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Abstract 

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder and is 

associated with structural grey matter differences in the brain. We investigated the genetic background 

of some of these brain differences in a sample of 899 adults and adolescents consisting of individuals 

with ADHD and healthy controls. Previous work in an overlapping sample identified three ADHD-

related grey matter brain networks located in areas of the superior, middle, and inferior frontal gyrus as 

well as the cerebellar tonsil and culmen. We associated these brain networks with protein coding genes 

using a statistical stability selection approach. We identified ten genes, the most promising of which 

were NR3C2, TRHDE, SCFD1, GNAO1, and UNC5D. These genes are expressed in brain and linked 

to neuropsychiatric disorders including ADHD. With our results we aid in the growing understanding 

of the aetiology of ADHD from genes to brain to behaviour. 
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Introduction 

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder, affecting 

an estimated 3.4-7.2% of children (Polanczyk et al., 2007, 2014; Thomas et al., 2015) and 2-3% of 

adults (Simon et al., 2009; Fayyad et al., 2017) worldwide. ADHD is characterised by symptoms in the 

domains of inattention and/or hyperactivity-impulsivity and resulting impairment of functioning 

(American Psychiatric Association, 2013) and is heterogeneous in aetiology, developmental trajectory, 

and clinical profile (Luo et al., 2019).  In 60-80% of cases, ADHD presents with comorbid psychiatric 

disorders such as oppositional defiant and conduct disorders, autism spectrum disorder, depression, 

bipolar disorder, borderline personality disorder, anxiety disorders, as well as substance use disorders, 

sleep disorders, and learning disabilities (Jensen et al., 1997; Ohnishi et al., 2019; Kooij et al., 2012; 

Katzman et al., 2017; Biederman et al., 1993). 

Twin studies have shown that childhood ADHD is highly heritable with genetic factors explaining over 

70% of variance (Faraone et al., 2015). For ADHD in adults, heritability is lower than or comparable to 

childhood ADHD, with self-ratings showing lower heritability (<50%) than ratings by others (Faraone 

and Larsson, 2019). Despite this high heritability, the search for genetic factors underlying ADHD has 

proven difficult (Faraone et al., 2005). Only the largest genome-wide association (GWA) meta-analysis 

to date reported genome-wide significant loci, concluding that common genetic variants account for 

22% of phenotypical variance (Demontis et al., 2019). The polygenic nature of ADHD means that 

individual genetic effects are small, with odds ratios between 1.077-1.198. These is also evidence for a 

shared genetic background of childhood and adult ADHD (Rovira et al., 2020). In addition, there is 

considerable overlap between the genetics of ADHD and neurodevelopmental traits in the general 

population (Martin et al., 2014) as well as other psychiatric disorders (Anttila et al., 2018) such as 

autism spectrum disorder (Ghirardi et al., 2019; Stergiakouli et al., 2017). 

Since ADHD is at least in part a disorder of the brain, it may be expected that the influence of genetic 

variants on ADHD is mediated by variations in brain structure and function. Indeed, differences in 

brain development, volume, activity, and connectivity are observed between groups of individuals with 

ADHD and healthy controls (Klein et al., 2017; Hoogman et al., 2017, 2019). Using magnetic 

resonance imaging (MRI), specific structural differences in grey matter (GM) tissue have been 

identified. On average, individuals with ADHD have 3-5% overall reduction in GM volume (Greven et 

al., 2015; Hoogman et al., 2019). More specifically, ADHD status is associated with reduced cortical 

surface and thickness (Hoogman et al., 2019) as well as reduction in subcortical structures including 
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nucleus accumbens, amygdala, caudate nucleus, hippocampus, and putamen (Hoogman et al., 2017). 

These case-control differences were most pronounced in children. In addition, ADHD in the general 

population has been associated with reductions in total brain volume (Hoogman et al., 2012; Shaw et 

al., 2011) as well as GM volume reductions in frontal, temporal, caudate nucleus, and cerebellar 

regions (Xavier Castellanos et al., 2002).  

