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Abstract 

We aimed to discover loci associated with triglyceride (TG) levels in the context of type 

2 diabetes (T2D). We conducted a genome-wide association study (GWAS) in 424,120 

genotyped participants of the UK Biobank (UKB) with T2D status and TG levels. We 

stratified the cohort based on T2D status and conducted association analyses of TG 

levels for genetic variants with minor allele count (MAC) at least 20 in each stratum. 

Effect differences of genetic variants by T2D status were determined by Cochran’s Q-

test and we validated the significantly associated variants in the Mass General Brigham 

Biobank (MGBB). Among 21,176 T2D and 402,944 non-T2D samples from UKB, 

stratified GWAS identified 19 and 315 genomic risk loci significantly associated with TG 

levels, respectively. Only chr6p21.32 exhibited genome-wide significant heterogeneity 

(I2=98.4%; pheterogeneity=2.1x10-15), with log(TG) effect estimates of -0.066 (95%CI: -

0.082, -0.050) and 0.002 (95%CI: -0.002, 0.006) for T2D and non-T2D, respectively. 

The lead variant rs9274619:A (allele frequency 0.095) is located 2Kb upstream of the 

HLA-DQB1 gene. We replicated this finding among 25,137 participants (6,951 T2D 

cases) of MGBB (pheterogeneity=9.5x10-3). Phenome-wide interaction association analyses 

showed that the lead variant was strongly associated with a concomitant diagnosis of 

type 1 diabetes (T1D) as well as diabetes-associated complications. In conclusion, we 

identified an intergenic variant near HLA-DQB1 significantly associates with decreased 

triglycerides only among those with T2D and highlights an immune overlap with T1D. 
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Introduction 

 Diabetes, largely due to type 2 diabetes (T2D), was estimated to afflict 9.3% of 

population in 2019 and projected to increase to 10.9% by 2045 (1). Despite ongoing 

scientific advances (2), T2D remains a leading cause of morbidity and mortality in the 

US and increasingly worldwide (3) (4). Novel approaches to discover the factors 

influencing T2D-related metabolic alterations may yield new insights toward the 

prevention of T2D-related complications. 

Plasma lipid, particularly triglycerides (TG), alterations represent early metabolic 

changes linked to insulin resistance. Hypertriglyceridemia is often observed among 

individuals at risk for T2D and is more severe among individuals with poorly controlled 

T2D (5). Enhanced hepatic secretion of TG rich lipoproteins due to insulin resistance 

and delayed clearance involving lipoprotein lipase-mediated lipolysis may further 

exacerbate hypertriglyceridemia (6). Hypertriglyceridemia is an independent predictor of 

cardiovascular disease in T2D (7) (8), as well as a predictor of T2D itself (9). 

Characterizing the genetic determinants of TG concentrations specific to those with T2D 

may yield new insights into diabetes pathogenesis and complications.  

Here, we tested the hypothesis that there are genetic variants associated with 

TG levels specific to T2D using GWAS and heterogeneity analysis in 424,120 

participants of the UKB. Further, we assessed the role of the identified lead variant for 

multiple diabetes-related phenotypes. 

 

Results 

Baseline characteristics 
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 The overall study schematic is depicted in Supplementary Fig. 1. Among 

424,120 and 25,137 included samples, 21,176 (5.0%) and 6,951 (27.7%) of samples 

had T2D in UKB and MGBB, respectively. Overall UKB was composed of participants 

with a mean age (standard deviation [SD]) of 56.6 (8.1) years, 195,966 (46.2%) male, 

and 356,023 (83.9%) White British self-reported race. MGBB participants were mean 

62.1 (16.2) years, 11,579 (46.1%) male, and 21,172 (84.2%) White British self-reported 

race. As expected, individuals with T2D versus non-T2D had greater median TG 

concentrations in both cohorts (Table 1). 

