential and non-essential, previous data on cell essentiality, based on 11 

cell lines from 3 different studies was used to compute F1 scores derived from confusion 

matrices generated when considering different CERES mean scores and the classification 

from these 3 studies, and a mean score cut-off of -0.40, -0.45, and -0.55 was found to 

maximise the F1 scores across the different datasets, similar to the -0.45 threshold 

estimated with information from 485 cell lines16,64. 
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Gene expression across development      

Human gene expression (RPKM) across development for brain, cerebellum, heart, kidney, 

liver, ovary and testis was obtained from Cardoso-Moreira et al.23 

https://apps.kaessmannlab.org/evodevoapp/ [Downloaded 10.08.21]  

Data on comparison of temporal trajectories between human genes and their orthologs in 

mouse for brain and cerebellum was obtained from Cardoso-Moreira et al.25. 

Intolerance to variation scores   

gnomaAD v2.1.1 constraint metrics66 (pLI and pRec) and DOMINO scores67: 

https://gnomad.broadinstitute.org/downloads#v2constraint ; https://wwwfbm.unil.ch/domino/ 

[Downloaded 10.08.21] 

Gene duplicates  

Information of paralogues of human genes was obtained from Ensembl Biomart (Ensembl 

Genes 104)68 https://www.ensembl.org/biomart/martview/ Only protein coding paralogues 

with HGNC ids and % amino acid identity >=20% were considered [Downloaded 10.08.21]  

Protein-protein interactions                                                                          

Human protein network data (scored links between proteins) was obtained from STRING69  

https://stringdb.org/cgi/download?sessionId=%24input%3E%7BsessionId%7D&species_text

=Homo+sapiens  [Downloaded 13.08.21] 

Pathways                                                                                     

Lowest level pathways were obtained from Reactome70 

https://reactome.org/download/current/UniProt2Reactome.txt and 

https://reactome.org/download/current/ReactomePathways.txt [Downloaded 10.08.21] 

Protein families 

PFAM protein families71 were obtained through Ensembl biomart (Ensembl Genes 104) 

https://www.ensembl.org/biomart/martview/ [Downloaded 10.08.21] 

Protein complex                                                                                                               

Corum protein complex information72 was accessed at: 

https://mips.helmholtzmuenchen.de/corum/#download [Downloaded 13.08.21] 
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Disease features 

Mendelian disease genes, disease category and mode of inheritance   

Diagnostic grade ‘green‘ genes with sufficient evidence for disease association and their 

corresponding modes of inheritance were obtained from Genomics England PanelApp, a 

publicly-available knowledge base containing panels related to human disorders31. A total 

number of 313 gene panels (excluding additional findings) were investigated. Information on 

allelic requirement and level of evidence of disease causation was retrieved for our analysis. 

Genes from 186 gene panels containing level 2 disease category information (21 categories) 

were used for the analysis based on disease classification. 

https://PanelApp.genomicsengland.co.uk/panels/ [Downloaded 10.08.21] 

HPO phenotypes                                                                                                                    

Phenotypes were obtained from the HPO (genes to phenotypes)73 and mapped to the top 

level of the ontology, broadly corresponding to the physiological system affected. Co-

occurrence with the most frequent systems affected (neurological and musculoskeletal) were 

computed for early lethal genes (EL) versus non early lethal genes (NEL). 

https://hpo.jax.org/app/download/annotation; 

https://raw.githubusercontent.com/obophenotype/human-phenotype-ontology/master/hp.obo 

[Downloaded 23.08.21, HPO notes: format-version: 1.2 data-version: hp/releases/2021-08-

02] 

Prenatal and perinatal genes in humans 

A set of 624 genes associated to prenatal and perinatal lethality based on OMIM records 

were used for the analysis6,29. 