Studies combining neuroimaging and genetics approaches in ADHD face all the challenges of a 

genetically and biologically heterogeneous disorder with small effect sizes, complicated by overall 

small sizes of samples due to the need for both neuroimaging and genetic information to be available. 

ADHD imaging genetics studies mostly focussing on single genetic variants have so far produced few 

promising results (Klein et al., 2017). Recently, a multivariate imaging genetic analysis approach, 

named sparse parallel independent component analysis, has been developed to optimize the 

independence and sparsity of genetic sources as well as the imaging-genetic associations, and it has 

been applied to identity the genetic factors underlying GM volume alterations in superior frontal gyrus 

associated with working memory underperformance in both ADHD adults and adolescents (Duan et al., 

2020). Meanwhile, the first significant genome-wide genetic results on the genetic covariation between 

ADHD and intracranial volume were reported by combining large (n=11,221-55,374) GWA meta 

analyses, thereby circumventing the need for both imaging and genetic data to be available for the same 

subjects (Klein et al., 2019). In contrast, in the present study we worked with raw imaging and genetics 

data of 899 individuals and addressed the statistical power issues differently. 

Specifically, we engaged ADHD imaging genetics power issues on three fronts. Firstly, we used 

previously published brain networks associated with ADHD (Liu et al., 2020; Duan et al., 2018). By 

looking at the most discriminative combinations of brain volumes instead of fixed structural regions, 

we increased our power to detect ADHD-related differences by limiting the number of comparisons 

(Xu et al., 2009). Secondly, we reduced information at the genetic level by running a gene-wide 

association study focussing only on protein-coding genes. By looking for associations at the gene 

instead of variant level, we reduced the number of variables from millions to thousands. While this 

approach does not consider variants far outside of known gene areas (which are often implicated in 

genetic association studies (Schierding et al., 2014; Zhang and Lupski, 2015)), protein coding genes 

and their immediate environment, i.e. promoter and terminator regions, present a promising initial 

target due to being interpretable, relatively well-characterised biologically plausible factors of disease. 

Lastly, instead of traditional univariate association tests that work based on effect size (the estimation 

of which is highly dependent on sample size (Visscher et al., 2014)), we used a statistical method 
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which allowed us to prioritise genes based on the stability of association (Meinshausen and Bühlmann, 

2010). This increased our power to detect small but consistent effects and thus reduced false positive 

findings. 

Using this approach, we investigated the genetic background of three ADHD-related brain networks 

(Duan et al., 2018; Liu et al., 2020). We identified a set of 10 genes based on the stability of association 

with these three networks, examined their expression in the brain, and tested their joint association with 

ADHD symptoms. With this we aimed to contribute to a growing understanding of the biological 

pathways from genes via brain to behaviour in ADHD. 
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Methods 

Participants 

Our sample consisted of n=899 Dutch participants from the NeuroIMAGE (von Rhein et al., 2015) and 

the International  Multicentre persistent  ADHD  genetics Collaboration (IMpACT) (Franke et al., 

2010) projects. It includes both adults (n=429) and adolescents (n=470) with ADHD and healthy 

controls. Ethical approval was obtained from the National Institute of Health registered ethical review 

boards and written, informed consent was obtained from every participant. Individuals with IQ<70, 

epilepsy, schizophrenia, austism spectrum disorder, and neurological/genetic disorders that might 

mimic ADHD were excluded. A majority of the sample consisted of related siblings: there were 265 

singleton participants (29%), 226 sibling duos (50%), 46 trios (15%), and 11 quartets (5%). From each 

participant genome-wide genetic data, brain imaging, and extensive phenotyping was collected, 

described below and summarised in Table 1. 

Table 1: Sample description. N: sample size. Age: mean (standard deviation) in years. ADHD symptoms: mean (standard 

deviation) of ADHD symptom count. ADHD≤2: Number of participants with no more than two ADHD symptoms per 

domain. ADHD≥7: Number of participants with seven or more ADHD symptoms per domain.  
 