 

T2D-stratified GWAS of TG identified an associated locus on chromosome 6 

 We performed GWAS on normalized natural log TG stratified by T2D status in 

the discovery cohort. Among the 402,944 non-T2D samples, 315 significant loci were 

identified. Among the 21,176 T2D samples, 19 significant loci were identified 

(Supplementary Fig. 2, Supplementary Table 1). We then assessed for differential 

TG effects for 67M variants by T2D status using Cochran's Q-test for heterogeneity. We 

identified 478 variants which were genome-wide significant, all at chr6p21.32 (lead 

variant: rs9274619:G>A; I2=98.4%; pheterogeneity=2x10-15) (Fig. 1). The most significantly 

heterogenous variant was an intergenic variant near the HLA-DQB1 gene 

(Supplementary Fig. 3), where the minor allele (frequency 0.095) decreases natural 

log TG among those with T2D but yields no difference among those with non-T2D (T2D 

group: beta=-0.066, p-value=3.9x10-15; non-T2D group: beta=0.002, p-value=0.21; 

pinteraction=1.9x10-11). We observed that the difference test (ZDiff) identified this top 

significant lead variant (rs9274619:A; Zdiff= -7.935) in the HLA locus as well. Since BMI 
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is associated with both TG and T2D, we used scaled BMI as an additional covariate in 

testing the association of the identified lead variant with TG. We observed evidence for 

persistent albeit attenuated interaction between rs9274619:A and T2D after adjusting 

for BMI (pinteraction=2.9x10-7). We observed a slight reduction in effects in the interaction 

model with T2D (betainteraction=-0.046), which shows that BMI has a confounding effect. 

Individuals with T2D with lower TG concentrations were enriched for 

rs9274619:A (Fig. 2A). Among individuals with normal TG (i.e., <150 mg/dL), 

rs9274619:A was associated with T2D by 1.23-fold (95% CI 1.15,1.29; p-value 2.8x10-

11). However, among individuals with TG > 450 mg/dl, rs9274619:A was not associated 

with T2D (OR 0.96, 95% CI 0.76-1.18; p-value 0.67). We replicated the findings in an 

independent cohort of 25,137 participants (6,951 T2D cases) of MGBB 

(pheterogeneity=9.5x10-3) (Fig. 2B). Additionally, we evaluated the association of the lead 

variant interacting with T2D status with other lipids in discovery cohort (Supplementary 

Table 2). We observed a significant interaction between rs9274619:A and T2D on HDL-

C (pinteraction=2.9x10-8) with higher concentrations among those with T2D, and nominally 

greater reductions in LDL-C among those with T2D (pinteraction=6.0x10-4).  

We next bioinformatically prioritized the putative causal gene responsible for the 

T2D-dependent TG genetic association observed. Using T2D GWAS summary statistics 

PoPS prioritized the HLA-DQB1 gene to be one of the top 20 genes along with other 

known TG genes such as APOE, LPL and APOB. However, HLA-DQB1 was not 

prioritized in the non-T2D GWAS (Supplementary Table 3). Intersecting rs9274619:A 

with GTEx eQTL data for five different tissues (Methods) shows that the variant is an 

eQTL for multiple HLA genes including HLA-DQB1 but more significantly for HLA-DQA2 
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and HLA-DRB6 (Supplementary Table 4). We curated all the eQTLs of the three HLA 

genes from GTEx database, T2D GWAS and correlated the Z-scores.  eQTLs of all 

three HLA genes had a similar degree of correlations, but with opposite directions 

(Supplementary Fig. 4). We further interrogated pQTL and mQTL data. rs9274619:A is 

a pQTL for HLA-DQA2 (beta=0.31; p-value=6.2x10-14) but it is an mQTL for multiple 

CpG regions at genome-wide significance. We identified 133 cis-associations and 

mapped the CpGs to Illumina HumanMethylation450 BeadChip (Illumina Inc., San 

Diego, USA) identification numbers (GEO data: GPL13534) to obtain the corresponding 

genes. Multiple HLA genes and other genes in chromosome 6 were identified 

(Supplementary Table 5). Gene prioritization using PoPS and QTL curation identified 

multiple HLA-genes (Supplementary Fig. 5).   

