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Abstract 48 

More knowledge is needed around the role and importance of specific genes in germline 49 

predisposition to Ewing sarcoma to inform biological investigation and clinical practice. In this 50 

study, we evaluated the enrichment of pathogenic germline variants in Ewing sarcoma relative 51 

to other pediatric sarcoma subtypes, as well as patterns of inheritance of these variants. We 52 

carried out an ancestry-matched case-control analysis to screen for enrichment of pathogenic 53 

germline variants in 141 established cancer predisposition genes in 1138 individuals with 54 

pediatric sarcoma diagnoses (222 Ewing sarcoma cases) relative to identically processed 55 

cancer-free controls. Findings in Ewing sarcoma were validated with an additional cohort of 425 56 

individuals, and 301 Ewing sarcoma parent-proband trios were analyzed for inheritance patterns 57 

of identified pathogenic variants. A distinct pattern of pathogenic germline variants was seen in 58 

Ewing sarcoma relative to other sarcoma subtypes. FANCC was the only gene with an 59 

enrichment signal for heterozygous pathogenic variants in the discovery Ewing sarcoma cohort 60 

(OR 14.4, 95% CI 3.5 – 51.2, p = 0.002, FDR = 0.28). This enrichment in FANCC heterozygous 61 

pathogenic variants was seen again in the Ewing sarcoma validation cohort (OR 5.1, 95% CI 62 

1.2 – 18.5, p = 0.03, single hypothesis), representing a broader importance of genes involved in 63 

DNA damage repair, which were also nominally enriched in Ewing sarcoma cases. Pathogenic 64 

variants in DNA damage repair genes were acquired through autosomal inheritance. Our study 65 

provides new insight into germline risk factors contributing to Ewing sarcoma pathogenesis. 66 

 67 

Introduction 68 

Ewing sarcoma is the second most common bone and soft tissue cancer impacting 69 

children and adolescents worldwide1. It is an aggressive malignancy that is metastatic in 25% of 70 

cases at presentation and requires a very intensive treatment regimen including multiple 71 

chemotherapies, as well as surgery or radiation for local control. While overall survival for 72 

localized disease has improved to 75%, treatment confers significant morbidity, and cure rates 73 
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for metastatic and relapsed disease remain poor2. Through a better understanding of the 74 

predisposing genetic factors contributing to Ewing sarcoma pathogenesis, the pediatric 75 

oncology community would be able to develop more informed and less toxic treatment 76 

regimens, as well as better screen children at risk for disease, opening the door to opportunities 77 

for earlier detection and even prevention. 78 

Ewing sarcoma is driven by EWSR1-ETS gene fusions1,3, and is often characterized by 79 

a complex rearrangement pattern known as chromoplexy4. The genetic events preceding these 80 

simple and complex rearrangements remain largely unknown. Prior work has suggested a role 81 

for pathogenic germline variants in DNA damage repair (DDR) genes in Ewing sarcoma, but 82 

systematic case-control analyses to precisely define this role have not been undertaken5,6. 83 

Much of what is known about germline predisposition to Ewing sarcoma has centered on 84 

common population variants identified as susceptibility loci from genome-wide association 85 

studies (GWAS)1,7–9, and a comprehensive evaluation of the relative contribution of rare coding 86 

pathogenic germline variants is largely incomplete. 87 

 Furthermore, a more complete understanding of the familial inheritance patterns of 88 

genetic risk factors in Ewing sarcoma is needed to guide cascade testing strategies with broad 89 

potential clinical impact. While guidelines for familial testing have been developed for various 90 

cancer predisposition syndromes10,11, patients with Ewing sarcoma and family members are not 91 

uniformly referred for genetic testing. Case reports of siblings with metachronous Ewing 92 

sarcoma diagnoses have suggested that germline variants shared within families may increase 93 

risk, but these have not yet been identified12. Family-based germline sequencing, such as the 94 

analysis of parent-proband trios, is thus a powerful tool for better understanding the inheritance 95 

of pathogenic germline variants in pediatric sarcoma generally, and Ewing sarcoma in 96 

particular13. 97 

 We hypothesized that through a systematic comparative analysis of germline 98 

predisposition across pediatric sarcoma subtypes, we would elucidate distinct patterns of rare 99 
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coding pathogenic variants in Ewing sarcoma. We therefore undertook a three-stage study 100 

comprising 1) an ancestry-matched case-control analysis utilizing a discovery pan-sarcoma 101 