N %Female Age Mean 

ADHD 

symptoms 

N with 

ADHD≤2 

symptoms 

N with 

ADHD≥7 

symptoms 

Adults 429 53% 25.4 (9.4) 6.7 (6.1) 168 202 

Adolescents 470 44% 14.6 (2.2) 6.4 (6.4) 210 220 

 

ADHD-related measures 

ADHD symptoms were assessed in accordance with DSM-IV criteria. NeuroIMAGE assessed ADHD 

symptoms using a diagnostic algorithm that included the Conner’s rating scale (Conners, 1997); 

IMPaCT used the ADHD Rating Scale (DuPaul et al., 1998). Both studies assessed attention/working 

memory using the Wechsler Adult Intelligence Scale Digit  Span test (Wechsler et al., 2000), a task in 

which subjects have to repeat a series of numbers forwards or backwards.  A full description of 

assessment procedures and data collection can be found elsewhere (von Rhein et al., 2015; Franke et 

al., 2010). 
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Neuroimaging 

Previous work in the adult portion of our sample identified five GM brain networks that were 

associated with attention tasks or ADHD symptoms (Duan et al., 2018). Three of these networks were 

later replicated in an adolescent sample (article in preprint (Liu et al., 2020)). The complete 

neuroimaging procedures are described elsewhere (Duan et al., 2018; Liu et al., 2020). In short, MRI 

neuroimaging was performed at two scan sites using three 1.5T scanners. Both manual and statistical 

quality checks were performed to exclude low quality scans. Scans were normalised, smoothed, and 

corrected for age, sex, and scanner. GM brain networks were estimated in adults only using 

independent component analysis. A brain network can be interpreted as a collection of brain regions in 

which voxels express similar GM patterns across participants. Network loadings, i.e. individual 

contribution of a network to total GM variation, were calculated for each participant. Network loadings 

in adolescents were calculated using projected adult networks (Liu et al., 2020). 

As mentioned, three GM brain networks were associated with ADHD-related measures in both 

adolescents and adults. Two networks were associated with digit span performance and one with 

inattention symptom count. The three networks considered in this study are 

#2. the inferior frontal gyrus, which was associated with both maximum forward and backward 

digit span performance; 

#3. the superior and middle frontal gyri, which were positively associated with maximum 

backward digit span performance; and 

#4. the cerebellar tonsil and culmen, which were negatively associated with inattention symptom 

count. 

The brain networks are indicated as network #2, #3, and #4, following the numbering in the earlier 

papers (Liu et al., 2020; Duan et al., 2018). Brain networks #1 and #5 were not considered in this paper 

because of inconsistent results between adults and adolescents. After correction for family relations and 

20 genetic principal components, there were no significant differences in network loadings between 

adults and adolescents (Welch’s t-test; p=.60, p=.92, p=.76 respectively). These data are shown in 

Figure 1. 

The network loadings are not independent: networks #2 and #3 are moderately correlated with r=.58 

(.54-0.62 95% CI, p<1e-10), whereas loadings of both networks #2 and #4 as well as loadings of 

networks #3 and #4 are weakly correlated with r=.15 (.08–.21, p<1e-10), and r=.18 (.11–.24, p<1e-10) 
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respectively. Each network is also negatively correlated with ADHD symptom count with correlations 

of r=-.06 (-.13–.00, p=.05), r=-.08 (-.15–-.01, p=.01), and r=-.11 (-.18–-.05, p<.001) respectively.  
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Figure 1: Raw (non-normalised) network loadings for adults (top) and adolescents (bottom) brain networks. Data have been corrected for 

age, sex, scan site, family relation, and 20 genetic principal components. No significant differences appear between adults and adolescents. 
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Genetics 

For NeuroIMAGE, genome-wide genotyping was performed using the Perlegen and HumanCytoSNP-

12 genotyping platforms. For IMpACT, it was performed using the PsychChip platform. Variant-level 

quality control included >95% call rate, >1% minor allele frequency (MAF), and a Hardy-Weinberg 

Equilibrium p-value >1e-6. Participants were excluded if the individual call rate was below 95% (K. 