 

rs9274619:A tags HLA-DQB1*0302 

Since the significant locus was at the HLA region, we correlated the rs9274619:A 

with 362 imputed HLA genotypes from 11 classes in the UKB. DQB1 and DQA1 were 

the most strongly correlated with rs9274619:A. Furthermore, DQB1_302 and 

DQA1_301 were most strongly correlated with rs9274619:A (DQB1_302: r=0.95, 

pcorrelation<3.83x10-313; DQA1_301: r=0.62, pcorrelation<3.83x10-313) (Supplementary Fig. 

6A). We subsequently tested the interaction of all 362 HLA genotypes with T2D status 

on log(TG) as outcome. From this focused assessment of 362 HLA genotypes 

(Supplementary Table 6), 7 passed Bonferroni corrected significance (0.05/362=1x10-

4) (Supplementary Fig. 6B). Consistent with our discovery and correlation analyses, 

only DQB1_302 had a genome-wide significant interaction (pinteraction=1.05x10-9). 
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Although rs9274619:A is associated with increased expression of HLA-DQA2 gene in 

eQTL and pQTL analysis, alleles from these HLA types were not previously imputed in 

UKB. 

 

Phenome-wide interaction analyses implicates multiple diabetes-related 

complications 

 We assessed the interactions between the rs9274619:A and T2D with 1567 

disease conditions as outcomes (combination of incidence and prevalence) adjusted for 

all the covariates (age, age2, sex, race, PC1-10). Using a Bonferroni correction 

(0.05/1567=3.19x10-5), 45 disease phenotypes exhibited significant interactions. The 

strongest interaction was for the concomitant diagnosis of type 1 diabetes (T1D) among 

those with T2D (pinteraction<1.72x10-274) (Supplementary Table 7). We applied logistic 

regression models stratified by T2D status on the 45 significant phenotypes, while 

adjusting for all covariates as mentioned above (Supplementary Table 8). Multiple 

diabetes-related microvascular and macrovascular complications including 

hypoglycemia, retinopathy, polyneuropathy, angiopathy, atherosclerosis and 

osteomyelitis were significantly associated, with the T2D-specific TG-lowering 

rs9274619:A allele leading to increased risks (Fig. 3). However, this allele was 

associated with reduced odds for obesity and related phenotypes.  

 Since HLA-DQB1 is a GWAS locus for an overlap between T1D and T2D 

previously referred to as latent autoimmune diabetes in adults (LADA) (10), as well as 

T1D itself (11), we further explored the relationships between the rs9274619:A, T1D, 

T2D, and their respective interactions on TGs (Supplementary Table 9). The TG-
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lowering rs9274619:A was strongly associated with T1D after adjusting for T2D (p-

value=8.6x10-113), but not significantly associated with T2D status after adjusting for 

T1D (p-value=0.29). However, when assessing for interactions on TGs, there was still a 

significant interaction with T2D independent of T1D (betainteraction=-0.055; 

pinteraction=5.28x10-9) and more strongly with T1D independently of T2D (betainteraction=-

0.252; pinteraction=5.53x10-49). Furthermore, we removed T1D samples and the interaction 

of rs9274619:A with T2D on TG was nominally significant (betainteraction=-0.022; 

pinteraction=2.9x10-2).  

Cousminer et al reported four loci to be significantly associated with LADA (12), 

therefore we assessed T2D/TG interactions for these lead variants (Supplementary 

Table 10). None of the variants tested had a genome-wide significant interaction. The 

variant rs9273368 from HLA-DQB1 (pinteraction=2.58x10-5) was genome-wide significant in 

our heterogeneity analysis (pheterogeneity=1.8x10-8) and was in moderate LD with 

rs9274619:A (R2=0.3). The four LADA loci were examined for interactions for additional 

diabetes-related phenotypes as noted in Supplementary Table 11. 