cohort, 2) validation with an ancestry-matched case-control analysis of an additional cohort of 102 

patients with Ewing sarcoma, and 3) evaluation of inheritance in germline variants for patients 103 

with Ewing sarcoma and their parents. 104 

 105 

Materials and Methods 106 

Ethics Approval and Consent to Participate 107 

 Written informed consent from patients and institutional review board approval, allowing 108 

comprehensive genetic analysis of germline samples, were obtained by the original studies that 109 

enrolled patients. The secondary genomic and deep-learning analyses performed for this study 110 

were approved under Dana-Farber Cancer Institute institutional review board protocols 21-143 111 

and 20-691. This study conforms to the Declaration of Helsinki. 112 

Study Participants 113 

A total of 1138 individuals with pediatric sarcoma diagnoses were included in the 114 

discovery cohort (Supplemental Methods). A combination of germline whole-genome 115 

sequencing (WGS) and whole-exome sequencing (WES) was aggregated for these individuals 116 

across four data sources; WGS was converted to WES equivalents using predefined target 117 

intervals to focus on coding variants only (Supplemental Methods). For validation, germline 118 

WGS for 425 individuals with Ewing sarcoma from the Gabriella Miller Kids First (GMKF) 119 

program was utilized. For 301 individuals with Ewing sarcoma from GMKF, germline WGS for 120 

parents was available (602 parents) and used for analysis of inheritance among trios (Tables S1 121 

and S2; Supplemental Methods). Sequenced exomes for 24128 cancer-free individuals from six 122 

cohorts were extensively quality controlled, identically processed, and analyzed in the same 123 

way as cases for use as controls in this study (Supplemental Methods). 124 

Population Stratification 125 
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Principal component analysis (PCA) was undertaken utilizing germline genotypes for all 126 

discovery, validation, and control cohorts to enable ancestry inference. We used a trained 127 

random forest classifier to assign one of the five 1000 Genomes defined super populations 128 

(European, African, Admixed American, East Asian, and South Asian) to each sample in our 129 

case and control cohorts. Cases and controls were matched on genetic ancestry composition 130 

based on the first ten principal components from the preceding analysis (Supplemental 131 

Methods). 132 

Germline Variant Characterization 133 

We called germline variants with a deep learning method, DeepVariant, which has 134 

shown superior sensitivity and specificity compared with a joint genotyping-based approach 135 

(version 0.8.0)14,15. High-quality coding variants were utilized for subsequent analyses 136 

(Supplemental Methods).  137 

Gene Sets 138 

We evaluated the prevalence of pathogenic variants in a list of established germline 139 

cancer predisposition genes (n = 141; Table S3)16–19. A subset of these genes had an 140 

established role in DDR (n = 43). The low-penetrance founder CHEK2 variant (p.Ile200Thr) was 141 

considered separately from other CHEK2 pathogenic variants. We also evaluated predefined 142 

and non-mutually exclusive functional subsets of the DDR gene list for pathway-based 143 

enrichment analysis, curated through evaluation of known primary biological function in the 144 

Online Mendelian Inheritance in Man (OMIM)20 and Reactome21 databases: mismatch repair (n 145 

= 4), Fanconi Anemia (n = 16), double-strand break repair (n = 12), and nucleotide excision 146 

repair (n = 6). 147 

Germline Variant Pathogenicity Evaluation 148 

Based on ClinVar database and Variant Effect Predictor (VEP) consequence 149 

annotations, all detected germline variants in cancer predisposition genes were classified into 150 

five categories: benign, likely benign, variants of unknown significance, likely pathogenic, and 151 
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pathogenic using the American College of Medical Genetics (ACMG) guidelines22. Only putative 152 

loss-of-function, pathogenic, and likely pathogenic variants were included in this study (hereafter 153 

collectively referred to as pathogenic variants). Pathogenic variants were manually evaluated 154 

using the raw genomic data and the Integrative Genomics Viewer (IGV; Supplemental Methods; 155 

Tables S4, S5, and S6)23,24.  156 

Outcomes 157 

The primary outcomes included gene-level enrichment analysis of germline pathogenic 158 

variants in individuals with Ewing sarcoma compared to other pediatric sarcomas, validation of 159 

enrichment findings in Ewing sarcoma, and analysis of mechanisms of inheritance among 160 

germline pathogenic variants in Ewing sarcoma. The secondary outcomes included exploratory 161 

gene and pathway level enrichment analysis of germline pathogenic variants in DDR genes in 162 

