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Abstract

Introduction: A discussion of ‘waves’ of the COVID-19 epidemic in different coun-
tries is a part of the national conversation for many, but there is no hard and fast means
of delineating these waves in the available data and their connection to waves in the
sense of mathematical epidemiology is only tenuous. Methods: We present an al-
gorithm which processes a general time series to identify substantial, significant and
sustained periods of increase in the value of the time series, which could reasonably
be described as ‘observed waves’. This provides an objective means of describing
observed waves in time series. Results: The output of the algorithm as applied to
epidemiological time series related to COVID-19 corresponds to visual intuition and
expert opinion. Inspecting the results of individual countries shows how consecutive
observed waves can differ greatly with respect to the case fatality ratio. Furthermore,
in large countries, a more detailed analysis shows that consecutive observed waves
have different geographical ranges. We also show how waves can be modulated by
government interventions and find that early implementation of non-pharmaceutical
interventions correlates with a reduced number of observed waves and reduced mor-
tality burden in those waves. Conclusion: It is possible to identify observed waves of
disease by algorithmic methods and the results can be fruitfully used to analyse the
progression of the epidemic.

NOTE: This preprint reports new research that has not been certifiei by peer review and should not be used to guide clinical practice.
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1 Introduction

The COVID-19 pandemic has thrust epidemiology into the public consciousness. Out-
breaks, epidemic peaks and waves of transmission are widely discussed. However, we
lack a consensus on the definition of many of these terms [31]. Depending upon context,
the meaning of the term ‘epidemic wave’ can vary from a well-defined property of a math-
ematical object through to a loosely defined portion of a time series. Despite definitional
problems, using these descriptive terms has value for planning and public health [30].
With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) believed likely to
become endemic [24] and join the ranks of other pathogens which regularly cause epi-
demics, a reflection on what constitutes an epidemic wave can help to clarify our thoughts
and discussion [25].

SARS-CoV-2 has spread across the world after emerging in early December 2019 in
Wuhan, China (Figure 1) [21]. Governments across the world implemented non-pharma-
ceutical interventions (NPIs) with different levels of stringency and speed in an attempt
to prevent and/or minimise the importation and local transmission of the virus [26]. Un-
fortunately, these NPIs often have a substantial associated cost and so it is important to
understand how best to reduce transmission in a cost efficient manner. Understanding
the epidemic in any single country is a challenge given the myriad potential sources of re-
gional heterogeneities; making meaningful comparisons between countries is even harder.
Before we can critically engage in comparative exercises that explore how the size of an
epidemic wave relates to factors such as socio-economic status, the stringency of interven-
tions, and other health indicators, we must clearly define what a wave is.

In this paper we make three contributions aimed at resolving this issue. First, to facil-
itate more nuanced discussion, we make explicit the different ways in which researchers

use the term ‘epidemic wave’. Second, we provide an algorithm, with a public domain
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Figure 1: (A) Choropleth showing the number of days since the emergence of the first
cases in China on the 31st of December, 2019, until the cumulative number of deaths in
each country surpassed 10. Countries with darker colours passed the threshold earlier
than the lighter coloured countries. After starting in China, epidemics occurred in Europe,
the Middle East and North America before moving south to South America, Africa and
the Pacific. (B) Scatter plot showing the correlation between the days until the epidemic
threshold was reached in each country against the GNI per capita for that country showing
a negative trend, i.e., the pandemic spread to higher GNI per capita countries first. Linear
regression line in purple with a shaded 95% confidence interval (C) Time series of the
daily number of confirmed cases (left) and deaths (right) per 10,000 population among the
countries that have evidence of a second wave (light grey), and the 7-day rolling median
of the mean across countries (black line). For each country, the time is taken relative to the
date at which the epidemic became established.

implementation, to partition epidemic time series (of confirmed cases and deaths) into
non-overlapping ‘observed waves’, as defined below. We stress that this is not the provi-
sion of yet another definition of an epidemic wave; rather it is an exercise in emphasising
some of the features any plausible definition should have and making explicit the ones we
have chosen. Third, we consider different circumstances that may lead to the formation of
observed waves, such as changes in transmission or case ascertainment, and geographic
aggregation and in doing so we provide a more nuanced interpretation of the data.

We posit that, when comparing epidemic curves across countries, it is beneficial to

do so at the level of observed waves (as identified by our algorithm), in order to remove
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biases inherent to changing practices over time, such as testing effort and intervention
stringency. We provide an example of how to use annotated time series to carry out a
global comparative analysis of the influence of NPIs and testing on the size of observed

waves.