 

Metabolic characterizations of interactions with T2D  

We secondarily explored the relationship between the rs9274619:A, interacting 

with T2D, and relationships with other metabolic features in UKB. Both the main effects 

and interaction models were adjusted for all the covariates (age, age2, sex, race, PC1-

10). Outcomes assessed included waist/hip ratio (WHR), body mass index (BMI), 

macronutrients from 24-hour dietary recall surveys, and 60 plasma biomarkers 

(Supplementary Table 12-13). Several features were associated with the rs9274619:A 
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itself, including increased eosinophil and neutrophil counts as well as hemoglobin A1c 

and C-reactive protein concentrations. We identified several outcomes that 

demonstrated differential association by T2D status in interaction testing (alpha 

0.05/72=6.94x10-4). The TG-lowering rs9274619:A allele was associated with greater 

concentrations for T2D vs non-T2D for hemoglobin A1c, sex hormone binding globulin, 

HDL-C, glucose, and apolipoprotein-A1 concentrations. However, the TG-lowering 

rs9274619:A allele was associated with reduced concentrations for T2D vs non-T2D for 

urate, BMI, WHR, and reticulocyte count (Supplementary Table 12-13). 

 We further assessed lipid metabolomic data comprising 102,575 UKB samples 

(5200 T2D cases) and 249 metabolites for interactions. For each normalized 

metabolomic phenotype we analyzed the main effect of rs9274619:A and the interaction 

of rs9274619:A with T2D, with both models adjusted for all aforementioned covariates. 

Using a Bonferroni correction (0.05/249=2.01x10-4), we identified 6 metabolomic 

features associated with the rs9274619:A and only 1 interaction with T2D 

(Supplementary Table 14-15). With respect to the interaction detected, we observed 

that the average diameter for LDL particles among rs9274619:A carriers was greater for 

T2D versus non-T2D.  

 

Discussion 

Independent GWAS studies have identified multiple loci strongly associated with 

TG and T2D separately (13),(14), and we now observe a variant tagging HLA-

DQ1B*0302 associated with TGs only among those with T2D and not among those 

without T2D. Despite being associated with reduced TGs specifically in T2D, the lead 
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variant is associated with greater diabetes-related complications and an overlap with 

T1D.  

Our study permits several conclusions regarding T2D pathogenesis. First, our 

study highlights heterogeneous metabolism among individuals with adult-onset 

diabetes. Hyperinsulinemia contributes to reduced hydrolysis and clearance of TG rich 

lipoproteins and thus persistence of these atherogenic lipoproteins toward heightened 

macrovascular risk (15). TGs have more moderate associations with microvascular 

complications among diabetics (16). Indeed, glycemic control is a more potent risk 

factor for microvascular complications. Here, we find that an immune-related locus (i.e., 

HLA-DQB1 genotype of major histocompatibility class II) linked to reduced TGs 

interestingly associates with greater microvascular versus macrovascular risk among 

individuals with T2D. Lipid homeostasis plays a key role in immune cells, where lipids 

are key constituents of major histocompatibility complex molecules and other cell 

membrane microdomains (17). These observations highlight complementary roles of 

immune dysfunction and hyperinsulinemia in adult-onset diabetes pathogenesis. 

Second, the distinct lipid pattern observed by HLA-DQB1*0302 genotype may 

reflect etiologically distinct subgroups of adult-onset diabetes. The HLA-DQB1*0302 has 

long been recognized as a very strong risk factor for T1D and tags the potent T1D DR4 

risk haplotype (18),(19),(20),(21). Approximately 2-12% of adults diagnosed with type 2 

diabetes have glutamic acid decarboxylase autoantibodies (GADA), thereby leading to 

the proposed term of latent autoimmune diabetes in adults (LADA) (22),(23),(24),(25). 

