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Abstract 29 
 30 
Clonal hematopoiesis (CH) is one of the most extensively studied somatic mutational phenomena, 31 
yet its causes and consequences remain poorly understood. We identify 10,924 individuals with CH 32 
amongst 200,453 whole-exome sequenced UK Biobank participants and use their linked genome-33 
wide DNA genotypes to map the landscape of inherited predisposition to CH. We increase the 34 
number of European-ancestry genome-wide significant (P<5x10-8) germline associations with CH 35 
from four to 14 and identify one new transcriptome-wide significant (P<3.2x10-6) association. Genes 36 
at new loci implicate DNA damage repair (PARP1, ATM, and CHEK2), hematopoietic stem cell 37 
migration/homing (CD164), and myeloid oncogenesis (SETBP1) in CH development. Several 38 
associations were CH-subtype specific and, strikingly, variants at TCL1A and CD164 had opposite 39 
associations with DNMT3A- versus TET2-mutant CH, mirroring recently reported differences in 40 
lifelong behavior of these two most common CH subtypes and proposing important roles for these 41 
loci in CH pathogenesis. Using Mendelian randomization, we show, amongst other findings, that 42 
smoking and longer leukocyte telomere length are causal risk factors for CH and demonstrate that 43 
genetic predisposition to CH increases risks of myeloproliferative neoplasia, several non-44 
hematological malignancies, atrial fibrillation, and blood epigenetic age acceleration. 45 
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Introduction 52 
 53 
The pervasive effects of ageing and somatic mutation shape the landscape of human disease in later 54 
life1. A ubiquitous feature of ageing is the development of somatic mutation-driven clonal expansions 55 
in aged tissues2,3. In blood, somatic mutations that enhance cellular fitness of individual hematopoietic 56 
stem cells (HSCs) and their progeny, give rise to the common age-related phenomenon of clonal 57 
hematopoiesis (CH)4–7. CH becomes increasingly prevalent with advancing age4–6 and is associated 58 
with an increased risk of hematological cancers4,5,8,9 and of some non-hematological conditions5,10,11. 59 
However, our understanding of the biological basis for these associations remains limited, as does our 60 
ability to explain how CH driver mutations promote clonal expansion of mutant HSCs12. In fact, whilst 61 
CH is defined by its association with somatic mutations, its development is influenced by non-62 
mutation factors13–16 and by the heritable genome17,18, in ways that remain poorly understood. 63 
 64 
Insights into the causes and consequences of CH are confounded by its intimate relationship with 65 
ageing. Moreover, even when robust associations are identified, their causality can be difficult to 66 
establish. Here, we perform a comprehensive investigation of the genetic and phenotypic associations 67 
of CH in 200,453 United Kingdom Biobank (UKB) participants, yielding a step change in our 68 
understanding of CH pathogenesis. Our study reveals multiple new germline loci associated with CH, 69 
including several that interact with specific CH subtypes, uncovers causal links between CH and diverse 70 
pathological states across organ systems, and provides evidence for causal associations between 71 
smoking and telomere length and CH risk, amongst a series of novel insights. 72 
 73 
Results 74 
 75 
Prevalence of CH and its distribution by age and sex in the UKB 76 
 77 
To identify individuals with CH, we analyzed blood whole exome sequencing (WES) data from 200,453 78 
UKB participants19 aged 38-72 years (Extended Data Fig. 1a-c). We called somatic mutations in 43 CH 79 
genes (Supplementary Table 1) and filtered these against a predefined list of CH driver variants 80 
(Supplementary Tables 2 and 3). This identified 11,697 mutations (Supplementary Table 4) in 10,924 81 
individuals (UKB prevalence: 5.45%). DNMT3A, TET2, and ASXL1 were most commonly involved (79% 82 
of all mutations), followed by mutations in DNA damage response genes PPM1D, TP53, and ATM; 83 
splicing factor genes SRSF2 and SF3B1; JAK2 and GNB1 (Fig. 1a), in line with previous reports4,5,17. Most 84 
CH carriers (n=10,228) harbored one and some (n=696) 2-4 mutations; most of which were missense 85 
variants dominated by cytosine-to-thymine (C>T) transitions (Extended Data Fig. 1d-f). The mean 86 
variant allele fraction (VAF) was 0.12 and VAF distribution did not differ between mutation types 87 
(Extended Data Fig. 1g and h). VAF distribution did differ between individual genes (Fig. 1a), although 88 
some of this variation was probably influenced by variation in sequencing depth (Supplementary Table 89 
1). 90 
 91 
CH prevalence rose progressively with age (P<10-300; Fig. 1b), as did clone size measured by VAF 92 
(P=8.2x10-37; Extended Data Fig. 2a). Females and males were similarly affected with similar median 93 
ages (Extended Data Fig. 2b). The age-related rise in prevalence differed between drivers: compared 94 
to DNMT3A, mutations in ATM were observed earlier and those in ASXL1, PPM1D, SF3B1, and SRSF2 95 
were observed later (Extended Data Fig. 2c). Furthermore, we noted significant differences in the 96 
prevalence of different CH gene mutations between sexes, with GNB1 and DNMT3A mutations more 97 
frequent in females and PPM1D, TP53, JAK2, SF3B1, ASXL1, and SRSF2 mutations more frequent in 98 
males (Fig. 1c), reflecting their relative prevalence in myeloid malignancies20. 99 
 100 
 101 
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Associations between CH and traits/diseases prevalent at the time of blood sampling 103 
 104 
To identify associations between CH and traits or diseases prevalent at the time of enrolment to the 105 
UKB, we performed regression analyses adjusting for age, sex, smoking status, WES batch and the first 106 
ten genetic ancestry principal components. Individuals with CH showed higher average platelet, 107 
leukocyte, reticulocyte, and neutrophil counts and red blood cell distribution width (RDW), but lower 108 
eosinophil counts (Fig. 2a). These associations were more pronounced in individuals with large CH 109 
clones (VAF≥0.1; Fig. 2a; Supplementary Table 5). JAK2-driven CH was associated with markedly higher 110 
platelet counts, RDW and hemoglobin/hematocrit (HGB/HT) levels. In contrast, splicing factor-mutant 111 
CH was associated with lower HGB/HT and higher mean red cell volume (MCV; Fig. 2a; Supplementary 112 
Table 5). We also found that CH status was associated with lower levels of total and low-density 113 
lipoprotein cholesterol (Fig. 2b; Supplementary Table 6). Advancing age increased the risk of CH by 114 
6.7% per year (OR=1.07, 95%CI: 1.06-1.07, P<10-300; Fig. 2c); and CH status was associated with 115 
increased prevalence of hypertension, but not obesity or type 2 diabetes (T2D; Fig. 2c; Supplementary 116 