Ewing sarcoma. 163 

Statistical Analysis 164 

Two-sided Fisher’s exact tests were used to calculate the odds ratios, 95% confidence 165 

intervals (CIs), and P values of germline pathogenic variant enrichment in affected versus 166 

unaffected cohorts for each of the examined cancer predisposition genes. P < 0.05 was the 167 

threshold for nominal enrichment signal. For the discovery cohort, the false discovery rate 168 

(FDR) was calculated using the Benjamini-Hochberg procedure; FDR < 0.05 was used as the 169 

threshold for enrichment meeting multiple hypothesis testing criteria for validation in the 170 

absence of a secondary cohort (applied to the discovery cohort; Supplemental Methods). 171 

 172 

Results 173 

Study overview and characteristics of discovery and validation cohorts 174 

Our discovery cohort of 1138 primarily pediatric patients with sarcoma comprised 175 

osteosarcoma (436 cases), rhabdomyosarcoma (180 cases), Ewing sarcoma (222 cases), and 176 

other subtypes (300 cases; Figure 1A). The mean age of patients in the discovery cohort was 177 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.07.22268685doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.07.22268685
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8

10.8 years (SD 5.5 years), and 52% of patients were male (Figure 1B). Our validation cohort 178 

comprised 433 patients with Ewing sarcoma; of these, 425 cases were available for an 179 

ancestry-matched case-control study, and 301 cases were available as parent-proband trios for 180 

evaluation for mechanisms of inheritance (Figure 1A). The mean age of patients in the Ewing 181 

sarcoma validation cohort was 13.3 years (SD 6.6 years), and 54% of patients were male 182 

(Figure 1C). The germline exome-wide mean target coverage for the discovery cohort samples 183 

was 53.9X (interquartile range [IQR] 37.6 – 66.3X), and for the Ewing sarcoma validation cohort 184 

samples was 27.3X (IQR 24.6 – 30.2X); exome-wide variant call rates were satisfactory for all 185 

samples (Figure S1). Differential coverage for evaluated genes was assessed, and overall 186 

comparable between cases and controls (Figure S2). All samples had satisfactory indel rates, 187 

variant transition-to-transversion rates, and genotype quality (Figure S3). 188 

 189 

Pathogenic germline variants in cancer predisposition genes are enriched across 190 

pediatric sarcoma histologic subtypes relative to cancer-free controls 191 

 We assessed the frequency of pathogenic germline variants in 141 established cancer 192 

predisposition genes in our discovery cohort16–19. Our discovery cohort had broad representation 193 

from five major continental ancestries (Figure 2A; Figure S4); control cohorts for comparison 194 

were identically processed and ancestry-matched. The presence of pathogenic germline 195 

variants was not significantly associated with age (mean 10.9 vs. 10.5 years, p = 0.42 by two-196 

sided t-test) or sex (p = 0.81 by Fisher’s exact test). Across the pan-sarcoma discovery cohort, 197 

nominal enrichment signal at p < 0.05 was observed for multiple genes previously implicated in 198 

sarcoma pathogenesis, including TP53, NF1, and DICER15,18,25; nominal enrichment signal was 199 

also seen for MUTYH, PALB2, NTHL1, and FANCC, genes with less prior supporting evidence 200 

for their role in sarcoma germline predisposition. The enrichment in TP53 was greatest, 201 

reaching significance at FDR < 0.05 across the pan-sarcoma discovery cohort (Figure 2B; Table 202 

S7). 203 
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 We next carried out ancestry-matched enrichment analyses for each of the three major 204 

sarcoma histologic subtypes. For osteosarcoma, nominal enrichment signal was observed for 5 205 

genes (Table S8). These included TP53 and RB1, previously validated as important in germline 206 

predisposition to osteosarcoma (Figure 2C)26; once again, only TP53 reached significance at 207 

FDR < 0.05. RECQL also had nominal enrichment signal in osteosarcoma cases relative to 208 

controls; however, due to relative underpowering, the previously implicated predisposition gene 209 

RECQL4 did not, despite a higher absolute frequency in cases relative to controls (Figure S5). 210 

Nominal enrichment signal was also observed for MUTYH and FANCM, genes without 211 

substantial prior evidence supporting their role in germline predisposition to osteosarcoma27. 212 