Such individuals are often classified as T2D because they typically do not initially 

require insulin. Indeed, a recent GWAS of LADA showed that HLA-DQB1 was the most 
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significant locus(12). Recent data-driven approaches to cluster diabetes have grouped 

diabetes with GADA, traditionally classified as T1D or LADA, as severe autoimmune 

diabetes (SAID) (26). Consistent with separate T1D and LADA analyses, the HLA-

DQB1 locus is significantly associated with SAID unlike with other diabetes subgroups 

(27). Thus, the relatively reduced TG concentrations among adults classified as having 

T2D and the HLA-DQB1 risk allele may reflect the lack of hypertriglyceridemia typically 

observed with more typical hyperinsulinemic T2D.  

Third, TG concentrations among individuals diagnosed with T2D may help 

identify individuals with features more consistent with T1D. GADA testing only in adult-

onset diabetics with normal TGs would optimize diagnostic yield. Furthermore, with 

increasingly available genotyping through expanding research testing and widely used 

direct-to-consumer approaches, HLA genotypes may further improve efficiency of 

testing. While large-scale randomized controlled trials for LADA are lacking, expert 

consensus recommend personalized management approaches deviating from 

conventional T2D and surveillance management (28).  Such approaches include 

biomarker-based surveillance of residual beta cell function and to determine insulin 

initiation. 

A few limitations of our study deserve mention. First, causal gene prioritization 

through multiple methods did not converge on a single gene. Whether our observations 

reflect coordinated regulation merits further study. Based on the current results we were 

not able to elucidate the exact mechanism of TG lowering by HLA rs9274619:A in the 

context of T2D. Second, we found that after adjusting for T1D, the association between 

T2D and rs9274619:A was no longer significant, indicating that part of the association 
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between TG and rs9274619:A may be due to a concomitant diagnosis of T1D. Third, 

UKB and MGBB are predominantly White and this may limit generalizability to other 

genetic backgrounds. Finally, Cochran’s Q test is under powered to detect differences in 

heterogeneity of effect sizes and we may have missed other loci with differences in 

effects. However, we also performed a difference test and found similar results to using 

the Cochran’s Q test. 

In conclusion, we observed that HLA-DQB1*0302 is associated with reduced 

TGs only among adults with diabetes. Presence of this allele reflects an 

autoinflammatory subgroup of adult-onset diabetes most consistent with T1D, without 

characteristic hyperinsulinemia and thus relatively reduced TG concentrations. Among 

individuals classified as T2D, these individuals have greater risks for diabetes-

associated complications.  

 

Methods 

Study Participants 

 We used the UK Biobank (UKB), which is a prospective population-based cohort 

composed of approximately 500,000 samples with rich phenotypic and genotypic 

information, as the discovery cohort (29). UKB includes volunteer residents of the UK 

aged 40 to 69 years recruited during 2006-2010. The phenotypic information includes 

details on lifestyle, medical history, food habits, weight, height, body measurements, 

scans, blood routines, and electronic medical record (EMR) coded data. Out of 488,377 

total individuals, we removed unconsented individuals and samples with >10% 

genotypic missingness thereby retaining 424,120 individuals for whom the TGs were 
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also available. All individuals provided informed consent per the UKB primary protocol. 

Secondary use of these data was approved by the Massachusetts General Hospital 

Institutional Review Board (protocol 2021P002228) and was facilitated through UKB 

application 7089. 

 We used data from the Mass General Brigham Biobank (MGBB), which 

comprises volunteer patients of the large Mass General Brigham Healthcare system in 

Massachusetts with greater than 105,000 participants, as replication (30). In total 

36,424 randomly selected individuals were genotyped using three versions of the Multi-

Ethnic Genotyping Array (MEGA) Single-Nucleotide Polymorphism (SNP) array 

(Multiethnic Exome Global (Meg), Human multi-ethnic array (Mega), Expanded multi-

ethnic genotyping array (Megex)). Out of 36,424 individuals, we retained 25,137 

samples for whom T2D status and TG measurements were available for the current 

study. All individuals provided informed consent per the MGBB primary protocol. 

Secondary use of these data was approved by the Massachusetts General Hospital 

Institutional Review Board (protocol 2020P000904). 