Table 7). Also, individuals with CH were more likely to be current, past, or “ever” smokers, an 117 
association that held true for different forms of CH and was strongest for ASXL1-mutant CH (Fig 2c 118 
and 2d; Supplementary Table 7). 119 
 120 
Associations between CH and incident disease 121 
 122 
We next investigated relationships between CH at baseline and traits/diseases that developed 123 
subsequently (Supplementary Table 8) and identified strong associations with incident myeloid 124 
malignancies (MM) and associated sequelae (Extended Data Fig. 3a and Supplementary Table 9). The 125 
association was strong for all MM subtypes and highest for chronic myelomonocytic leukemia (CMML; 126 
Fig. 2e), whilst large clone CH increased the risk of MMs three-to-five-fold compared to small clone 127 
CH (VAF<0.1; Extended Data Fig. 3b; Supplementary Table 10). SF3B1 and SRSF2 mutations conferred 128 
very high risks of CMML and myelodysplastic syndromes (Extended Data Fig. 3c; Supplementary Table 129 
10). CH was also associated with increased risks of Hodgkin’s and non-Hodgkin’s lymphomas and non-130 
hematological neoplasia, including lung, head and neck, kidney, bladder, colorectal, and stomach 131 
cancers (Fig. 2f; Supplementary Table 11). The association of CH with lung adenocarcinoma was 132 
consistently observed across large and small clones, and with DNMT3A and ASXL1 mutations, whilst 133 
the association with overall CH persisted in self-reported never-smokers (Extended Data Fig. 3d). 134 
 135 
As CH was previously identified as a risk factor for ischemic cardiovascular disease (CVD)5,10,21, we 136 
examined the association in this much larger cohort (Fig. 2g; Supplementary Table 12). Using 137 
multivariable models, we did not find a significant association between CH and ischemic CVD, 138 
including coronary artery disease (CAD) and stroke; however, we did find significantly increased risks 139 
of heart failure and a composite of all CVD conditions (Fig. 2g; Supplementary Table 12). Using a 140 
bivariable model including age as the only other covariate, we also found a significant association with 141 
atrial fibrillation, with an effect size estimate consistent with that in multivariable analysis (Extended 142 
Data Fig. 3e; Supplementary Table 12). Our multivariable analyses also found significant associations 143 
between CH and increased risk of death from any cause, malignant neoplasm, and hematological 144 
neoplasm, whilst large clone CH was also associated with an increased risk of death due to the 145 
composite of CVDs (Fig. 2h; Supplementary Table 13). 146 
 147 
Heritability and cell type-specific enrichment of polygenic susceptibility to CH 148 
 149 
To identify heritable determinants of CH risk, we performed a genome-wide association study (GWAS) 150 
on the 184,121 individuals with genetically inferred European ancestry to identify common (minor 151 
allele frequency (MAF)>1%) germline genetic variants predisposing to CH. In the GWAS, we compared 152 
10,203 individuals with CH with 173,918 individuals without CH, after quality control of the germline 153 
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genotype data. Linkage disequilibrium score regression (LDSC)22 showed little evidence of inflation in 154 
test statistics due to population structure, with an intercept of 1.009 and lambda genomic control 155 
factor of 0.999. The narrow-sense (additive) heritability of CH was estimated at 3.57% (s.e.=0.85%). 156 
We partitioned the heritability of CH across four major histone marks observed in 10 cell type groups 157 
aggregated from 220 cell-type specific annotations23 and identified strong enrichment of the polygenic 158 
CH association signal in histone marks enriched in hematopoietic cells (P=5.9x10-5; Fig. 3a; 159 
Supplementary Table 14). Next, we partitioned the heritability of CH across open chromatin state 160 
regions in various hematopoietic progenitor cells and lineages23,24. We found evidence of CH 161 
heritability enrichment in accessible chromatin regions in HSCs, common lymphoid and myeloid 162 
progenitors, multipotent and erythroid progenitors, and B cells (Fig. 3b; Supplementary Table 15). 163 
Overall, these findings are in keeping with the intuitive assumption that the CH GWAS exerts its 164 
greatest biological effect on HSC/progenitor populations. 165 
 166 
Germline genetic loci associated with overall CH susceptibility 167 
 168 
Linkage disequilibrium (LD)-based clumping of 9,715,652 common variants identified seven 169 
independent (r2<0.05) genome-wide significant loci (lead variant P<5x10-8) associated with risk of 170 
developing CH, including three previously reported17 European-ancestry CH loci: two at 5p15.33-TERT 171 
and one at 3q25.33-SMC4 (Fig. 4a; Supplementary Table 16). We identified a new top variant in the 172 
5p15.33 region, rs2853677 (P=2.4x10-50), which was weakly correlated (r2=0.19) with the previously 173 
reported17 top variant, rs7705526 (P=3.4x10-44 in our analysis). Overall, there was evidence for three 174 
independent (r2<0.05) signals at 5p15.33 marked by lead variants rs2853677, rs13156167, and 175 
rs2086132, the latter representing a new signal independent of the two previously published17 signals 176 
rs7705526 and rs13167280. After approximate conditional analysis25 (Supplementary Table 17) 177 
conditioning on the three lead variants in the TERT region, the previously published top variant, 178 
rs7705526, continued to remain genome-wide significant suggesting that it represented a fourth 179 
signal in this region. Conditional analysis also highlighted the existence of a fifth independent 180 
association at 5p15.33 marked by rs13356700 ~776 kb from TERT and ~34 kb from EXOC3 181 
(Supplementary Table 17) that encodes an exocyst complex component implicated in arterial 182 
thrombosis26. The variant rs13356700 was in strong LD (r2=0.84) with rs10072668 that is associated 183 
with HGB/HT27. At 3q25.33-SMC4, the previously reported17 top variant, rs1210060191, was not 184 
captured in the UKB and our top association was rs12632224 (P=2.3x10-9). We also identified three 185 
other novel genome-wide significant loci associated with overall CH susceptibility (Fig. 4a; 186 
Supplementary Table 16): 4q35.1-ENPP6 (rs13130545), 6q21-CD164 (rs35452836), and 11q22.3-ATM 187 
(rs11212666). 188 
 189 
CH GWAS stratified by gene and clone size, association heterogeneity, and rare variant associations 190 
 191 
Next, we investigated whether the development of certain CH subtypes may be affected by germline 192 
variants. Thus, we performed GWAS for four additional CH traits – stratifying by the two main mutated 193 
genes in CH, DNMT3A and TET2, and by clonal size, differentiating large and small clones. Focusing on 194 
5,185 individuals with DNMT3A and 2,041 with TET2 mutations and using the 173,918 individuals of 195 