2 Wave detection method

A wave in a time series is informally understood to be a significant, substantial and sus-
tained increase in values followed by a significant and substantial decrease - a temporary
increase of at least a certain minimal height which lasts for a certain minimal duration.
Both those parameters depend on the context of the problem and, even in a fixed context,
practitioners will have legitimate disagreements about whether a given period of a time
series is indeed a ‘wave’.

In the context of the epidemiology of infectious diseases, an epidemic wave is a clearly
understood feature of mathematical models of transmission dynamics. A wave is charac-
terized by early exponential growth in the number of infected agents, during which the
effective reproduction number Rt > 1, followed by a saturation phase as Rt approaches
1. In an unmitigated epidemic Rt = 1 is a threshold condition that corresponds to the
moment in which the population reaches herd immunity, after which Rt becomes lower
than 1 and cases decrease over time. In systems with mechanisms of fast susceptibility re-
plenishment (loss of immunity) and time dependent transmission modulators (seasonality
and epochal evolution), a population can fluctuate around the herd immunity threshold,
leading to several epidemic waves over time (e.g. flu epidemics) [11]. In such cases, an
epidemic wave can be defined as the period between two local minima. If the model re-
sults in the infection rate converging to a stable background level, we can consider the
period after the final local minimum to be the final wave of the model.

In the real world, where health surveillance systems are struggling to keep up with
an unfolding pandemic, case and death notification definitions are volatile and/or de-
pendent on testing capacity, making it hard to detect when an epidemic wave begins or
ends [6]. Furthermore, during the current COVID-19 pandemic, unlike in unmitigated
epidemics, changes in social behaviour in response to the development of the pandemic,
both as a result of government restrictions and individual choice, have drastically changed
the intensity of transmission, Rt, and re-shaped the underlying transmission networks in
affected countries. These changes are exogenous to standard epidemiological models, ren-
dering the concept of a wave more ambiguous and raising the need for a clearer discourse
around what a wave is, especially given how epidemic waves have been brought to the
forefront of public discussion when justifying different levels of policy restriction.

In order to remove the ambiguity surrounding time series of cases and deaths, we

propose a robust algorithm for identifying waves (understood as significant, substantial
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and sustained increases) in time series and apply it to time series of cases and deaths.
We do not test for the presence of a significant decrease after the peak, assuming that if
a country is currently experiencing an elevated level of transmission it is undergoing a
wave which will eventually terminate. As a consequence, this means ongoing waves are
still identified.

We describe these as ‘observed waves’, since they differ from the theoretical waves of
epidemiological models and, due to measurement error, may also not accurately reflect
the underlying SARS-CoV-2 transmission intensity. We consider the essential features of
a ‘wave’” and use them to define algorithms which process the many brief rises and falls
in case numbers over time and translate them into meaningful ‘observed waves’. For the
remainder of the paper, the term ‘waves” will refer to ‘observed waves’.

Since both cases and deaths can inform the decision about when a wave of COVID-19
begins and ends, we use both series together. On the assumption that the recording of
deaths is less subject to change, we take the following approach. If, during a wave in the
deaths time series, there is no wave peak present in the cases time series, then we add back
a peak of cases which the algorithm had earlier filtered out in order to identify a matching

wave of cases. This mitigates concerns about changes in testing over time.

2.1 Prominence

Many algorithms exist to identify ‘spikes’ in time series, as this is a key challenge in sig-
nal processing [34]. These algorithms identify peaks of brief pulse-like signals. In contrast,
epidemic waves are likely to be broad, so that algorithms to identify spikes are not applica-
ble in this context. Instead we aim to identify waves using a prominence-based approach.
Prominence can be informally defined, geometrically, as a measurement of how far a peak
extends in the vertical direction above the surrounding regions of the time series. The
advantage of a prominence-based approach is that it is agnostic as to both the width (i.e.,
duration) of the peak and the presence of additional local maxima on the shoulder of the
peak. This methodology, which stems from recent developments in topological data anal-
ysis, has previously been used to analyse medical time series [5, 10].