 

Phenotypes 

In the UKB, we defined T2D based on self-reported status (data field 20002) and 

ICD10 codes E11:0-9 (data fields 41202, 41204, 40001, and 40002). The first instance 

of TG measurement (data field 30870) was defined as the primary lipid phenotype of 

interests. We also included other lipid levels as secondary outcomes: total cholesterol 

(TC) (data field 30690), low-density lipoprotein cholesterol (LDL-C) (data field 30780), 

and high-density lipoprotein cholesterol (HDL-C) (data field 30760). TG measurements 
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were converted to mg/dL by multiplying mmol/L values by 88.57 and natural log 

transformed. TC, LDL-C and HDL-C values in mmol/L were converted to mg/dL by 

multiplying 38.67. When lipid-lowering medications were prescribed, TC measurements 

were divided by 0.8 and LDL-C by 0.7, as previously done (14). All four lipid 

measurements were further inverse rank normalized to the residuals scaled by the 

standard deviation, where the model was adjusted for covariates (sex, age, age2, PC1-

10).  

We curated multiple diseases for UKB samples into phecodes for PheWAS 

analysis. The PheWAS R package (version PheWAS_0.99.5-4) was used to map ICD 

codes to phecodes based on the phecode map 1.2 and 1.2b1 from 

https://phewascatalog.org/ (31). Codes that failed to map were excluded, which were 

relatively few and often procedural. Mapped codes were defined as multiple disease 

conditions and specified as incident or prevalent based on the time of sample collection. 

Next, we obtained the secondary phenotypes, which included waist circumference (data 

field 48), hip circumference (data field 49), body mass index (BMI) (data field 23104) 

and 24-hour diet recall (data field 110001) for downstream analysis. Additionally, we 

included blood biochemistry (category id 18518) and count (category id 9081) 

measures. These phenotypes were normalized to a mean 0 and standard deviation 1 

for analysis. We obtained the NMR metabolic biomarkers generated by Nightingale 

Health (Helsinki, Finland) from the first tranche of 249 metabolic biomarkers in 118,032 

UKB participants (32). We included 102,528 samples that intersected with the discovery 

cohort and each of the metabolites were inverse rank normalized and regressed against 
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the covariates (age, age2, sex, race, PC1-10). The residuals were used as our 

phenotypes in analyses.  

In MGBB, electronic health record (EHR) data were used to define incident and 

prevalent cases based on enrollment date and ICD-9/ICD-10 codes on clinical 

phenotype definitions from phecode groups(33) (34), where samples with phecode 

250.2X were defined as T2D in our study. Similarly, lipid test results, medication 

information, demographic status of genotyped samples were curated from EHR records. 

LDL-C was measured directly or calculated using Friedewald equation when TG were 

<400 mg/dL, all lipid measurements were in mg/dL units. The lipid measurements 

closest to sequencing date was curated. A sample was defined as on statin medication, 

if statin treatment was prescribed within the last one year of the sequencing date.  We 

performed phenotype harmonization and normalization for the validation data as 

described above. 

 

Genotypes 

Genetic data from 488,377 UKB samples were assayed using two similar 

genotyping arrays from Affymetrix (Santa Clara, CA): i) Applied Biosystems UK BiLEVE 

Axiom Array ii) Applied Biosystems UK Biobank Axiom Array. 49,950 participants with 

807,411 markers were genotyped at using the Applied Biosystems UK BiLEVE Axiom 

Array and 438,427 participants with 825,927 markers were genotyped using the closely 

related Applied Biosystems UK Biobank Axiom Array. Both arrays shared 95% of 

marker content and the UK Biobank Axiom array was chosen to capture genome-wide 

genetic variation (single nucleotide polymorphism (SNPs) and short insertions and 
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deletions (indels)) (29). The imputation from the UKB array-derived genotypes was 

performed using merged UK10K and 1000 Genomes phase 3 reference panels (35) and 

was combined to the Haplotype Reference Consortium (HRC) (36) panel using 

IMPUTE4 program (https://jmarchini.org/software/) as implemented in IMPUTE2 (37). 