European ancestry without detectable CH as controls, we identified eight and three genome-wide 196 
significant loci associated with DNMT3A- and TET2-mutant CH, respectively (Figs. 4b and 4c; 197 
Supplementary Tables 18 and 19). We replicated the only previously published European-ancestry CH 198 
risk locus associated with DNMT3A-CH at 14q32.13-TCL1A. The overall CH loci at 5p15.33-TERT (signals 199 
with lead variants rs2853677, rs13156167, and rs7705526), 3q25.33-SMC4, 6q21-CD164, and 200 
11q22.3-ATM were also genome-wide significant for DNMT3A-mutant CH. We also found two novel 201 
loci for DNMT3A-CH marked by lead variants rs138994074 at 1q42.12-PARP1 and rs8088824 at 202 
18q12.3-SETBP1 (Fig. 4b; Supplementary Table 18). The three TET2-CH associated loci included the 203 
lead variant rs2736100 at 5p15.33-TERT, that was moderately correlated (r2=0.44) with the overall CH 204 
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lead variant rs2853677 in the same region. The other two risk loci, both new in the context of TET2-205 
CH, were at lead variants rs10131341 (14q32.13-TCL1A) and rs79633204 (7q32.2-TMEM209; Fig. 4c; 206 
Supplementary Table 19). Notably, the A allele of rs10131341 had opposite associations with TET2-CH 207 
(OR=1.28, P=6.8x10-10) versus DNMT3A-CH (OR=0.87, P=6.4x10-8). A trend for opposite effects at 208 
14q32.13-TCL1A was also observed in a previous study17, but did not achieve genome-wide 209 
significance for TET2-CH. 210 
 211 
When comparing 4,049 individuals with large or 6,154 individuals with small clones against 173,918 212 
controls of European ancestry without CH, we found that the overall CH loci at 5p15.33-TERT and 213 
3q25.33-SMC4 were associated at genome-wide significance with large clone CH (Fig. 4d; 214 
Supplementary Table 20), while 5p15.33-TERT and 6q21-CD164 were associated with small clone CH. 215 
For small clone CH risk, we also identified a previously unreported locus marked by rs72755524 at 216 
5p13.3 in a region with several lincRNAs (Fig. 4e; Supplementary Table 21). Additional signals 217 
suggested by approximate conditional analysis at each locus identified in this study are listed in 218 
Supplementary Table 17. Examining heterogeneity of associations across the five CH traits using forest 219 
plots (Extended Data Fig. 4) revealed that in addition to 14q32.13-TCL1A, the lead alleles at 6q21-220 
CD164 also had opposite effects on DNMT3A- versus TET2-CH. In addition, the lead variants at 6q21-221 
CD164 and 5p13.3-LINC02064 were associated with small, but not large, clones while the association 222 
at 7q32.2-TMEM209 was highly specific to TET2-CH. 223 
 224 
Finally, in addition to our common variant GWAS, we performed a more focused scan to explore rare 225 
variant (MAF: 0.2%-1%) associations in each of three CH traits that included >5,000 European-ancestry 226 
individuals with CH (i.e., overall CH, DNMT3A-CH, and small clone CH; each compared to 173,918 227 
controls) declaring associations significant at P<10-9. This identified one new locus at 22q12.1-CHEK2 228 
where the T allele (frequency=0.3%) of lead variant rs62237617 was perfectly correlated (r2=1) with 229 
the 1100delC CHEK2 protein-truncating allele (rs555607708) and conferred a large increase in risk of 230 
DNMT3A mutation-associated CH (OR=4.1, 95%CI: 2.7-6.1, P=6.3x10-12). The CHEK2 c.1100delC 231 
frameshift mutation or its tagging variant rs62237617 are known to be associated with 232 
myeloproliferative neoplasms (MPNs) and JAK2 V617F-driven CH (though not genome-wide significant 233 
for either trait)18, elevated white blood cell counts and plateletcrit27, as well as risk of prostate and 234 
breast cancers28,29. The DNMT3A-CH risk increasing alleles in the CHEK2 and PARP1 regions were also 235 
associated with later age at menopause in a recent analysis30, suggesting a role for inhibition of DNA 236 
damage sensing and apoptosis in both CH and reproductive ageing31. 237 
 238 
Genetic relationship between hematological chromosomal mosaicism and CH due to gene mutation 239 
 240 
It is not known whether the germline genetic architecture underlying predisposition to CH due to 241 
individual gene mutations is similar to that underlying the risk of CH due to mosaic chromosomal 242 
alterations (mCAs). We used data from a recent GWAS of blood mCAs32 to answer this question and 243 
found that 13 of 19 unique lead variants identified for the five gene-mutant CH traits (overall, 244 
DNMT3A, TET2-, and large and small clone CH) were associated with hematological mCA risk at P<10-245 
4 (Supplementary Table 22). Notably, for our lead variants rs2296312 (14q32.13-TCL1A) and rs8088824 246 
(18q12.3-SETBP1), the alleles conferring increased DNMT3A-CH risk reduced hematological mCA risk 247 
(Supplementary Table 22). At the genome-wide level we found a correlation between overall CH and 248 
mCAs (rg=0.44, s.e.=0.21, P=0.037) using LDSC22. Further, a phenome-wide scan33,34 showed that 249 
several newly identified lead variants in our analyses were associated with multiple blood cell counts 250 
and traits (Supplementary Table 23). 251 
 252 
 253 
 254 
 255 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 6, 2022. ; https://doi.org/10.1101/2022.01.06.22268846doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.06.22268846
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

Gene-level associations and network analyses 256 
 257 
We supplemented our GWAS with gene-level association tests for each of our five CH traits using two 258 
complementary methods: multi-marker analysis of genomic annotation (MAGMA) and a 259 
transcriptome-wide association study (TWAS) using blood-based cis gene expression quantitative trait 260 
locus data on 31,684 individuals35 and summary-based Mendelian randomization (SMR) coupled with 261 
the heterogeneity in dependent instruments colocalization test36. Both approaches converged on a 262 
new locus at 6p21.1, associated at gene-level genome-wide significance (PMAGMA<2.6x10-6, 263 
PSMR<3.2x10-6) with DNMT3A-mutant CH and marked by CRIP3 (PMAGMA=3.4x10-7, PSMR=6.6x10-7; Fig. 3a; 264 
Supplementary Tables 24 and 25). While CRIP3 is the only 6p21.1 gene to reach gene-level genome-265 
wide significance in both MAGMA and SMR, we did find sub-threshold evidence for association 266 
between SRF or ZNF318 in the same region and DNMT3A-mutant CH (Fig. 5a). Of note, SRF encodes 267 
the serum response factor that is known to regulate HSC adhesion37 while ZNF318 is an occasional 268 
somatic driver gene for CH38. More globally, protein-protein interaction (PPI) network analysis39 using 269 
proteins encoded by the 57 genes with PMAGMA<0.001 in the overall CH analysis (Supplementary Table 270 
24) as “seeds”, identified the largest sub-network (Fig. 5b) as encompassing 13/57 proteins with major 271 
hub nodes highlighted as TERT, PARP1, ATM, and SMC4. This was consistent with the emerging theme 272 