Prominence may be understood as follows. Consider a fully submerged mountain
range, and imagine that the water level is gradually dropping. As the water level falls, ‘is-
lands” become visible. These are equivalent to portions of the time series that have values
above a certain threshold. The global maximum will be seen first, followed by the neigh-
boring values in the time series. As the water level drops further, a second island becomes
visible, around the second highest local maximum. As we continue this process, islands
will eventually become connected. This occurs as the threshold passes local minima. The
‘prominence’ of a peak is its height above the water level at the point when it merges with
an island which originated at a higher peak. (The global maximum could be considered

to have infinite prominence, but in this work it is convenient to use the value of the global
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maximum as the prominence). By considering prominence, we pay less attention to the
absolute height of a peak and more attention to its height relative to adjacent peaks. This
visual definition is complete, but a definition using mathematical notation is also available
in the Supplementary Material.

2.2 Algorithm

The wave detection algorithm consists of four parts (A-D, see Fig. [algo]). It processes a
time series in order to identify significant, substantial and sustained periods of increased
values. These periods are described as waves and the output of the algorithm is a labelling
of the peaks of each wave and of the troughs between them.

After initial preprocessing (e.g. smoothing, handling of missing values), a list of all
local minima and maxima (critical points) present in the time series is generated. This
list corresponds to a set of wave candidates, which are the periods between consecutive
local minima. The algorithm then processes this list of minima and maxima, reducing it
by removing neighbouring pairs of critical points from the list. This is equivalent to merg-
ing two neighbouring wave candidates into one. The conditions on a pair of consecutive
critical points to be removed are designed to identify those wave candidates that are in-
sufficiently sustained or substantial and therefore suitable for merging. After the list is
reduced, the surviving wave candidates will be of sufficient duration and prominence to
be described as waves.

Four sub-algorithms operate to remove pairs from the list of critical points. The op-
eration of each sub-algorithm is described briefly here and illustrated in Figure 2, with
more details available in the Supplementary Material and an implementation available at
https:/ /github.com/tarunsrivastaval45/epidemetrics/. Sub-algorithms A and B ensure
that only “sustained” periods of increase are identified as waves. Sub-algorithms C and D
ensure that waves are ‘significant and substantial’ by merging waves of insufficient promi-

nence.

Sub-algorithm A: Merging short wave candidates. For a feature to be described as a wave
it must last for a certain minimal period. Wave candidates with duration less than T,
are merged into neighbours, in order of increasing prominence. In Fig. [algo] a pair of
local minima is separated by less than Ti.,. The pair of critical points to be removed is the
intervening maximum and the greater of the two neighbouring minima. The result is that
the second wave is merged into the third.

Sub-algorithm B: Merging irregular features. Where a local minimum and local maximum
are separated by a short amount of time, this might indicate either an artifact in the data
(for example, it can occur that a large number of historical cases are announced on a single
day, creating a spike of cases) or a genuine shift. When two consecutive critical points
are separated by less than T¢e,/2, we centre a time window (shaded) of duration 7¢en, on
the pair. The data from this period is censored; it is essential that Te, < Tiep so that the
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Figure 2: The wave identification algorithm. Time series showing local maxima and min-
ima (solid dots) before (left panels) and after (right panels) filtering with each wave iden-
tification algorithm. Red dots represent local minima and maxima that are removed with
each algorithm, while those marked with blue dots are retained. Broken horizontal lines
beneath each time series show the identified wave durations. Further detail on how each
sub-algorithm operates is given in the Supplementary Material.

window contains only a minimum and a maximum. If the feature is transient (as in the
tirst censored window in Fig. [algo], where the feature is a decrease in values but y; < y2),
the minimum and maximum are removed. The first wave is merged into the second.
However, in the second window the decrease is still visible after censoring (y1 > y2) so
this pair is retained. The third wave survives this filter.

Sub-algorithm C: Merging shallow wave candidates for low values. Waves with promi-
nence less than P, are merged into neighbours. The prominence of the maximum in red
(which is ymax — Ymin), does not exceed P,ps. The maximum is therefore removed along
with the greater of the neighboring minima, so that the first wave is merged into the sec-
ond. When values are higher, this sub-algorithm is redundant, as sub-algorithm D would

also merge all low-prominence waves.

Sub-algorithm D: Merging shallow wave candidates for high values. Case numbers may
not fall sufficiently after a peak for a wave to be clearly separated from a neighbour. Waves
with prominence less than h - P, where h is the value at the peak, are merged into a
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Parameter | Definition Value Value
(Cases) (Deaths)

Tyep Minimal wave-length, i.e. separation between | 35 days 35 days
consecutive minima or maxima.

Teen Each minimum and maximum separated by less | 35 days | 35 days
than T¢.,/2 are tested in Sub-algorithm B to deter-
mine if they persist over a period of duration T¢e,.
It is required that Teen, < Tiep.