Prediction of early lethal genes 

Several genes have undergone the IMPC primary viability assessment, but the embryonic 

stage at which lethality occurs has not yet been investigated. To increase the pool of 

potential candidate early lethal genes, we built a classifier using human cell proliferation 

scores from 902 lines as predictor variables. For that we used the R implementation of 

Generalized Additive Model Selection, gamsel. The training set consisted of 893 genes, 430 

early-lethal (EL) and 463 non-early lethal (NEL). Imputation of missing values was performed 

via nuclear-norm regularization implemented in the softImpute R package. Cross validation 

(5-fold) was used to assess the performance of the model, with ROC-AUCs ranging from 

0.860 to 0.903. The accuracy ranged from 79.9 to 86.0% of instances correctly classified as 

EL and NEL. Predictions for a total number of 725 lethal genes with no secondary viability 
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assessment were made. Only 24 predictor variables (non-zero effects) were selected in the 

final model. A probability threshold of 0.41 maximized the F1 score. Using this model, 362 

genes were predicted as EL and the remaining 363 as NEL (Sup Fig 5). A set of 33 genes 

externally assessed as EL36 was used as additional validation (Sup File 3). 

Gene similarity approach 

Similarity with known genes associated to biallelic forms of inherited metabolic disorders 

(biallelic inborn error of metabolism green genes from PanelApp, BIEM) was assessed 

according to 5 attributes (5ps): p1) being a paralogue of a known BIEM gene according to 

Ensembl genes 104 and a threshold of % amino acid identity of 20%68; p2) sharing a 

Reactome pathway (lowest level) with a BIEM gene70; p3) belonging to the same Corum 

protein complex of a BIEM gene72; p4) being a direct interactors within the protein-protein 

interaction network (high confidence cut-off 0.7) with a BIEM gene according to STRING69; 

p5) sharing a PFAM protein family with a BIEM gene71.The number of different features 

shared was computed for every early lethal gene - assessed and predicted. 

Investigation of cases from the 100KGP 

To investigate the occurrence and enrichment of homozygous LoF variants in cases from the 

1000KGP among our set of EL genes in the mouse we searched for variants in those genes 

in 35,422 families, 631 of which were recruited under the categories of interest 

(‘undiagnosed metabolic disorders’ and ‘mitochondrial disorders’). One important caveat is 

that these are not healthy population controls, and we cannot rule out that patients recruited 

under other categories show similar metabolic phenotypes, which means that these ratios 

can be an underestimation. The number of observed homozygous LoF and missense 

variants prioritised by Exomiser based on variant scores11 were compared between cases 

and pseudo controls to compute observed versus expected ratios. 

Software 

R software74 including the following packages were used for data integration and analysis: 

tidyverse75, matrixStats76, epitools77; data visualization: waffle78, ggridges79, alluvial80, 

cowplot81, upSetR82 ; ontologies: ontologyIndex83; modelling and prediction: softImpute84, 

gamsel85, pROC86. Odds Ratios were calculated by unconditional maximum likelihood 

estimation (Wald) and confidence intervals (CI) using the normal approximation, with the 

corresponding adjusted P-values (BH) for the test of independence using the oddsratio 

function. To test for significant differences in proportions in the different WoL, prop.test and 

pairwise.prop.test functions were applied. In the case of continuous variables, to test for 
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significant differences between the three WoL we used the Kruskal-Wallis and Dunn’s test 

implementations: kruskal.test and dunnTest functions.  

Data availability 

The supplementary files supporting the findings of this study are made publicly available 

through Zenodo: https://doi.org/10.5281/zenodo.5796622. 

Viability reports and additional files containing mouse embryo and adult phenotypes are 

available through the IMPC web portal (https://www.mousephenotype.org/) and the IMPC 

FTP repository (http://ftp.ebi.ac.uk/pub/databases/impc/). 