that key genes at sub-threshold GWAS loci for the same trait are often part of interconnected 273 
biological networks40,41. The sub-threshold genes identified by MAGMA that encoded protein hubs in 274 
this network included FANCF (DNA repair pathway) and PTCH1 (hedgehog signaling; Fig. 5b), both 275 
implicated in the pathogenesis of acute myeloid leukemia42,43 and GNAS, a somatic driver of CH44. The 276 
CH sub-network (seeds and non-seed interacting proteins) was significantly enriched for several 277 
pathways of relevance to common disease including DNA repair, cell cycle regulation, telomere 278 
maintenance, and platelet homeostasis (Supplementary Table 26). 279 
 280 
Functional target gene prioritization at CH risk loci 281 
 282 
In order to prioritize putative functional target genes at the Plead-variant<5x10-8 loci identified by our 283 
GWAS of five CH traits, we combined gene-level genome-wide significant results from MAGMA and 284 
SMR (Supplementary Tables 24 and 25) with five other lines of evidence: PPI network hub status of 285 
the gene (Supplementary Table 27), variant-to-gene searches of the Open Targets database45 for lead 286 
variants, overlap between fine-mapped variants46,47 (Supplementary Table 28) and (i) gene bodies, (ii) 287 
regions with accessible chromatin correlated with nearby gene expression in hematopoietic 288 
progenitor cells24,48–50, and (iii) missense variant annotations51,52 (Supplementary Table 29). Genes 289 
nominated by at least two of these approaches are listed in Fig. 5c. The genes nominated by the largest 290 
number of approaches, and representing the most likely targets, were SMC4, ENPP6, TERT, CD164, 291 
ATM, PARP1, TCL1A, SETBP1, and TMEM209. 292 
 293 
Among the newly identified loci, CD164 codes for Sialomucin core protein 24, a cell adhesion molecule 294 
that regulates HSC adhesion, proliferation, and migration53,54. Lead variant rs138994074 at 1q42.12 295 
was strongly correlated (r2=0.93) with rs1136410, a missense germline mutation in PARP1 296 
(Supplementary Table 29) wherein the G allele, which is protective for DNMT3A-CH, leads to a 297 
missense variant (p.Val762Ala) in the catalytic domain of its protein product associated with reduced 298 
Poly (ADP-ribose) polymerase-1 activity55. While SETBP1 was only nominated by one approach (Open 299 
Targets45) and was the only gene nominated at 18q12.3, its nomination is strengthened by the fact 300 
that somatic SETBP1 mutations are recognized drivers of myeloid malignancies56,57. 301 
 302 
Mendelian randomization (MR) to uncover the causes and consequences of CH 303 
 304 
We integrated several large GWAS datasets (Supplementary Tables 30 and 31) and used two-sample 305 
inverse-variance-weighted MR58 to appraise putative causes and consequences of CH. Genetically-306 
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predicted smoking initiation59 was associated with overall CH risk (OR=1.15, 95%CI: 1.05-1.25, 307 
P=2.2x10-3). Point estimates of the effect size were consistent in direction across MR analyses for 308 
DNMT3A, TET2, and large and small clone CH (Fig. 6a; Supplementary Table 32), with the largest odds 309 
ratio observed for large clone CH (OR=1.24). We also appraised the roles of leukocyte telomere length 310 
(LTL)60, alcohol use59, adiposity61, genetic liability to T2D62, major circulating lipids63, blood-based 311 
epigenetic aging phenotypes64, blood cell counts and indices27, and circulating cytokines and growth 312 
factors65 as potential risk factors for CH using MR (Fig. 6; Supplementary Tables 32, 33, and 34 for full 313 
results, including sensitivity analyses). Genetically predicted longer LTL was associated with increased 314 
overall CH risk (OR=1.56, 95%CI: 1.25-1.93, P=5.7x10-5), an association that was also seen with 315 
DNMT3A-, TET2-, and large and small clone CH (Fig. 6b; Supplementary Table 32). We found that 316 
higher genetically predicted BMI was associated with increased risk of large clone CH (OR=1.15, 95%CI: 317 
1.01-1.31, P=0.029). Genetically elevated circulating apolipoprotein B levels were associated with 318 
increased (OR=1.18, 95%CI: 1.01-1.36, P=0.032; Fig. 6c), whilst genetically predicted alcohol use was 319 
associated with decreased (OR=0.46, 95%CI: 0.25-0.83, P=0.010) risk of TET2-CH. Among cytokines, 320 
genetically-elevated circulating macrophage inflammatory protein 1a, a regulator of myeloid 321 
differentiation and HSC numbers66, was associated with risk of DNMT3A-CH (OR=1.13, 95%CI 1.03-322 
1.23, P=7.1x10-3; Supplementary Table 34). 323 
 324 
We used independent (r2 < 0.001) variants associated with overall, DNMT3A, TET2, and large and small 325 
clone CH at P<10-5 as genetic instruments for each of these traits and assessed their associations with 326 
outcomes (Supplementary Tables 31, 35, and 36 for full results, including sensitivity analyses). Since 327 
more variants were available at P<5x10-8 for overall and for DNMT3A CH, we also examined the 328 
consistency of associations when using genome-wide (GWS; P<5x10-8) and sub-genome-wide 329 
significant (sub-GWS; P<10-5) instruments for these two traits. Using the sub-GWS instrument, genetic 330 
liability to overall CH had the largest associations (Fig. 7a) with MPN risk48 (OR=1.99, 95%CI: 1.23-3.23, 331 
P=5.4x10-3), intrinsic epigenetic age acceleration64 (IEAA, which represents a core characteristic of 332 
HSCs67; beta= 0.39, 95%CI: 0.08-0.69, P=0.01) and the blood-based Hannum epigenetic clock64 (beta= 333 
0.27, 95%CI: 0.04-0.49, P=0.02). Larger associations were observed when using the GWS instrument 334 
(Fig. 7a) and the direction of these was consistent when evaluating genetic liability to DNMT3A, TET2, 335 
and large and small clone CH as exposures (Supplementary Tables 35 and 36). Genetic liability to CH 336 
conferred increased risks of lung68, prostate69, ovarian70, oral cavity/pharyngeal71, and endometrial 337 
cancers72 (Fig. 7; Supplementary Table 35) with the strongest associations observed between overall 338 
CH and lung (OR=1.17, 95%CI: 1.05-1.29, P=2.9x10-3); DNMT3A-CH and prostate (OR=1.08, 95%CI: 339 
1.03-1.13, P=8.6x10-4), ovarian (OR=1.07, 95%CI: 1.01-1.12, P=0.015), and oral cavity/pharyngeal 340 
(OR=1.24, 95%CI: 1.07-1.44, P=4.4x10-3); and TET2-CH and endometrial (OR=1.05, 95%CI: 1.00-1.09, 341 
P=0.033) cancers. MR analyses did not support causal risk-conferring associations between genetic 342 
liability to CH and CAD73, ischemic stroke74, and heart failure75 with similar lack of evidence across 343 
gene-specific and clone size-specific CH, and GWS instrument analyses (Fig. 7; Supplementary Table 344 
35). However, we did uncover an association between genetic liability to overall CH or DNMT3A-CH 345 
and atrial fibrillation76 risk (OR=1.09, 95%CI: 1.04-1.15, P=4.9x10-4 for overall CH with the GWS 346 
instrument; Supplementary Table 35). Among cytokines and growth factors65, genetic liability to 347 