Pos Absolute prominence threshold, defined as the | See See
minimal prominence for local maxima of waves. caption. caption.
Pl Relative prominence threshold, defined as the | 0.61 0.65

minimal prominence for local maxima of waves as
a proportion of the value at the local maximum.

Table 1: Parameters used in the Wave Identification Algorithm. For cases
P,bs = min(max(45, Population - 3.3/1,000,000),500) and for deaths, P,,s =
min(max(7, Population - 1/1,000, 000), 70).

neighbour. This assumes a background level of 0 for the time series, which may not be
suitable for other applications. In the illustration we have set P, = 0.61, which is the
value used in this work. The prominence of the maximum in red (which is ¥max — Ymin),
does not exceed 0.61 - Yymax. The maximum is therefore removed along with the greater of

the neighboring minima, so that the first wave is merged into the second.

2.3 Parameters

Certain parameters must be set by the user in order to determine how substantial or sus-
tained a feature must be before it is identified as a wave. These are Ticp, Tten, Pabs and
Pl The choice of Ty, can be informed by biological information on the transmission
of the disease. For example, epidemics that occur over a longer period of time such as
tuberculosis and HIV will require a longer value for T, than more dynamic epidemics
such as measles. The motivation for sub-algorithms A and B is to remove local fluctua-
tions which are due to changes in things beyond the transmission process and hence this
parameter must be informed by the natural timing of that transmission process. P,ps and
Pe should be set large enough to exceed the level of noise in the data and also meet the
user’s subjective opinion of what level of cases should be considered substantial and how
well separated two waves must be.

The parameters used in this paper are set out in Table 1. Given that the serial interval of
COVID-19 is less than five days [23] and the mean incubation period is also approximately
five days [21], we find setting Ty, = 35d and Tten = 35d to be a reasonable parameter

choice. P, and P, were chosen as the output provided a suitable match to expert opin-
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ion. P,ps is set to vary with the population of the country, but with a floor to account for
noise and a ceiling for sufficiently large countries.

The final output is a list of local maxima and minima dividing the total period of the
time series into waves. All remaining waves have prominence exceeding P,, length at
least Ty, and there is a long (> Ticp) and substantial (P,) = 61%) drop between any pair
of peaks. The algorithm will indicate that no wave was detected if the time series never

exceeds P,ys.

2.4 Data and Preprocessing

We extracted data from the OxCOVID19 Database [22], which contains geographically
unified information on epidemiology, government response, demographics, mobility and
weather at a national and sub-national level collected from various sources. From this
database we selected epidemiological data from the European Centre for Disease Preven-
tion and Control [1] and to track measures imposed by governments we used data curated
by researchers from the Blavatnik School of Government, University of Oxford [Hal2020].
Information on testing was obtained from the Our World in Data COVID-19 dataset [27].
This covers 103 countries and provides the total tests carried out as well as new tests per
day. Note that the statistics provided by each country may differ in whether they refer to
the number of tests conducted or the number of individuals tested. Data was last extracted
on 23 June 2021, with a cutoff for time series data on or before 31 May 2021 to account for
incomplete data due to delays in reporting.

Prior to analysis of the epidemiological data, missing daily values for cumulative con-
firmed cases and deaths were filled in by linear interpolation. The number of new cases
and deaths per day was then computed as the difference between the cumulative values
for successive days. Negative values were replaced with the last non-negative observa-
tion. Such values commonly arise when reporting authorities subsequently correct their
figures for total cases or total deaths. After this initial cleaning substantial stochasticity is
still present in the time series, due to factors such as backlogs in the number of cases over
weekends and errors in consolidating municipal sources. To better understand the under-
lying trend and identify significant waves, we computed a fourteen-day moving average
to smooth the data.

The data series for the number of performed tests is provided with this seven-day
smoothing already performed and we use the smoothed value directly [27]. We computed
the positivity rate as a ratio of new cases per day to new tests per day (using raw data in
both cases), and subsequently smoothed this rate with a seven-day moving average. Ear-
lier in the time series positivity rates greater than 1 occasionally arise; these were removed.
From the Blavatnik School data [13], we isolated the ‘stringency index’, a measure of the
overall stringency of government interventions, as well as the dates at which various flags

were raised indicating the implementation of restrictions, such as the ‘C3’ flag indicating
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Figure 3: Illustration of how each Sub-Algorithm operates to reduce the list of identified
minima (solid blue circles) and maxima (solid red circles) in the time series of cases and
deaths for Ghana. In black, the smoothed data for each time series is shown. Solid circles
indicate which minima and maxima have survived the pruning process at each stage.

the mandatory cancellation of public events.