We obtained the UKB imputed human leukocyte antigen (HLA) genotypes (data field 

22182) composed of classical allelic variation of 11 HLA types (A, B, C, DRB5, DRB4, 

DRB3, DRB1, DQB1, DQA1, DPB1, DPA1). HLA imputation from allele pairs was 

performed using HLA*IMP:02 in the UKB, as previously described (29). Genotypic data 

in MGBB cohort was generated using three different arrays (Multiethnic Exome Global 

[MEG], Human multi-ethnic array [MEGA], Expanded multi-ethnic genotyping array 

[MEGEX]) from Illumina (San Diego, CA).  

 

Statistical analysis 

We performed genome wide association analysis (GWAS) stratified based on 

T2D status. We first performed quality control (QC) of the full UKB dataset regardless of 

T2D status by applying additional filters, including minor allele frequency (MAF) < 1%, 

Hardy-Weinberg equilibrium p-value not exceeding 1x10-15 and genotype missingness > 

10% to filter variants, and sample-level genotype missingness > 10%. The QC-passed 

dataset was used to create NULL model with sex, age, age2, genotype array, race and 

PC1-10 as covariates. We employed REGENIE with leave-one-out-cross-validation 

(LOOCV) (38) approach adjusted for covariates stated above to perform GWAS on UKB 

imputed data with minor allele count (MAC) 20 in both T2D and non-T2D samples, 
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independently. We annotated the genomic risk-loci from GWAS summary statistics 

using FUMA(39). 

We tested for differences in effect estimates per genotype by T2D status using 

Cochran's Q-test for heterogeneity in the METAL package (40). For the genome-wide 

heterogeneity assessment, we used the conventional alpha threshold of 5x10-8 to 

assign statistical significance accounting for multiple-hypothesis testing. We validated 

the outcomes from the Cochran's Q-test using the Difference Test (41). Significant lead 

variant in the discovery dataset were replicated at an alpha threshold of 0.05 accounting 

for the single SNP assessed.  

The significant and replicated variant (lead variant) was pursued for further 

downstream analysis. Given its genomic location, we correlated the UKB imputed 

classical HLA genotypes with the significant lead variant using corplot R-package 

(method-pearson; version-0.90). We performed regression-based interaction analyses 

using the model where adiposity-related, diet-related and other blood biomarker 

phenotypes were separately analyzed with the lead variant along with T2D status. The 

regression analysis (main and interaction model) was carried out in R, adjusting for sex, 

age, age2, genotype array, race, and PC1-10 as covariates. Bonferroni corrected alpha 

threshold of 0.05/number of tests was considered statistically significant for these 

analyses. Fisher's exact test was performed to test the significance of sample 

proportions among group of samples. 

We implemented the Polygenic Priority Score (PoPS) enrichment method (42) for 

gene prioritization with the GWAS summary statistics. PoPS integrates multiple public 

bulk and single-cell expression datasets, protein-protein interaction and pathway 
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databases to implement enrichment analysis using MAGMA (43) based gene 

association scores to identify top list of genes functionally linked to the phenotype of 

interest. We complementarily performed quantitative trait locus (QTLs) interrogations 

using multiple publicly available datasets. We downloaded expression quantitative trait 

locus (eQTLs) data from GTEx (v8_eQTL_all_associations) database 

(https://gtexportal.org/home/datasets) and curated significant hits (p-value < 5x10-8) for 

the lead SNP from 5 different tissues relevant to diabetes, lipids, and inflammation (i.e., 

Liver, Adipose Subcutaneous, Adipose Visceral Omentum, Whole Blood, and 

Pancreas). We utilized protein quantitative trait loci (pQTL) data in blood from the 

INTERVAL study (44) and GoDMC database (45) for methylation quantitative trait loci 

(mQTL) in blood to curate pQTLs and mQTLs related to the lead variant (p-value < 

5x10-8).  
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Cohorts UK Biobank Mass General Brigham Biobank  