overall CH was associated with elevated circulating stem cell growth factor beta (beta= 0.19; 95%CI: 348 
0.07-0.30, P=1.1x10-3). MR analyses also revealed bidirectional associations between CH phenotypes 349 
and several blood cell counts and traits27, suggesting a shared underlying genetic liability to CH and 350 
pan-blood cell proliferation (Figs. 6b and 7; Supplementary Tables 33 and 35). Finally, we found little 351 
evidence to support an association between genetic liability to CH and LTL (Supplementary Table 36), 352 
indicating that longer LTL was a cause rather than a consequence of CH. 353 
 354 
 355 
 356 
 357 
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Discussion 358 
 359 
We present a large observational and genetic epidemiological analysis of CH and report a series of 360 
novel insights into the causes and consequences of this common aging-associated phenomenon. We 361 
increase the number of germline associations with CH in European-ancestry populations from four17 362 
to 14, reveal heterogeneity of associations by CH driver gene and clone size, and implicate putative 363 
new CH susceptibility genes, including CD164, ATM and SETBP1, through functional annotation. We 364 
also demonstrate that the CH GWAS signal is enriched at epigenetic marks specific to the 365 
hematopoietic system. The robustness of our GWAS analysis is further affirmed by our replication of 366 
previous European ancestry-specific CH associations17, the consistency of our estimates of CH 367 
heritability with previous reports17,77, and the fact that many of our lead variants are associated with 368 
related traits27,32,60,78. 369 
 370 
New CH risk loci included the PARP1 coding variant rs1136410, where the G allele is protective for 371 
DNMT3A-CH and associated with reduced catalytic activity55 suggesting that this most common form 372 
of CH may be vulnerable to PARP inhibition, in keeping with the observed synergy between PARP and 373 
DNMT inhibitors79. At 14q32.13-TCL1A, we replicate the reported association with DNMT3A-CH17 and 374 
identify a new genome-wide significant association with TET2-CH. Strikingly, however, we found that 375 
the association operates in the opposite direction for TET2-CH, versus DNMT3A-CH. This inverse 376 
relationship is tantalizing in light of recent observations that ageing has different effects on the 377 
dynamics of these two forms of CH, resulting in TET2 CH becoming more prevalent than DNMT3A CH 378 
in those aged over 80 years80,81. Also notable in this light, is the finding of an association at the CD164 379 
locus with DNMT3A, and a trend in the opposite direction for TET2-CH. As CD164 is expressed in the 380 
earliest HSCs53 and encodes an important regulator of HSC adhesion54,82, this proposes that HSC 381 
migration and homing may play important roles in CH pathogenesis. The reciprocal relationship of 382 
both TCL1A and CD164 with the two main CH subtypes, suggests that their expression needs to be 383 
tightly regulated to prevent the development of one or other subtype of CH, making these loci 384 
important targets for hijack by the effects of somatic mutations. 385 
 386 
The rich phenotypic data captured by the UKB, coupled with our genetic analysis of CH and external 387 
GWAS datasets, enabled us to explore associations of CH using multivariable regression and 388 
interrogate, at scale, potential causal relationships between CH and its putative risk factors and 389 
consequences using MR. This highlighted for the first time that smoking and longer telomere length 390 
are causal risk factors for CH. These associations were valid across multiple CH subtypes and, in the 391 
case of smoking, corroborated by observational estimates. We also reveal that not only is genetic 392 
predisposition to CH causally associated with MPN risk, but it also increases the risk of lung, prostate, 393 
ovarian, oral/pharyngeal, and endometrial cancers. In these analyses, the use of two-sample MR 394 
protected against potential reverse causality arising from cancer therapy-induced selection pressure 395 
on hematopoietic clones83. These MR results suggest that genetic liability to CH may be a biomarker 396 
for development of cancer elsewhere in the body. An analogous relationship has previously been 397 
identified by MR for the association of genetic predisposition to Y chromosome loss in blood and solid 398 
tumor risk31. 399 
 400 
We investigated the recently identified association of CH with blood-based epigenetic clocks84, using 401 
bi-directional MR and show that this association is likely to be causal in the direction from CH to 402 
epigenetic age acceleration. We also showed that genetic predisposition to CH was associated with 403 
elevated circulating levels of stem cell growth factor beta, a secreted sulfated glycoprotein that 404 
regulates primitive hematopoietic progenitor cells85. Finally, we unraveled a previously unreported 405 
association between genetic liability to CH and atrial fibrillation risk, which was also supported by our 406 
observational analysis. However, unlike previous reports based on significantly smaller sample 407 
numbers5,10,21, we did not find evidence in observational and MR analyses to support an association 408 
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between CH and CAD or ischemic stroke risk. However, our MR analyses indicated that higher BMI 409 
and circulating apolipoprotein B levels were associated with TET2 and large clone CH risks, 410 
respectively, with apolipoprotein B being the key causal lipid risk factor for CAD63,86. These associations 411 
taken together with the fact that age and smoking are strong risk factors for CH raise the possibility 412 
that previously reported associations of CH with CAD and stroke risks may suffer from residual 413 
confounding. 414 
 415 
Collectively, our findings substantially illuminate the landscape of inherited susceptibility to CH and 416 
provide new insights into the causes and consequences of CH with implications for human health and 417 
ageing. 418 
 419 
Methods 420 
 421 
Study population and exome sequence data 422 
 423 
The United Kingdom Biobank (UKB) is a prospective longitudinal study containing in-depth genetic and 424 
health information from half a million UK participants. For this study, we have selected 200,453 425 
individuals (200k) who had whole exome sequencing (WES) data available (age range: 38-72, median 426 
age: 58; 55% female; 83% White British). WES was generated in two batches, the first of approximately 427 
50,000 samples (50k)87 and the second comprising an additional 150,000 samples (150k)19. Exomes 428 
were captured using the IDT xGen Exome Research Panel v1.0 including supplemental probes; a 429 
different IDT v1.0 oligo lot was used for each batch. Multiplexed samples were sequenced with dual-430 