In rhabdomyosarcoma, nominal enrichment signal was observed for TP53, NF1, and 213 

DICER1, genes that have previously been implicated in germline predisposition to pediatric 214 

rhabdomyosarcoma28. We were able to redemonstrate a nominal enrichment signal for BRCA2 215 

and CHEK2, genes with a previous moderate level of evidence for a role in germline 216 

predisposition to rhabdomyosarcoma25,29–31. No genes reached significance at FDR < 0.05 217 

(Figure 2D; Table S9).  218 

In Ewing sarcoma, the only gene with nominal enrichment signal was FANCC, with 219 

heterozygous pathogenic variants seen in 3 out of 222 cases (1.3%, OR 14.4, 95% CI 3.5 – 220 

51.2, p = 0.002, FDR = 0.28; Figure 2E; Figure S5; Table S10). Prior work had shown a general 221 

association between germline variants in Fanconi Anemia pathway genes and translocation-222 

driven sarcomas, but the role of FANCC in germline predisposition to Ewing sarcoma had not 223 

previously been reported to our knowledge5.  In contrast to osteosarcoma and 224 

rhabdomyosarcoma, no pathogenic germline TP53 variants were observed in Ewing sarcoma. 225 

Thus, our enrichment analysis of pathogenic variants in our discovery cohort 226 

demonstrated a unique pattern of predisposing variants across pediatric sarcoma subtypes, with 227 

a strong enrichment signal for TP53 in all sarcoma subtypes except Ewing sarcoma. Having 228 

demonstrated a distinct enrichment pattern among Ewing sarcoma cases relative to 229 
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osteosarcoma and rhabdomyosarcoma, we proceeded to evaluate the enrichment signal in 230 

FANCC in our larger validation cohort of Ewing sarcoma cases. 231 

 232 

FANCC and other DNA damage repair genes harbor pathogenic germline variants in 233 

Ewing sarcoma 234 

Our validation cohort of Ewing sarcoma patients was also ancestry-matched to cancer-235 

free controls to enable targeted evaluation of FANCC enrichment (Figure S6). Heterozygous 236 

pathogenic germline FANCC variants were again enriched, seen in 3 of 425 cases (0.7%, OR 237 

5.1, 95% CI 1.2 – 18.5, p = 0.03, single hypothesis; Figure 3A). The pooled odds ratio for 238 

FANCC enrichment between discovery and validation cohorts remained significant (6 of 647 239 

cases, 0.9%, OR 7.7, 95% CI 3.1 – 19.3, p < .0001).  240 

Prior mechanistic work has demonstrated that FANCC knockout contributes to 241 

rearrangement signatures consistent with homologous recombination deficiency32. We thus 242 

asked whether the recurrent enrichment of FANCC represented a broader importance of DDR 243 

genes in germline predisposition to Ewing sarcoma, as has been previously suggested6. We 244 

performed an exploratory analysis in the Ewing sarcoma validation cohort on the subset of 43 245 

cancer predisposition genes with specific DDR pathway roles. In aggregate, pathogenic variants 246 

in DNA double-strand break repair (DSB) genes (OR 1.8, 95% CI 1.1 – 3.0, p = 0.02) and 247 

nucleotide excision repair genes (OR 2.8, 95% CI 1.2 – 5.9, p = 0.01; Figure 3B, Table S11) 248 

were enriched. While the discovery Ewing sarcoma and rhabdomyosarcoma cohorts were 249 

underpowered for a comparative pathway analysis (Tables S12 and S13), the discovery 250 

osteosarcoma cohort was of comparable size. In aggregate, DDR genes were enriched in 251 

discovery osteosarcoma cases (OR 1.9, 95% CI 1.4 – 2.6, p = 0.0001, Figure S7); notably and 252 

in contrast to Ewing sarcoma, this was driven largely by germline TP53 mutations, as the DSB 253 

and nucleotide excision repair pathways were not significantly enriched (Table S14). In the 254 

validation cohort of patients with Ewing sarcoma, the presence of pathogenic germline variants 255 
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in DDR genes was not significantly associated with age (mean 13.3 vs. 13.5 years, p = 0.88 by 256 

two-sided t-test) or sex (p = 0.10 by Fisher’s exact test). 257 

 In evaluating the specific genes contributing to the collective enrichment of the DSB and 258 

nucleotide excision repair pathways, we found that CHEK2, ERCC2, and ERCC4 had nominal 259 

enrichment signal at p < 0.05 in our validation Ewing sarcoma cohort, although none of these 260 

individual genes reached significance at FDR < 0.05 when correcting for 43 DDR genes (Table 261 