Brookes et al., 2006; Neale et al., 2010; von Rhein et al., 2015). Imputation was performed using the 

ENIGMA Consortium imputation protocol (Thompson et al., 2014), which in short consists of 

imputation using the 1000 Genomes reference population (1000 Genomes Project Consortium et al., 

2015) and Minimac imputation software (Fuchsberger et al., 2015; Howie et al., 2012).  

Genetic variants were mapped to gene level using the quantitative genetic scoring (QGS) method 

((Schoenmacker et al.); under review). This method calculates phenotype-agnostic scores for selected 

genetic regions representing a relative difference from a reference population. QGS values for 12,407 

protein coding genes were calculated using variants (MAF >1%) with the European section of 1000 

Genomes as a reference population (Consortium et al., 2010; 1000 Genomes Project Consortium et al., 

2015). Only protein coding genes were considered to limit the number of variables in our analyses. 

Gencode release 29 (Frankish et al., 2019) was used for genes and gene locations and a flanking region 

of 10kb before and 35kb after every gene was included. QGS values were normalised before analysis. 

Statistical analyses 

Three independent stability selection analyses were performed, one for each brain network. Stability 

selection was performed using the randomised lasso procedure (Meinshausen and Bühlmann, 2010). 

One random lasso permutation step consisted of the following procedure. First, a random subsample of 

size n/2 was selected (without repeats). The next steps were performed on this subsample. Second, 

every predictor (i.e. protein coding gene QGS value) was multiplied by a random weight between .5-1. 

This random weight is a hyperparameter and its purpose is to better detect the stability of correlated 

variables. Third, corrected network loadings were regressed against all genes in a lasso-penalised 

multiple regression with a series of m decreasing penalisation strengths. This means that progressively 

more predictors are selected by the lasso model. The result is a 12,407 by m binary matrix containing 

whether a particular gene was selected at a particular penalisation strength. 

This procedure was performed for 5000 subsamples for each network. Afterwards, the 5000 binary 

matrices were summed together and divided by the number of permutations to produce a stability path 

per gene, consisting of a stability score (i.e. the selection probability) for each penalisation strength. 
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The penalisation strengths were determined at the start of an analysis and not varied. They consisted of 

a geometric series beginning with a value just large enough so that no genes are selected and decrease 

until (on average) about 500 genes are selected. This value of 500 genes corresponds to an upper bound 

of the per-family error rate E(V) of 100. This upper limit on the error rate was based on the expected 

number of non-zero variables for a given penalisation strength (Meinshausen and Bühlmann, 2010).  

We focused on genes reaching a stability score of .5, or in other words, genes that were selected in 

more than half of the random subsamples. Any gene with a stability >.5 we call consistently associated 

or “consistent” for short. These consistent genes represent a prioritised selection of the associations 

with the highest stability. 

For all consistent genes, univariate association to the relevant brain network was calculated using linear 

regression. These associations are not independent from the stability selection and are expected to be 

strong. Similarly, for all consistent genes univariate associations with ADHD symptoms were 

calculated. These associations are mostly independent from the stability selection (but not completely 

due to the -.11 to -.06 correlation between brain networks and ADHD symptom count) and are expected 

to be weak. 

Association of the set of consistent genes with ADHD symptoms was tested using a permutation 

approach where a set of s genes (where s is the number of consistent genes) were randomly selected 

and tested for association with ADHD symptoms. This was repeated 10,000 times. In addition, a 

polygenic risk score (PRS; (Purcell et al., 2009)) approach was used to test the proportion of variance 

in ADHD symptoms explained using 5, 10, 50, 100, 250, and 500 genes with the highest stability. To 

this end, the sum of these genes multiplied by their respective brain network association effect size was 

calculated. Then this sum score was associated to ADHD symptom count. Significance, again, was 

tested using a randomised gene permutation approach and corrected for multiple testing. 