indexed 75x75 bp paired-end reads on the Illumina NovaSeq 6000 platform using S2 (50k samples) 431 
and S4 (150k samples) flow cells. The 50k samples were firstly computed using FE protocol and 432 
reprocessed later to match the second batch of 150k sequences that were processed using a new 433 
improved unified OQFE pipeline. As the initial 50k samples were sequenced on S2 flow cells and with 434 
a different IDT v1.0 oligo lot than the remaining 150k samples, which were sequenced on S4 flow cells, 435 
we included the WES batch as a covariate in downstream analyses. 436 
 437 
The UK Biobank study has been approved by the North West Multicentre Research Ethics Committee 438 
(11/NW/0382). All participants provided written informed consent. The current study has been 439 
conducted under approved UK Biobank application numbers 56844 and 29202. 440 
 441 
Whole exome sequence data processing, CH mutation calling and filtering 442 
 443 
CRAM files generated by the OQFE pipeline were obtained from UKB (Fields 23143-23144; 444 
www.ukbiobank.ac.uk). Variant-calling on WES data from 200,453 individuals was performed using 445 
Mutect2, Genome Analysis Toolkit (GATK) version 4.1.8.188. Briefly, Mutect2 was run in “tumor-only” 446 
mode with default parameters, over the exon intervals of 43 genes previously associated with CH 447 
(Supplementary Table 1). To filter out potential germline variants we used a population reference of 448 
germline variants generated from 1000 Genomes Project (1000GP)89 and the Genome Aggregation 449 
Database (gnomAD)90. All resources were obtained from the GATK Best practices repository (gs://gatk-450 
best-practices/somatic-hg38). Raw variants called by Mutect2 were filtered out with FilterMutectCalls 451 
using the estimated prior probability of a reading orientation artefact generated by 452 
LearnReadOrientationModel (GATK v.4.1.8.1). Putative variants flagged as ‘PASS’ using 453 
FilterMutectCalls or flagged as ‘germline’ if present at least 2 times with the ‘PASS’ flag in other 454 
samples were selected for filtering. Gene annotation was performed using Ensembl Variant Effect 455 
Predictor (VEP) (v.102)91. We required variants with a minimum number of alternate reads of 2, 456 
evidence of the variant on both forward and reverse strand, a minimum depth of 7 reads for SNVs and 457 
10 reads for short indels and substitutions and a minor allele frequency (MAF) lower than 0.001 458 
(according to 1000GP phase 3 and gnomAD r2.1). For new variants, not previously described in the 459 
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Catalogue of Somatic Mutations in Cancer (COSMIC; v.91)92 nor in the Database of Single Nucleotide 460 
Polymorphisms (dbSNP; build 153)93, we used a minimum allele count per variant of 4, and a MAF 461 
lower than 5x10-5. From resulting variants, we selected those that: i) are included in a list of recurring 462 
hotspots mutations associated with CH and myeloid cancer (Supplementary Table 2); ii) have been 463 
reported as somatic mutations in hematological cancers at least 7 times in COSMIC; or iii) met the 464 
inclusion criteria of a predefined list of putative CH variants, previously described17,77 (Supplementary 465 
Table 3). We included previous variants flagged as germline by FilterMutectCalls if: 1) the number of 466 
cases in the cohort flagged as germline were lower than the ones flagged as PASS; and 2) at least one 467 
of the cases had a P<0.001 for a one-sided exact binomial test, where the null hypothesis was that the 468 
number of alternative reads supporting the mutation were 50% of the total number of reads (95% for 469 
copy number equal to one), except for hotspot mutations that were all included. For the final list, we 470 
excluded all variants not present in COSMIC nor in the list of hotspots that had a MAF equal or higher 471 
than 5x10-5 and either the mean variant allele fraction (VAF) of all cases was higher than 0.2 or the 472 
maximum VAF was lower than 0.1. Frameshift, nonsense, and splice-site mutations not present in 473 
COSMIC nor in the hotspot list were further excluded if for each variant none of the cases had a 474 
P<0.001 for a one-sided exact binomial test. A complete list of filtered variants is provided in 475 
Supplementary Table 4. 476 
 477 
Trait selection and modelling for the conventional observational multivariable regression analyses 478 
 479 
Phenotypes were downloaded in December 2020 and individual traits were pulled out from the whole 480 
phenotype file. Cancer, metabolic and cardiovascular disease (CVD) traits were generated combining 481 
individual traits and diagnosis dates based on disease definitions (Supplementary Table 8). For each 482 
definition of disease, the first diagnosis event that occurred in each trait was selected. Baseline was 483 
defined as the date of sample collection. The prevalent cases are those identified before the baseline, 484 
while incidence was defined as the events that occurred after the baseline. Unless specified, all 485 
regression models included age, sex, smoking status, WES batch and the first ten ancestry principal 486 
components as covariates. Blood cell counts and biochemical traits were log10 transformed and 487 
analyzed using a linear regression model, including the assessment center as covariate and, in the case 488 
of cholesterol and cholesterol species, the use of cholesterol lowering medication. Individuals with 489 
myeloid malignancies or hematological neoplasms at baseline were excluded from the analysis. For 490 
cancer, CVD and death risk, we performed a time-to-event regression analysis using the Cox 491 
proportional hazards model. The cancer/CVD/death event was used as an outcome and CH was 492 
considered as the exposure in these analyses. For CVD and death risk analyses, we also included body 493 
mass index, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, 494 
type 2 diabetes status, and hypertension status as covariates. Individuals with myeloid or other 495 
malignant neoplasms at baseline were excluded from all previous analyses. For associations between 496 
International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10) 497 
codes and CH status, a logistic regression model was used including age, sex, WES batch and the first 498 
ten ancestry principal components as covariates. Analyses were performed over the selected ICD-10 499 
codes corresponding to diseases conditions (A to N), symptoms, signs, and abnormal clinical and 500 
laboratory findings (R) and factors influencing health status (Z). All analyses were performed using glm 501 
(R stats package v.4.0.2) and coxph (R survival package v.3.2-11) functions. 502 
 503 
Germline genotype data processing and genome-wide association analyses 504 
 505 
Germline genotype data used were from the UKB release that contained the full set of variants 506 
imputed into the Haplotype Reference Consortium94 and 1000GP89 reference panels and genotyped 507 