S15). In combination with FANCC, these four genes harbored germline pathogenic variants in 262 

16 of 425 Ewing sarcoma cases (3.8%), compared with 60 of 7259 controls (0.8%; Figure 3C).  263 

Similar to our discovery Ewing sarcoma cohort, we once again identified no pathogenic 264 

germline TP53 variants in our validation Ewing sarcoma cohort. The rate of pathogenic germline 265 

TP53 variants in patients with Ewing sarcoma (0%) was significantly lower than that seen for all 266 

sarcomas in aggregate (1.6%, p = 0.006 by Fisher’s exact test), and osteosarcoma in particular 267 

(2.8%, p = 0.0005 by Fisher’s exact test; Figure 3D). This, in combination with the recurrent 268 

enrichment of pathogenic germline mutations in FANCC, as well as the collective enrichment of 269 

DSB and nucleotide excision repair pathways, demonstrated a distinct pattern of germline 270 

mutations in Ewing sarcoma relative to other pediatric sarcoma subtypes.  271 

 272 

Pathogenic germline variants in DNA damage repair genes are inherited in high-risk 273 

families 274 

 Having identified pathogenic germline mutations in FANCC and other DDR genes in 275 

Ewing sarcoma, we next sought to assess inheritance of these variants. Thus, we evaluated the 276 

301 patients with Ewing sarcoma from our validation cohort that were part of parent-proband 277 

sequencing trios. Among these 301 patients, 32 harbored pathogenic germline variants in DDR 278 

genes (10.6%; Figure 4A). In 32 of 32 probands in which a pathogenic germline DDR variant 279 

was identified in a proband, the same germline DDR variant was identified in one of the parents 280 

(100%). In contrast, for probands in whom a pathogenic germline DDR variant was not 281 
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identified, only 19 of 269 had at least one parent with a germline DDR variant (7.1%; Figure 4B). 282 

Collectively, pathogenic variants in DSB repair genes were more common among parents of 283 

probands than ancestry-matched cancer-free controls (OR 1.8, 95% CI 1.2 – 2.7, p = 0.006). 284 

While pathogenic germline variants in genes such as BRCA2 and CHEK2 were also observed in 285 

some parents and not inherited by probands, these were at a rate that was comparable to the 286 

population frequency (Figure S8). 287 

 Identical pathogenic germline DDR variants in probands and parents impacted FANCC, 288 

ERCC2, CHEK2, and BRCA1 among other genes (Figure 4C). In three instances, heterozygous 289 

germline pathogenic variants affecting multiple DDR genes were seen in probands, with each 290 

variant also identified in a parent (Figure 4D). 291 

 We sought to understand whether as yet unidentified de novo pathogenic variants in 292 

other coding genes may coordinate with or complement the inherited DDR variants to explain a 293 

significant proportion of the unexplained germline risk for developing pediatric Ewing sarcoma. 294 

Based on prior frameworks33–35, we reasoned that finding pathogenic de novo variants 295 

recurrently impacting the same gene in a cohort of 301 proband-parent trios would be highly 296 

unlikely by chance, implicating potential additional candidate risk genes. However, in our cohort, 297 

we identified recurrent pathogenic de novo germline variants in only one gene, TTN, which 298 

occurred in two separate Ewing sarcoma cases. As the frequency of pathogenic germline 299 

variants in TTN between cases and cancer-free controls was not significantly different and there 300 

is no established biological role for TTN in Ewing sarcoma oncogenesis, there was insufficient 301 

evidence to support its role in germline predisposition to Ewing sarcoma (Figure S9).   302 

Taken together, pathogenic germline variants in DSB genes were present more 303 

frequently in families of patients with Ewing sarcoma relative to cancer-free controls. Autosomal 304 

inheritance, as opposed to de novo development, was the mechanism of inheritance of these 305 

moderate penetrance risk variants. 306 

 307 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.07.22268685doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.07.22268685
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13