Brain expression of the consistent genes was tested using Human Protein Atlas data (available at 

proteinatlas.org) (Uhlén et al., 2015). The Human Protein Atlas classifies protein-coding genes into 

several categories: elevated expression in the brain (compared to non-brain tissue); non-specific 

expression including brain; elevated non-brain expression; and no expression in brain at all. A binomial 

test was used to determine whether a significant number of consistent genes fell into the first two 

categories (elevated brain expression or non-specific brain expression).  
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Results 

Stability 

In total ten consistent genes were identified, meaning that these had a selection probability ≥ 0.5. The 

results are shown in Table 2. The overall most consistent gene was RELL1 for brain network #4, being 

selected nearly 60% of the time. As a result, it was also significantly associated with this network 

(β=-.14, 95%CI (-.20–-.07), p=3.5e-5). Note that overall, eight out of ten regression coefficients for the 

consistent genes were negative, including RELL1.  

Table 2: Consistently associated genes. Below are the ten genes that had a stability ≥ 0.5. The “Beta” column represents the 

univariate regression coefficient for the gene with the relevant brain network. The 95% confidence interval for the beta is 

given, as well as the uncorrected p-value. The “ADHD p-value” column represents the uncorrected p-value for the 

univariate association to ADHD symptom count. 

Gene Chromo-
some 

Start position End posi-
tion 

Brain 

network 

Stability Beta CI 
low 

CI 
high 

P-value ADHD 
p-
value 

UNC5D 8 35092975 35654068 2 0.57 -0.14 -0.20 -0.07 3.15E-05 0.58 

YEATS4 12 69753483 69784576 2 0.55 -0.13 -0.19 -0.06 1.58E-04 0.61 

GNAO1 16 56225259 56391369 3 0.55 -0.13 -0.20 -0.07 5.08E-05 0.42 

SCFD1 14 31091318 31205018 3 0.51 -0.12 -0.19 -0.06 1.77E-04 0.04 

DDO 6 110712974 110736765 3 0.50 -0.11 -0.17 -0.04 1.20E-03 0.68 

TENT4B 16 50186829 50269221 3 0.50 -0.12 -0.19 -0.06 1.80E-04 0.25 

RELL1 4 37592422 37687998 4 0.60 -0.14 -0.20 -0.07 3.49E-05 0.01 

NR3C2 4 148999913 149365850 4 0.58 0.12 0.06 0.19 2.17E-04 0.51 

TRHDE 12 72481046 73064537 4 0.58 0.13 0.06 0.19 1.51E-04 0.07 

KRT73 12 53001354 53012343 4 0.53 -0.12 -0.19 -0.06 1.87E-04 0.12 

 

For network #2, the most consistent gene was UNC5D, being selected almost 57% of the time. For 

network #3 this was GNAO1 with almost 55%. The full stability paths are shown in Figure 2. The 

stability for all 12,406 genes for all three networks can be found in supplementary Table 1. This table 

also contains the Ensembl stable gene IDs. 
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Figure 2: (a) Stability paths for network #2; (b) Stability paths for network #3. (c) Stability paths for 

network #3. The x-axis shows the upper limit for the expected number of false positives E(V). 
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Expression in brain 

Out of the ten consistent genes, three genes (GNAO1, TRHDE, and UNC5D) had elevated brain 

expression. An additional six were non-specifically expressed in the brain. This means that brain-

expressed genes were significantly over-represented in our ten consistent genes (p=.03). The only 

consistent gene not expressed in the brain was KRT73. 

Association with ADHD symptoms 

In addition to the highest stability score, RELL1 also had the lowest univariate association p-value with 

ADHD symptoms in our sample with p=0.01(see Table 2). The ten consistent genes together were 

significantly associated with ADHD symptoms when compared to ten randomly selected genes (p=.03). 