 

Ethical approval 

The IMPC Consortium collects data from international member institutes who collect 

phenotyping data guided by their own ethical review panels, licenses, and accrediting bodies 

that reflect the national and/or geo-political constructs in which they operate (Institutional 

Animal Care and Usage Committee, Baylor College of Medicine; Animal Welfare and Ethical 

Review Body (AWERB), MRC Harwell; Animal Care Committee (ACC) of The Centre for 

Phenogenomics; The Jackson Laboratory Institutional Animal Care and Use Committee 

(IACUC); UC Davis Institutional Animal Care and Use Committee (IACUC)). 

All the information regarding animal ethics approval of mouse production, breeding and 

phenotyping , including study design, experimental procedures, housing and husbandry and 

sample size can be found in the following links: 

https://www.mousephenotype.org/about-impc/animal-welfare/ 

https://www.mousephenotype.org/about-impc/animal-welfare/arrive-guidelines/ 

All efforts were made to minimize suffering by considerate housing and husbandry. All 

phenotyping procedures were examined for potential refinements that were disseminated 

throughout the Consortium. Animal welfare was assessed routinely for all mice involved. 

All patient data used from the 100,000 Genomes Project were accessed through the 

research environment provided by Genomics England and conforming to their procedures. 

All participants in the 100KGP have provided written consent to provide access to their 

anonymised clinical and genomic data for research purposes.  
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Figures 

Fig 1 Description of the WoL and distribution of lethal genes across windows. Three 

dimensional microCT images of wild type mouse embryos corresponding to E9.5, E12.5, 

E15.5 and E18.5. The waffle chart shows the total number of lethal lines characterised 

through the secondary viability screening and their distribution by WoL. EL genes, where the 

embryo dies before embryonic day 9.5 constitute nearly 50% of all the lethal genes in the 

mouse. This stage broadly correlates with the pre-organogenesis phase of embryonic 

development. Non-early lethal lines are divided into ML (17%) and LL (35%). The complete 

set of genes associated with each WoL is available in Sup File 1. WoL, windows of lethality; 

EL, early gestation lethal; ML, mid gestation lethal; LL, late gestation lethal. 

Fig 2 WoL and gene features. 2a CERES depletion scores for different Central 

Nervous System human cell lines across WoL. A more negative scores indicates more 

depletion of the gene in the cell line, i.e. more essential. Triangles represent median values 

of gene expression per WoL. 2b Distribution of EL, ML and LL genes across mean 

CERES depletion scores bins, with lower values covered 100% by EL genes. 2c WoL and 

cellular essential genes. Percentage of EL, ML and LL genes considered cellular essential 

when a mean CERES depletion scores across cell lines of -0.45 is considered as threshold. 

2d Brain gene expression. Boxplots showing the distribution of human gene expression 

values across development stages for brain tissue. 2e Intolerance to homozygous LoF 

variation. Distribution of the probability of being intolerant to homozygous LoF variation 

(pRec) scores across WoL, showing the bimodal distribution of this score and the 

underrepresentation of low pRec values among the EL. 2f Intolerance to heterozygous 

LoF variation. Distribution of the probability of being LoF intolerant (pLI) scores across 

WoL, showing the bimodal distribution of this score and the underrepresentation of high pLI 

values among the EL. 2g WoL and singletons. Percentage of singletons across WoL, with 

the proportion of genes with no duplicates decreasing across development stages. 2h 

Paralogues and time of the duplication event. Paralogues of EL genes have an older 

origin, with a more ancient time to the most recent common ancestor. 2i Average number 

of paralogues. Distribution of the average number of paralogues per gene for those genes 

with duplicates. 2j WoL of paralogues. Paralogues of EL genes are more likely to be EL, 

paralogues of ML and LL are more likely to be LL. Tests for differences between windows 

available in Sup Table 1. For plots 2a – 2j, the data shown correspond to gene annotations 

for the human orthologues. WoL, windows of lethality; EL, early gestation lethal; ML, mid 

gestation lethal; LL, late gestation lethal; MRCA, most recent common ancestor. 
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Fig 3 WoL and human disease. 3a Mendelian disease genes. Percentage of rare disease 

associated genes in each WoL according to PanelApp, only ‘green’ genes with high level of 

evidence for the disease association are included. 3b Mode of inheritance. Distribution of 

disease genes across WoL by associated allelic requirement, only monoallelic or biallelic 

patterns of inheritance are included. 3c Disease class. Distribution of disease genes across 

WoL by disease type according to PanelApp level 2 disease categories, with the bars 

indicating the percentage of PanelApp genes mapping each disease class for the 3 WoL. 