3 Results and Discussion

After clarifying the different ways in which the term ‘waves’ is used by different commu-
nities, we proposed a novel algorithm for identifying epidemiological waves in time series
of cases and deaths. The algorithm delineates significant, substantial and sustained peri-
ods of increased case numbers, separated from each other by significant and substantial

decreases.

3.1 Identification of epidemic waves of COVID-19

The algorithm was applied in the context of COVID-19 for every country for which data
was available. By applying the algorithm to both the cases time series and the deaths time
series, we could use cross-validation of the results to address the confounding effect of
changing case ascertainment and better identify the waves of cases.

Figure 3 gives a sample of how the different layers of the algorithm merge wave can-
didates together.

Figure 4 shows some characteristic examples of time series studied along with the divi-
sion of those series into waves. It is clear how decisions in the setting of parameters control
which features are removed as noise and which structures are combined to be considered
as one wave. The utility of cross-validating between the cases and deaths time series is
also demonstrated.

There are a small number of outliers (Botswana, Cameroon, Equatorial Guinea, Re-

10
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Countries with | Countries with | Countries with

1 wave 2 waves 3 or more waves
Count 57 84 51
Median | IQR Median | IQR Median | IQR
Mortality (cumulative per | 2.81 8.72 3.65 9.52 5.46 11.40
10,000)
Cumulative case rate (total | 196.99 | 609.05 | 233.18 | 698.56 | 353.62 | 675.67
confirmed per 10,000)
Peak case rate (peak new | 2.52 6.43 2.02 5.07 2.87 6.51

cases per day per 10,000)

Stringency response time | -53.50 255.00 | -33.50 51.25 | -20.00 27.75
(days from t0 to cancellation
of public events)

Total stringency (integral | 26,601 6,867 | 30,062 8,186 | 31,413 5,6498
under stringency index
curve)

Testing response time (days | 5.00 64.50 | 34.00 46.75 | 14.00 34.50
from t0 to 1 test per 1,000 cu-
mulative)

Population density (people | 84.63 263.55 | 82.35 98.63 | 105.32 | 188.61
per square km)

GNI per capita (PPP adj 2017 | 12,191 17.806 | 13,459 | 24,079 | 20,083 | 34,832
US$)

Table 2: Basic characteristics of countries stratified by how many waves of COVID-19 they
have experienced. The ‘Count’ variable indicates the number of countries in the cohort;
not all characteristics are available for all countries in the cohort. The time t0 is the date of
the tenth cumulative death.

public of the Congo, and Western Sahara) for which a much larger number of waves are
detected by the algorithm. On inspection, the time series for these countries are extremely
noisy. This might be resolved by extending the smoothing window, but this would come
at the cost of reduced accuracy for other countries. For this reason, we excluded these
countries from the analysis. Countries with time series that never reached P, are also
excluded from the analysis.

Table 2 reports certain epidemiological and socioeconomic characteristics according to
the number of waves a country has experienced. Of the trends which can be observed
there, only two are significant at the 5% level. A greater number of waves is associated
with a longer stringency response time (a one-tailed Mann-Whitney test indicates that
countries with more than one wave had significantly slower response time than those with
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Figure 4: Identification of epidemic waves of COVID-19. A: Zambia shows a clear struc-
ture with two waves (red circles) in the cases data, while no waves are identified in the
deaths data. B: the UK shows a structure that might arguably have two or three waves,
but sub-algorithm D combines the final two. C: In Ghana sub-algorithm B filters out an
early spike in cases. It is not clear visually whether this is noise or a meaningful epidemi-
ological event; the algorithm cannot do better than the reader in determining this from
simply inspecting a graph. No waves in deaths are identified due to low absolute counts.
D: The number of cases in Costa Rica does not fall by 70% after the first wave, so it is
not identified by the algorithm as a wave. This shows how important the parameter P,
can be. However, cross-validating against the time series of deaths allows the wave to be
identified (yellow circle)

only one wave, p = 0.0002) and with a higher GNI (p < 0.0001). The link to population
density is not statistically significant.

Public discussion of waves of COVID-19 is common, with epidemiologists acknowl-
edging the ambiguities around the term. Marc Lipsitch of Harvard has described a wave
as “a useful metaphor” rather than a precise term, distinguishing waves from ‘momen-
tary” spikes [33] and Stephen Morse of Columbia has highlighted how epidemic waves in
the traditional sense are “biological” phenomena, ending due to reduction in the suscep-
tible population, while COVID-19 waves so far have ended due to measures “artificially
designed to slow it down” [32].