In addition, the PRS results showed nominally significant associations with ADHD symptoms for all 

networks. The genes of network #4 were significantly associated with ADHD symptoms with a 

maximum R2=.014 (p=.001) using 50 genes and the genes of network #3 were significantly associated 

with ADHD symptoms with a maximum R2=.010 (p=.009) using 500 genes. The full results are shown 

in Figure 3.
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Figure 3: Results of ADHD symptom PRS using the top genes from stability selection. Bars with an asterisk are nominally significant at 

p≤.05.
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Discussion 

We examined the genetic background of three ADHD-related grey matter brain networks using a 

resampling-based stability selection approach. We found ten consistently related genes to be associated 

with those networks, nine of which were expressed in the brain. Additionally, this set of ten genes was 

significantly associated with ADHD symptoms both as a gene set and as a variable in PRS. 

The most consistent results were found for network #4, the cerebellar tonsil and culmen. The RELT-

Like Protein 1 (RELL1; stability score 0.60) gene showed both the most consistent association with a 

brain network and the most significant association with ADHD symptoms. RELL1 encodes a receptor 

expressed in lymphoid tissues which is involved in apoptosis (Moua et al., 2017). RELL1 is 

unspecifically expressed in the brain and a common variant in this gene has been tentatively implicated 

in general cognitive function (rs111283315; p=1.86e-6) (Locke et al., 2015).  The second-most 

consistent gene for this network was Nuclear Receptor Subfamily 3 Group C Member 2 (NR3C2; 

stability score 0.58), which encodes the mineralocorticoid receptor, a binding point for corticosteroid 

hormones (ter Heegde et al., 2015). Reduced mineralocorticoid receptor expression in the brain has 

been associated with schizophrenia, bipolar disorder, depression, and suicide (Klok et al., 2011; 

Medina et al., 2013; Qi et al., 2013; Xing et al., 2004; Young et al., 1998) and various classes of 

antidepressants increase expression in rats (Yau et al., 1995; Reul et al., 1994; Seckl and Fink, 1992; 

Bjartmar et al., 2000). The gene itself has been associated with ADHD and the HPA-axis (Kortmann et 

al., 2013). Signifcantly, the gene was also predictive of ADHD in conjunction with psychosocial stress 

in a partially overlapping sample (Van Der Meer et al., 2017). The third-most consistent gene was 

Thyrotropin Releasing Hormone Degrading Enzyme (TRHDE; stability score 0.58), which (as the 

name suggests) inactivates thyrotropin releasing hormone. The TRHDE gene overlaps with Tryptophan 

Hydroxylase 2 (TPH2), sharing 159 variants in our data. TPH2 variants have been associated with 

ADHD (Waider et al., 2011; K Brookes et al., 2006; Baehne et al., 2009; Sheehan et al., 2005) and – 

although conflicting findings also exist (Geissler et al., 2017; Sheehan et al., 2007; Johansson et al., 

2010) – a meta-analysis concluded that TPH2 variants may affect executive functioning and inattention 

as well as other neuropsychiatric disorders (Ottenhof et al., 2018). In a recent study, TRHDE has been 

associated with a slower increase in cerebellum white matter (Brouwer et al., 2020). 

Two consistent genes were associated with network #2 consisting of the inferior frontal gyrus. The 

overall fourth-most consistent gene Unc-5 Netrin Receptor D (UNC5D; stability score 0.57) encodes a 

receptor for netrin NTN4, which plays a role in neurite outgrowth in the cortex of rodents (Hayano et 
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al., 2014). In humans, UNC5D has been associated with neuronal function (Srikanth et al., 2018; 

Sasaki et al., 2008) and implicated in ASD (Walker and Scherer, 2013; Hussman et al., 2011; Gamsiz et 

al., 2013). The YEATS Domain Containing 4 (YEATS4; stability score 0.55) gene encodes glioma 

amplified sequence 41, a highly preserved transcription factor with the highest expression in the brain 

(Munnia et al., 2001), which is essential for cell viability and growth (Park and Roeder, 2006). 

YEATS4 has been associated with depression and its treatment response (Yamagata et al., 2017; Amare 

et al., 2018). 