For plots 3a, 3b and 3c, the dashed grey line represents the baseline percentage for the 

entire set of protein coding genes (19,197 genes according to HGNC, 3a) or PanelApp 

‘green’ genes (3,384 genes, 3b, 3c). 3d Disease categories Odds Ratios and BH adjusted 

P values for EL genes compared to ANEL genes: this includes mid and late gestation lethal 

genes as well as subviable and viable categories. 3e, 3f, 3g Disease category overlap. 

Overlap between genes associated with the most frequent disease categories across WoL 

for EL, ML and LL genes respectively. 3h Top level HPO annotations. Frequency of top-

level HPO phenotype annotations for inborn errors of metabolism genes in each window. 3i 

WoL and early lethality in humans. Human early lethal genes: PanelApp ‘green’ genes 

associated to early lethality (see Methods); human non early lethal genes: the remaining set 

of PanelApp ‘green’ genes. Tests for differences between WoL are available in Sup Table 2. 

WoL, windows of lethality; EL, early gestation lethal; ML, mid gestation lethal; LL, late 

gestation lethal; ANEL, all non-early gestation lethal genes; HPO, human phenotype 

ontology. 

 

Fig 4 Gene similarity approach. 4a For each set of EL genes in the mouse (assessed and 

predicted), the total number of genes is broken down into 3 categories based on PanelApp 

evidence: genes associated with inborn errors of the metabolism, Mendelian disease genes 

in other disease categories and non-disease genes. For genes in PanelApp panels the 

genes are also subdivided into those with strong evidence for the gene-disease association 

(green) and those with more limited evidence to date (red or amber). The percentage of 

genes sharing features with known BIEM genes is shown for potential novel genes not 

present in PanelApp as well as those with more limited evidence. For each category, those 

genes sharing  ≥4 features with known BIEM genes are shown. 4b PRMT1 IMPC mouse 

phenotypes and phenotypic similarity with human disorders. Heterozygous knockout 

phenotypes include several metabolic and neurological abnormalities. When computing the 

similarity between the mouse and human disease phenotypes associated with known 

disorders, we find phenotypic overlap with several early onset conditions, including defects 

of the metabolism Coenzyme Q10 deficiency, primary, 8 and Hypoxanthine guanine 
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phosphoribosyltransferase partial deficiency. EL, early gestation lethal; BIEM, biallelic inborn 

errors of the metabolism; IMPC, International Mouse Phenotyping Consortium. 

Fig 5 Candidate genes with biallelic inheritance involving LoF or (missense) predicted 

pathogenic variants in undiagnosed patients. 5a Mouse evidence. Genes with 

homozygous LoF or missense variants found in patients recruited under the metabolic 

disorder disease category with an o/e ratio > 1, observed in a number of controls ≤ 2 and 

with the heterozygous knockout mouse displaying abnormal phenotypes in the relevant 

physiological systems, partially mimicking the phenotypes observed in patients. 5b COQ3 

and CDK12 belong to families and pathways with several genes associated with 

Mendelian disorders. The corresponding mode of inheritance and related/overlapping 

phenotypes for these known disease genes and evidence on viability from the IMPC are 

shown. Mouse phenotypes according to IMPC Data Release 15.1. LoF, loss-of-function; o/e, 

observed vs expected; IMPC, International Mouse Phenotyping Consortium. 
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