Discussion 308 

 This study represents the largest and most systematic analysis of germline 309 

predisposition to Ewing sarcoma relative to other pediatric sarcoma subtypes to date. Having 310 

assembled germline sequencing data from 1138 patients with pediatric sarcoma diagnoses, we 311 

undertook rigorous ancestry-matched case-control analyses and illustrated distinct patterns of 312 

enrichment amongst pathogenic variants in Ewing sarcoma relative to osteosarcoma and 313 

rhabdomyosarcoma. Supporting the validity of our approach, we were able to recover 314 

enrichment signal in many cancer predisposition genes known to be associated with pediatric 315 

sarcoma risk, such as TP53, RB1, and DICER1. We additionally demonstrated enrichment 316 

signal in several cancer predisposition genes with less well-characterized links to pediatric 317 

sarcoma, most notably FANCC in Ewing sarcoma. We then validated the enrichment of 318 

pathogenic germline variants in FANCC among patients with Ewing sarcoma using an 319 

independent cohort of 425 unique patients. This recurrent enrichment of heterozygous 320 

pathogenic germline variants in FANCC provides evidence for its role in increasing risk for some 321 

cases of Ewing sarcoma, and raises the possibility that monoallelic germline variants in Fanconi 322 

anemia genes may confer increased risk in other translocation-associated cancers. 323 

We demonstrated that the enrichment in FANCC pathogenic germline variants 324 

represented a broader importance of DNA damage repair (DDR) genes, and both the DNA 325 

double-strand break (DSB) and nucleotide excision repair pathways in particular, for Ewing 326 

sarcoma germline predisposition. While prior studies have identified occasional instances of 327 

pathogenic germline TP53 variants amongst cases of Ewing sarcoma, through comparative 328 

analyses, we found that the frequency of pathogenic germline TP53 variants among cases of 329 

Ewing sarcoma was significantly lower in relation to other pediatric sarcoma subtypes6,29. This 330 

finding is supported by the clinical observation that Ewing sarcoma is not frequently seen in 331 

families with Li-Fraumeni syndrome36. 332 
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 Using parent-proband trios, we showed that pathogenic germline variants in DNA 333 

damage repair genes found in patients with Ewing sarcoma are also present in their parents, 334 

and therefore passed on through autosomal inheritance. We found pathogenic germline variants 335 

in DSB genes enriched amongst parents of patients with Ewing sarcoma. As moderate 336 

penetrance risk variants that are also present in parents, we reasoned that pathogenic germline 337 

variants in DDR genes play a substantial role in increasing risk for developing Ewing sarcoma, 338 

but are likely not sufficient to cause the disease in isolation. However, we did not identify de 339 

novo variants recurrently impacting other genes to support a role for their interaction with 340 

pathogenic germline variants in DDR genes to promote germline predisposition to Ewing 341 

sarcoma. 342 

 Our study had some notable limitations. While pathogenic germline variants in FANCC 343 

occurred at a rate greater than expected by chance in cases of Ewing sarcoma, the overall 344 

frequency of these variants was low (1.3% in the discovery cohort, 0.7% in the validation 345 

cohort), supporting the role of FANCC as a moderate penetrance cancer predisposition gene as 346 

opposed to the sole driver of disease pathogenesis. Additionally, our focus on germline variants 347 

in select DDR genes within Ewing sarcoma likely underestimated the total contribution of rare 348 

coding pathogenic germline variants to Ewing sarcoma pathogenesis. Finally, similar to much 349 

preceding work in germline predisposition in pediatric cancers, our methods were limited to 350 

identifying known pathogenic germline SNVs/ indels conferring increased risk in pediatric 351 

sarcoma. As progress is made in germline structural variant discovery37 and placing rare 352 

pathogenic variants in the context of complex germline interactions38–41, future studies and new 353 

statistical frameworks will be needed to more completely define the role of germline 354 

predisposition in Ewing sarcoma pathogenesis. 355 

 Taken together, our analysis supports a unique contribution of germline variants in 356 

FANCC and other DDR genes to Ewing sarcoma pathogenesis. Our study provides a 357 
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foundation to inform approaches to genetic testing for patients with Ewing sarcoma, as well as 358 

cascade testing for family members. 359 
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 578 

Figure Legends 579 

Figure 1: Study overview and characteristics of discovery and validation cohorts. A, 580 

Study schematic overview. The discovery cohort comprised 1138 cases, and the enrichment of 581 

pathogenic germline variants across 141 established cancer predisposition genes was 582 

evaluated. Ancestry-matched case-control analyses were carried out across the pan-sarcoma 583 

cohort (1138 cases), as well as major sarcoma histologic subtypes: osteosarcoma (436 cases), 584 

rhabdomyosarcoma (180 cases), Ewing sarcoma (222 cases). The validation cohort comprised 585 