The remaining four consistent genes were associated with network #3, the superior and middle frontal 

gyri. The most consistent gene was G Protein Subunit Alpha O1 (GNAO1; stability score 0.55), which 

encodes for a heterotrimeric G protein. GNAO1 function contributes significantly to synaptic 

neurotransmission and neurodevelopment and is associated with neurological disorders such as 

epilepsy, movement disorders, and developmental delay (Feng et al., 2018, 2019; Larrivee et al., 2020; 

Saitsu et al., 2016; Danti et al., 2017). In addition, variants in GNAO1 have been associated with 

depression, neuroticism, circadian rhythm, and cognitive performance (Baselmans et al., 2019; Jansen 

et al., 2019; Lee et al., 2018). The second-most consistent gene Sec1 Family Domain Containing 1 

(SCFD1; stability score 0.51) has been prioritized as a causal gene for ADHD in different brain regions 

including cerebellum and hippocampus (Fahira et al., 2019) and has been associated with Alzheimer’s 

disease (Stamati et al., 2019). The D-Aspartate Oxidase (DDO; stability score 0.50) gene plays a 

crucial role in the central nervous and neuroendocrine systems (Katane et al., 2015) and has been 

associated with depression (Howard et al., 2018). Lastly, the Terminal Nucleotidyltransferase 4B 

(TENT4B; stability score 0.50) gene is involved in RNA metabolism and has been associated with 

schizophrenia (Goes et al., 2015). 

In short, three of our ten selected genes have previously been implicated in ADHD. Other associated 

phenotypes include depression (4/10), cognitive performance (2/10), and schizophrenia (2/10). The 

strong link between our consistent genes and neuropsychiatric phenotypes suggests that the stability 

selection prioritisation method is able to identify promising candidates for ADHD imaging genetics. 

This is further reinforced by the significant over-representation of brain-expressed genes in our 

consistent set, as well as the small (i.e. variance explained of around 1%) but significant association 

with ADHD symptoms in our sample. 

This significant association with ADHD symptom count could in part be explained by the correlation 

(-.11 < r < -.06) between network loadings and ADHD symptoms. We did not statistically correct for 

this possibility, because we did not expect genes to have a fully independent effect on behaviour. In 
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fact, a post-hoc mediation analysis (data not presented) showed that the effect of the selected genes on 

ADHD is fully mediated by the brain networks.  

Eight out of ten genetic associations with the brain networks were negative, meaning that (because of 

the negative correlation between networks and ADHD) their association with ADHD was positive. This 

imbalance in direction of effect was predicted our previous work (Schoenmacker et al.) and may be 

explained  by the fact that genetic rarity – encoded by QGS as difference from the general population – 

is often associated with risk. Recent findings suggest that evolutionary pressure against ADHD may 

exist in modern environments (Esteller-Cucala et al., 2020) and our results lend modest support to the 

idea that genetic variation is more often a risk for ADHD than a protective factor.   

In summary, we identified consistent associations between ten genes and ADHD-related brain networks 

and discussed their function and association, but we did not investigate underlying causative biological 

mechanisms. Employing purely statistical approach, our findings represent a list of candidates and 

should be seen as a starting point for further study. Further steps may include functional 

characterisation or bioinformatics approaches such as molecular landscape analysis. Only protein 

coding genes were considered, therefore, a majority of genetic variance was excluded from our analysis 

a priori. The currently not included genetic regions might be reconsidered for inclusion if /when larger 

samples become available. 

By employing statistical data reduction methods in both the imaging and genetic domain and 

combining these with an association method based on consistency of association instead of effect size, 

we have created a list of ten candidate genes for ADHD imaging genetics. Three of these genes – 

NR3C2, TRHDE/TPH2, and SCFD1 – were previously associated with ADHD, and three have elevated 

expression in the brain: GNAO1, TRHDE/TPH2, and UNC5D. Our results and candidate list aid the 

growing understanding of the aetiology of ADHD from genes to brain to behaviour. 
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