This is not the first paper to seriously investigate the concept of observed epidemic

12


https://doi.org/10.1101/2022.01.07.21268513
http://creativecommons.org/licenses/by-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.01.07.21268513; this version posted January 7, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-ND 4.0 International license .

waves. Taubenberger and Morens [28] note the three ‘explosive pandemic waves’ of 1918
influenza as a particularly unusual aspect of the pandemic. In the current context of
COVID-19, seeking a rigorous means of identifying waves of COVID-19, Zhang et al. [35]
propose an identification method which locates sustained periods of time when Rt is sig-
nificantly larger than or less than 1. Values for Rt are obtained from the publicly available
website [2] which uses a Kalman filter to estimate growth rate. Our method attends less
to rates of increase and decrease as the defining aspect of a wave, focussing instead on
identifying periods of high case numbers.

The shifts in sampling effort and sampling framework over the course of the COVID-
19 pandemic greatly complicate the task of estimating the true level of infection. This
paper contributes a semi-automated means of decomposing epidemiological time series
into shorter periods, the waves. Without an algorithm of this type it is impossible to carry
out the analysis above of how characteristics differ depending on the number of waves
experienced. We also expect that analysis by wave period can reduce the impact of these
shifts and provide customised time windows for each country studied. The method tallies
well with natural intuition and allows for cross-validation between time series which the
user expects to be correlated (cases and deaths). The parameters can be set by the user
according to biological knowledge of the disease and the user’s own determination of
how a wave should be defined in a particular context.

This method is grounded in a translation of visual intuition into mathematical rules
and so it cannot perform better than a visual inspection of the time series. However, it
does provide the advantage of setting an objective framework for identification of waves
and the ability to process a large number of time series swiftly and consistently. Another
aspect of this method is that every date in the time series is allocated to a wave, meaning
every case and every death is allocated to a particular wave. This may not always be
desirable. If there is a clear plateau between two waves then the location of the minimum
which marks the end of one wave and the beginning of its successor will not be robust. A

threshold test could easily be implemented to identify gaps between waves.

3.2 Wave typology

The typology of waves described in Table 3 describes the circumstances which may gener-
ate a time-series wave. Critically, these waves are not always driven simply by an increase
in transmission.

These types were identified from direct comparison with the time series of deaths and
of positivity rates. These descriptions are rooted in an assumption that the time series of
deaths provides a more reliable and consistent indicator of trends in viral activity than
the time series of cases. The two main drivers of waves in the case incidence times series
are transmission and testing. A wave may be driven by an increase in transmission, an

increase in testing, or, indeed, by a combination of these two drivers if the testing regime
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Wave types Description

Transmission waves Waves of transmission in the population, which cannot be directly ob-

served but may be inferred through the consequent demand for health
care or active surveillance. The shape of these waves is a direct reflec-
tion of how the intensity of transmission changes over time and is best
approximated by test positivity ratio curves (provided enough tests per
day) and mortality data (in countries with close to no under-reporting of
deaths).

Example: Italy (Spring 2020)

Testing-enhanced waves Waves of confirmed cases observed principally as a result of increased
case ascertainment. Unlike transmission waves, those do not cause an in-
creased demand on healthcare measured as the relative amounts of hos-
pitalisation and mortality. A true wave of infections may underlie the
test-enhanced wave but its scale cannot be determined without strong
assumptions regarding unknown transmission dynamics.

Example: Italy (Autumn 2020 onwards)

Spatially asynchronous waves | Waves may occur in different geographical regions of a country at dif-
ferent times. When these are aggregated into a single time series it can
result in the appearance of multiple waves at the aggregate level. This
may be the result of a lag caused by geographical spread or of multiple
index cases.

Example: US (First wave: Spring 2020; second wave: Autumn 2020 on-

wards)

Table 3: Types of waves of confirmed cases observed during the COVID-19 pandemic
throughout 2020.

changes during a transmission wave. As a result, case incidence data from two subse-
quent waves can often not be usefully compared. The relative difference in drivers can be
inferred, at least after the fact, from the presence or absence of an accompanying mortality
incidence peak. We further identify a third type of wave at the national level (spatially
asynchronous waves). Countries with this wave typology might benefit from evaluating
the local epidemic curves in isolation and designing local intervention policies.