433 cases of Ewing sarcoma. The enrichment of pathogenic germline variants in 43 DNA 586 

damage repair genes was evaluated employing an ancestry-matched case-control analysis. 587 

Mechanisms of inheritance were evaluated for 301 cases available as parent-proband trios. B, 588 

Discovery cohort demographics: mean age 10.8 years, 52% male. C, Ewing sarcoma validation 589 

cohort demographics: mean age 13.3 years, 54% male. 590 
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Figure 2: Ancestry composition of discovery cohort. Enrichment of pathogenic germline 591 

variants in discovery cohort, across and within major histologic subtypes. A, Ancestry 592 

composition of discovery cohort: 789 European cases (EUR), 136 African cases (AFR), 104 593 

South Asian cases (SAS), 102 Admixed American cases (AMR), 7 East Asian cases (EAS). B – 594 

D, Odds ratios and 95% confidence intervals for enrichment of pathogenic germline variants 595 

among cancer predisposition genes. Red: Significant at FDR < 0.05 after Benjamini-Hochberg 596 

procedure. Gray: Significant at p < 0.05, but does not meet FDR < 0.05. Genes with p > 0.05 597 

are not displayed. B, Pan-sarcoma cohort (1138 cases, 5690 controls). C, Osteosarcoma 598 

subset of cohort (436 cases, 3488 controls). D, Rhabdomyosarcoma subset of cohort (180 599 

cases, 8280 controls). E, Ewing sarcoma subset of cohort (222 cases, 12654 controls). 600 

Figure 3: Enrichment of pathogenic germline variants in FANCC and other DNA damage 601 

repair genes in Ewing sarcoma validation cohort. A, Enrichment of pathogenic germline 602 

variants in FANCC in the Ewing Sarcoma validation cohort vs. controls (OR 5.1, 95% CI 1.2 – 603 

18.5). B, Enrichment of pathogenic germline variants in DNA damage response genes and 604 

specific pathways (Red: Significant at p < 0.05; Gray: Not significant): 43 DNA damage 605 

response genes (All DDR; OR 1.4, 95% CI 1.0 – 1.9, p = 0.05), 12 genes involved in DNA 606 

double-strand break repair (DSB repair; OR 1.8, 95% CI 1.1 – 3.0, p = 0.02), 6 genes involved 607 

in nucleotide excision repair (OR 2.8, 95% CI 1.2 – 5.9, p = 0.01), 16 genes involved in Fanconi 608 

anemia pathway (OR 1.4, 95% CI 0.8 – 2.3, p = 0.28), 4 genes involved in mismatch repair 609 

(MMR; OR 0.5, 95% CI 0 – 3.2, p = 1.0). C, Collective frequency of the 4 genes with enrichment 610 

signal at p < 0.05 (CHEK2, ERCC2, ERCC4, and FANCC) in Ewing sarcoma cases vs. controls. 611 

D, Rates of pathogenic variants in TP53 in Ewing sarcoma validation cohort in comparison to 612 

Ewing sarcoma subset of discovery cohort, rhabdomyosarcoma subset of discovery cohort, 613 

osteosarcoma subset of discovery cohort, and pan-sarcoma discovery cohort (Fisher’s exact 614 

tests, n.s. denotes no significant difference, *** denotes significant difference at p < 0.05). 615 
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Figure 4: Pathogenic germline variants in DNA damage repair genes are inherited in high-616 

risk families. A, Pathogenic germline variants in DDR genes among trio probands with Ewing 617 

sarcoma. 35 pathogenic variants impacting 32 of 301 patients with Ewing sarcoma were 618 

identified. B, 32 of 32 probands (100%) with pathogenic germline variants in DDR genes had 619 

identical variants identified in parents. 19 of 269 probands without a pathogenic germline variant 620 

in a DDR gene had at least one parent with a germline DDR variant that was not inherited by 621 

the proband (7.1%). C – D, Pedigrees and IGV screenshots of pathogenic variants in DDR 622 

genes. Pedigree legend: circle = female sex, square = male sex, diamond = unknown sex, gray 623 

shading = proband with Ewing sarcoma, * denotes variant 1 identified in parent-proband trio, ‡ 624 

denotes variant 2 identified in parent-proband trio. Top screenshot: Carrier Parent, Bottom 625 

screenshot: Proband.  626 

 627 
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