Strata T2D non-T2D T2D non-T2D 

Number of samples (%) 21176(4.99) 402944(95.01) 6951(27.65) 18185(72.34) 

Age (years) mean (SD) 60.22(6.87) 56.36(8.11) 67.79(13.28) 59.93(16.73) 

Female samples (%) 8107(38.28) 220047(54.60) 3283(47.23) 10274(56.40) 

European samples (%) 16636(78.56) 339387(84.23) 5457(78.51) 15715(86.42) 

Lipid lowering medication prescription (%) 13433(63.44) 56045(13.91) 2197(31.61) 2625(14.43) 

TG concentration (mg/dL) median [IQR] 171.83[125.09] 129.58[95.66] 125.00[93.00] 97.00[70.00] 

HDL-C concentration (mg/dL) mean (SD) 46.04(12.44) 56.51(14.71) 49.78(17.82) 58.88(19.80) 

LDL-C concentration (mg/dL) mean (SD) 111.59(34.17) 138.98(33.04) 90.74(35.88) 104.08(35.89) 

TC concentration (mg/dL) mean (SD) 183.09(45.98) 222.06(43.27) 168.91(44.12) 185.39(42.83) 
 

Table 1: Baseline characteristics for discovery and replication cohorts: Distribution of samples across the T2D strata 

in discovery (UKB) and replication (MGBB) cohorts are provided. Number of samples by gender, ancestry and lipid 

lowering medications are documented. Lipid measurements for the four main lipid class is tabulated based on T2D strata. 

HLD-C – High-Density Lipoprotein Cholesterol; IQR – Inter quartile range; LDL-C – Low-Density Lipoprotein Cholesterol; 

MGBB – Mass General Brigham Biobank; SD – Standard Deviation; T2D – Type 2 Diabetes; TG – Triglycerides; TC – 

Total Cholesterol; UKB – UK Biobank. 
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Figure 1: Genome-wide heterogeneity between T2D strata. Manhattan plot for heterogeneity p-values comparing T2D 

and non-T2D groups. Only one locus achieved genome-wide significance and the corresponding variants are colored in 

green. Lambda GC values from GWAS stratified by T2D status is shown in the figure. Red line: Genome-wide significance

(p-value=5x10-8), Blue line: Suggestive significance (p-value=1x10-5). 

GWAS – Genome wide association studies; T2D – Type 2 Diabetes. 
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Figure 2: HLA-DQB1 rs9274619:A significantly interacts with T2D on triglycerides.  

A) Allele frequency of rs9274619:A in T2D and non-T2D samples grouped by raw TG values. Significance of samples 

proportions between the groups was assessed using Fisher's exact test for the lower and higher TG bins. B) GWAS and 

heterogeneity statistics of the lead variant rs9274619:A at the HLA-DQB1 locus from discovery (UKB) and replication 

(MGBB) cohorts based on T2D stratification. 

CI – Confidence Intervals; GWAS – Genome wide association studies; HLA – Human Leukocyte Antigens; MGBB – Mass 

General Brigham Biobank; NS – Non Significant; T2D – Type 2 Diabetes; TG – Triglycerides; UKB – UK Biobank. 
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Figure 3: Phenome wide association (PheWAS) of disease conditions stratified by T2D status. Interaction between 

the rs9274619:A and T2D with multiple disease conditions as outcomes (combination of incidence and prevalence) was 

modeled while adjusting for all covariates (sex, age, age2, race, PC1-10). Bonferroni corrected 45 significant phenotypes 

were stratified by T2D status and analyzed using logistic regression. The T2D effect estimates for rs9274619:A and the 

interaction p-value are documented, the disease conditions are ordered based on T2D beta. From the 45 disease 

conditions tested, highly correlated Type1 diabetic conditions were removed while plotting the figure. 

PC – Principal Components; PheWAS – Phenome Wide Association Studies; T2D – Type 2 Diabetes.  
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