Figure 5 shows the structure of the waves of the epidemic for two example countries:
Italy and the United States. In Italy there are two waves of confirmed cases and two waves
of mortality, which occur at closely matched periods in time. However, the relative num-
ber of cases to deaths about each peak differs greatly from the first to the second wave,
translating into a decreasing CFR (case fatality ratio) trend which needs to be critically
engaged with. In the United States, we visually perceive three waves of cases and deaths,
with the algorithm combining the first two wave structures into one wave. Again, there
is a clear difference in the relative number of cases to deaths. In this particular instance,
we observe geographical variation between the waves, with the outbreak being concen-
trated in different regions at different times (Figure 6). This is an example of spatially

asynchronous waves.
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Figure 5: The structure of the waves of the epidemic for two example countries: Italy and
the United States. In Italy there are two waves of confirmed cases and two waves of mor-
tality, which occur at closely matched periods in time. However, the relative number of
cases to deaths about each peak differs greatly from the first to the second wave, translat-
ing into a decreasing CFR (case fatality ratio) trend which needs to be critically engaged
with. In the United States, we visually perceive three waves of cases and deaths, with the
algorithm combining the first two wave structures into one wave. Again, there is a clear
difference in the relative number of cases to deaths. In this particular instance, we observe
geographical variation between the waves, with the outbreak being concentrated in differ-
ent regions at different times. This is an example of spatially asynchronous waves. Daily
counts are shown in light blue, with a 7-day average in black. Identified wave durations
for daily cases are shown in green.

It is well known that as the criteria and/or capacity for testing for infection changes,
the proportion of infections detected changes accordingly. Had a later version of the case
definition for COVID-19 issued by the National Health Commission in China been in place
from the start of the outbreak, 232,000 confirmed cases might have been reported in China
by Feb 20, 2020, as opposed to the 55,508 cases actually reported, a 4-fold increase [29].
Also, most countries have vastly increased their testing capacity over time, so that the case
ascertainment rate is now far greater than that in place when restrictions were initially
introduced [14]. This creates difficulty in deciding how serious the present situation is and
how it compares with the first wave of transmission as well as in describing the spread of
the epidemic to the public [20] and has inspired researchers to propose methods of using
mortality data as a more reliable proxy for infection numbers [9, 12, 18].

We find that the concept of spatially asynchronous waves is most relevant in large
countries. However, even in a small country, the progression of case numbers can usefully
be thought of as the result of several superimposed outbreaks separated in both time and
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Figure 6: A visualization of how the geographical concentration of COVID-19 has varied
over time across the United States. Individual states show wave structures but the result
of aggregating data at the national level is that local waves overlap and are not so distinct
from each other.

space, creating wave patterns in case numbers which may not fit our definition of a wave.
[19] found that a classification of countries according to the number of subepidemics and
whether their intensity increases or decreases was well explained by government action,
with declining subepidemics associated with stringent action and increasing subepidemics
associated with less stringent action.

3.3 Modulation of waves by NPIs

The stringency and speed of the introduction of NPIs and large-scale testing were com-
pared to the severity of epidemic waves (as measured by the per capita death rate during
that wave).

To account for differences in epidemic start date, measures of time are calculated rel-
ative to the date at which each country first reached 10 cumulative deaths (referred to in
this paper as start date T0). Reducing this threshold would give undue weight to impor-
tation events at the expense of locally acquired infections. Smaller countries (population j
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Burden metric | Stringency metric Kendall’s rank correlation | p-value
Wave 1 Deaths | Stringency Response Time | 0.24 <0.0001
Wave 2 Deaths | Stringency Response Time | 0.23 0.0019
All Deaths Stringency Response Time | 0.34 <0.0001
Epidemic Phase | Stringency Response Time | 0.24 0.0003
Wave 1 Deaths | Total Stringency 0.25 <0.0001
Wave 2 Deaths | Total Stringency 0.13 0.082
All Deaths Total Stringency 0.20 0.0005
Wave 1 Deaths | Wave 1 Stringency 0.32 <0.0001
Wave 2 Deaths | Wave 2 Stringency 0.38 <0.0001

Table 4: Kendall’s rank correlation between the mortality burden of the pandemic in dif-
ferent waves and aspects of government response. Stringency Response Time is defined
to be the time from TO until public events were cancelled. The analysis is carried out for
alternative definitions of Stringency Response Time in the Supplementary Material. Total
Stringency and Wave Stringency are the integrals of the stringency index over the relevant
period. Epidemic phase is an ordinal variable indicating which wave the country is cur-
rently in, and whether it has passed the peak of its current wave. The analyses for Wave 2
Deaths were carried out only for countries which experienced a second wave.