on the UK BiLEVE Axiom Array or UKB Axiom Array95. Derivation of the analytic sample for UK Biobank 508 
of individuals of European ancestries followed quality control (QC) steps described previously27: after 509 
filtering genetic variants (call rate≥99%, imputation quality info score>0.9, Hardy-Weinberg 510 
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equilibrium P-value≥10-5) and participants (removal of genetic sex mismatches), we excluded 511 
participants having non-European ancestries (self-report or inferred by genetics) or excess 512 
heterozygosity (>3 standard deviations from the mean), and included only one of each set of related 513 
participants (third-degree relatives or closer). After QC, we were left with 10,203 individuals with CH 514 
and 173,918 individuals without CH. The subset with CH included 5,185 and 2,041 individuals with 515 
DNMT3A and TET2-mutant CH, respectively, and 4,049 and 6,154 individuals with large (VAF≥0.1) and 516 
small (VAF<0.1) clone size CH, respectively. Association analyses were performed using non-517 
infinitesimal linear mixed models implemented in BOLT-LMM96 with age at baseline, sex, and first 10 518 
genetic principal components included as covariates. 519 
 520 
Statistically independent lead variants for each CH phenotype were defined using linkage 521 
disequilibrium (LD)-based clumping with an r2 threshold of 0.05 applied across all genotyped and 522 
imputed variants with P<5x10-8, imputation quality score>0.6, and MAF>1%. This was implemented 523 
using the FUMA pipeline97. For the rare variant association scan, we used more stringent cut-offs of 524 
P<10-9 and imputation quality score>0.8 to define lead variants but did not require LD-clumping since 525 
only one such association was identified. Approximate conditional analysis conditioning on the 526 
common (MAF>1%) lead variants was performed using the --cojo-cond flag in the Genome-wide 527 
Complex Trait Analysis (GCTA) v1.93 tool25,98. 528 
 529 
Linkage disequilibrium score regression (LDSC)  530 
 531 
We used LDSC22 to estimate the narrow-sense heritability of CH on the liability scale assuming the 532 
population prevalence of CH to be 10% (based on the prevalence of CH in the UKB “200k” cohort as 533 
shown in Fig. 1b) and constraining the LDSC intercept to 1. The intercept, which in its unconstrained 534 
form protects from bias due to population stratification, was constrained to 1 to provide more precise 535 
estimates given that there was little evidence of inflation in test statistics due to population structure 536 
in unconstrained analysis (unconstrained intercept estimated as 1.009 (s.e.=0.0067) and lambda 537 
genomic control factor of 0.999). We used the pre-computed 1000 Genomes phase 3 European 538 
ancestry reference panel LD score data set downloaded from alkesgroup.broadinstitute.org/LDSCORE 539 
for heritability estimation. We used the same LD scores and the --rg flag in LDSC to estimate the 540 
genetic correlation between the CH and mosaic chromosomal alteration GWAS summary statistics32. 541 
Cell-type group partitioned heritability analysis was performed as described in 542 
github.com/bulik/ldsc/wiki/Partitioned-Heritability using LD scores partitioned across 220 cell-type-543 
specific annotations that were divided into 10 groups as previously described23: central nervous 544 
system, cardiovascular, kidney, adrenal/pancreas, gastrointestinal, connective/bone, 545 
immune/hematopoietic, skeletal muscle, liver, and other. Each of the 10 groups contained cell-type-546 
specific annotations for four histone marks: H3K9ac, H3K27ac, H3K4me1, and H3K4me323. We also 547 
used LD scores annotated as previously described99 based on open chromatin state (Assay for 548 
Transposase-Accessible Chromatin (ATAC)-seq) profiling by Corces et al.24 in various hematopoietic 549 
progenitor cells and lineages at different stages of differentiation. 550 
 551 
Gene-based and transcriptome-wide association studies, and network analyses 552 
 553 
We undertook genome-wide gene-level association analyses using two complementary approaches. 554 
First, we used multi-marker analysis of genomic annotation (MAGMA) that involves mapping germline 555 
variants to the genes they overlap, accounting for LD between variants, and performing a statistical 556 
multi-marker association test100. Second, we performed a transcriptome-wide association study 557 
(TWAS) using blood-based cis gene expression quantitative trait locus (eQTL) data on 31,684 558 
individuals35 and summary-based Mendelian randomization (SMR) coupled with the heterogeneity in 559 
dependent instruments (HEIDI) colocalization test to identify germline genetic associations with CH 560 
risk mediated via the transcriptome36. The gene-level genome-wide significance threshold in the 561 
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MAGMA analyses was set at P=2.6x10-6 to account for testing 19,064 genes and for SMR was set at 562 
P=3.2x10-6 after adjustment for testing 15,672 genes. Further, only genes with SMR P<3.2x10-6 and 563 
HEIDI P>0.05 were declared genome-wide significant in the SMR analyses since the HEIDI P>0.05 564 
strongly suggests colocalization of the GWAS and eQTL signals for a given gene36. The NetworkAnalyst 565 
3.039 webtool available at www.networkanalyst.ca was used for network analysis. All genes with P<10-566 
3 in each MAGMA analysis for overall, DNMT3A and TET2-mutant, and large and small clone CH were 567 
used as input. The protein-protein interactome selected was STRING v10101 with the recommended 568 
parameters (confidence score cut-off of 900 and requirement for experimental evidence to support 569 
the protein-protein interaction). The largest possible network was constructed from the seed 570 
genes/proteins and the interactome proteins as previously described39. Hub nodes were defined as 571 
nodes with degree centrality≥10 (i.e., nodes with at least 10 edges or connections to other proteins in 572 
the network as a measure of its importance in the network and consequently its biology). Pathway 573 
analysis of this largest network was conducted using the enrichment tool built into the 574 
NetworkAnalyst webtool and with the Reactome pathway repository102. 575 
 576 
Fine-mapping and target gene prioritization 577 
 578 
We fine-mapped the lead variant signals identified by the FUMA LD-clumping pipeline using the 579 
Probabilistic Identification of Causal Single Nucleotide Polymorphisms (PICS2) algorithm46,47 to identify 580 
candidate causal variants most likely to underpin each association. The PICS2 algorithm and webtool 581 
(pics2.ucsf.edu) computes the likelihood that each variant in LD with the lead variant is the true causal 582 
variant in the region by leveraging the fact that for variants associated merely due to LD, the strength 583 