2.5 million) were excluded from the analysis as TO was often very late in these countries.

Table 4 shows the relationship between the features of a government’s response and
the per capita death rate in that country. Table 5 shows the relationship between testing
levels and the per capita death rate in that country. Both tables show positive correlations
between the mortality burden and the overall scale of interventions or testing, which are
strengthened when the relationships are studied by waves, an analysis made possible by
the wave identification algorithm. We must urge caution in the interpretation of this ob-
served correlation. The feedback process between the use of NPIs and mortality is complex
and we have not carried out a causal analysis of this relationship. Most likely, our results
suggest that countries that have introduced more stringent and/or prolonged measures
did so in response to higher mortality figures, not that higher stringency measures caused
more deaths.

There is also a positive correlation between the time taken to implement the interven-
tions or testing and the mortality burden. In the case of NPIs, this correlation is stronger
for the overall burden than it is for the individual waves, which can be explained by the
positive correlation between the response time and the number of waves experienced. The
time to implement these measures might not be expected to influence the burden of the
second wave of an epidemic, since it is distant in time. However, we do find that the cor-
relation between time to implement NPIs and the burden of the second wave is similar to
that for the burden of the first wave. This may be because response time influenced con-
ditions at the beginning of the second wave, or it may indicate a country’s general policy
approach. No significant relationship between testing response time and the burden of the

second wave was found.
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Burden metric | Testing metric Kendall’s rank correlation | p-value
Wave 1 Deaths | Testing Response Time | 0.18 0.013
Wave 2 Deaths | Testing Response Time | -0.022 0.79

All Deaths Testing Response Time | 0.14 0.047
Epidemic Phase | Testing Response Time | 0.021 0.78
Wave 1 Deaths | Total Tests 0.26 0.0005
Wave 2 Deaths | Total Tests 0.41 <0.0001
All Deaths Total Tests 0.42 <0.0001
Wave 1 Deaths | Wave 1 Tests 0.42 <0.0001
Wave 2 Deaths | Wave 2 Tests 0.37 0.0033

Table 5: Kendall’s rank correlation between the mortality burden of the pandemic in dif-
ferent waves and aspects of testing response. Testing Response Time is the time from TO
until reaching a threshold for the level of testing (1 test per 1000 population). The analysis
is carried out for alternative definitions of Testing Response Time in the Supplementary
Material. Epidemic phase is an ordinal variable indicating which wave the country is cur-
rently in, and whether it has passed the peak of its current wave. The analyses for Wave 2
Deaths were carried out only for countries which experienced a second wave.

Although some early NPIs such as implementation of testing strategies, isolation of
confirmed cases and tracing of their contacts slowed down early transmission, in most
places these measures were not sufficient to contain the outbreak [8, 16]. Studies have
found that while moderate measures are capable of reducing the size of the ensuing epi-
demic, severe measures are needed to suppress an epidemic so as to avoid overwhelming
healthcare systems [7].

The positive correlation between the strength of interventions and the burden of the
pandemic has been observed before. This relationship has been the subject of lively de-
bate centered on the difficulty in collecting reliable data, the importance of timing, and
the fact that interventions are an endogenous variable, with governments implementing
interventions in response to current or anticipated case load [3]. Indeed, attending more
closely to the timing of interventions and effects on the transmission rate rather than on
absolute case numbers demonstrates that a wide range of restrictions are associated with
a reduction in Rt [4, 17, 15], with early implementation being crucial.

Our findings provide further confirmation of the importance of early introduction of
NPIs. Countries which introduced early NPIs tended to experience a lower mortality bur-
den in the first wave, were less likely to experience a second wave and, if a second wave
was experienced, that wave came with a lower mortality burden. These three effects com-
bine to produce a very strong relationship between early introduction and low overall
mortality.
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4 Conclusion

It is possible to distill the natural visual understanding of “‘waves’ in a time series into sim-
ple mathematical rules which can be used to objectively annotate a large number of time
series, identifying their component waves. In the context of COVID-19, these waves may
result from increased transmission, increased testing, or some combination of the two. Not
only this, waves can occur due to the aggregation of time series from a large geographi-
cal area, so that the second wave is really a first wave, but for a different region of the
country. When engaging in comparative study of the relationships between interventions
taken and the mortality burden of the disease, using the wave as the time unit for analysis
can result in clearer conclusions. The speed with which interventions are implemented is

strongly correlated with the wave structure of the subsequent epidemic.
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