of association scales asymptotically with correlation to the true causal variant46. We only retained 584 
variants with a PICS2 probability of 1% or more in our final list of fine-mapped candidate causal 585 
variants. We overlapped these fine-mapped variants with gene body annotations as previously 586 
described48 using GENCODE release 33103 (build 37) annotations after removing ribosomal protein 587 
genes (code and data adapted from github.com/sankaranlab/mpn-gwas). Fine-mapped variants were 588 
also overlapped with ATAC-seq peaks across 16 hematopoietic progenitor cell populations and ATAC-589 
RNA count correlations calculated using Pearson coefficients for hematopoietic progenitor cell RNA 590 
counts of genes within 1 Mb of the ATAC peaks were used to identify putative target genes of fine-591 
mapped variants that overlapped ATAC-seq peaks. This pipeline has been used and described 592 
extensively before24,48–50, and we adapted the code and data for the pipeline from 593 
github.com/sankaranlab/mpn-gwas. We also looked up the SIFT51 and PolyPhen52 scores for these 594 
fine-mapped variants using the SNPnexus v4 web-based annotation tool (www.snp-nexus.org/v4)104 595 
to identify coding variants with predicted functional consequences. Finally, we used the Open Targets 596 
Genetics resource45 (genetics.opentargets.org) to identify the most likely target gene of the lead 597 
variant at each locus as per Open Targets and used this in our omnibus target gene prioritization 598 
scheme described below. 599 
 600 
In order to prioritize putative target genes at the Plead-variant<5x10-8 loci identified by our GWAS of 601 
overall CH, DNTM3A-CH, TET2-CH and large/small clone size CH, we combined gene-level genome-602 
wide significant results from (1) MAGMA and (2) SMR with (3) protein-protein interaction network 603 
hub status of the gene, (4) variant-to-gene searches of the Open Targets database for lead variants, 604 
and overlap between fine-mapped variants and (5) gene bodies, (6) regions with accessible chromatin 605 
(ATAC-seq peaks) across 16 hematopoietic progenitor cell populations that were also correlated with 606 
nearby gene expression (RNA-seq) in the same cell populations, and (7) missense variant annotations 607 
from SIFT and PolyPhen. Genes nominated by at least two of the seven approaches were listed (except 608 
where only one of the seven methods nominated a single gene in a region in which case that gene was 609 
listed) and the genes nominated by the largest number of approaches represented the most likely 610 
targets at each locus. 611 
 612 
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Phenome-wide association scan for lead variants 613 
 614 
We used PhenoScanner V233,34 available at www.phenoscanner.medschl.cam.ac.uk with catalogue set 615 
to “diseases & traits”, p-value set to “5E-8”, proxies set to “EUR” and r2 set to “0.8” to search for 616 
published phenome-wide associations between our lead variants or variants in strong linkage 617 
disequilibrium (r2>0.8) with the lead variants and other diseases and traits. 618 
 619 
Mendelian randomization analysis 620 
 621 
Mendelian randomization (MR)105,106 uses germline variants as instrumental variables to proxy an 622 
exposure or potential risk factor and evaluate evidence for a causal effect of the exposure or potential 623 
risk factor on an outcome. Due to the random segregation and independent assortment of alleles at 624 
meiosis, MR estimates are less susceptible to bias from confounding factors as compared to 625 
conventional observational epidemiological studies. As the germline genome cannot be influenced by 626 
the environment after conception or by preclinical disease, MR estimates are also less susceptible to 627 
bias due to reverse causation. MR estimates represent the association between genetically predicted 628 
levels of exposures or risk factors and outcomes, as compared to conventional observational 629 
epidemiological estimates, which represent direct associations of the exposure or risk factor levels 630 
with outcomes. Effect allele harmonization across GWAS summary statistics datasets followed by two-631 
sample Mendelian randomization analyses were performed using the TwoSampleMR v0.5.6 R 632 
package58. The CH phenotypes were considered as both exposures (to identify consequences of 633 
genetic liability to CH) and outcomes (to identify risk factors for CH). When considering CH phenotypes 634 
as outcomes, germline variants associated with putative risk factors or exposures at P<5x10-8 were 635 
used as genetic instruments for the risk factors/exposures, except for the appraisal of circulating 636 
cytokines and growth factors65 wherein variants associated with cytokines/growth factors at P<10-5 637 
were used as instruments. Inverse-variance weighted analysis107 was the primary analytic approach 638 
with pleiotropy-robust sensitivity analyses carried out using the MR-Egger108 and weighted median109 639 
methods. A full list of external GWAS data sources used for MR analyses is provided in Supplementary 640 
Tables 30 and 31. 641 
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 895 
Fig. 1: Characterization of CH in the UK Biobank. 896 
a, Composite plot summarizing mutations in the ten most common driver genes in 10,924 individuals with CH. Each column 897 
in the waterfall plot represents a single individual, with mutation types color-coded. Bars on the left quantify mutations per 898 
gene as a percentage of all CH mutations identified. Violin plots on the right show the distribution of variant allele fractions 899 
(VAFs), with vertical lines represent the median and dots with horizontal lines the mean ± standard deviation. b, Prevalence 900 
of CH in the cohort with advancing age. The blue line represents the smoothed model fitted to a generalized additive model 901 
with 95% confidence interval (CI; grey shadow). c, Bar plot showing the female to males (F:M) ratio of CH carriers with 902 
mutations in the ten most common driver genes. “Other” represents the remaining driver genes grouped together and “Ctrl” 903 
the ratio for individuals without CH. Dotted vertical line shows the F:M ratio observed in the full cohort (F:M=1.2). P-values 904 
are from a Chi-square test comparing the distribution for each gene to “Ctrl”.  905 
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 906 
Fig. 2: Associations between CH and diverse traits/diseases. 907 
a-b, Heatmaps showing associations between overall CH, CH with large clones, and CH driven by DNMT3A, TET2, ASXL1, 908 
JAK2, and SRSF2+SF3B1 mutations and: a, blood cell counts/indices or b, biochemical analytes. Colors depict statistical 909 
significance of differences compared to individuals without CH, as signed false discovery rate (FDR) values. c, Forest plot 910 
showing the odds ratios (ORs) for associations between CH and selected traits/diseases prevalent in UKB participants at 911 
baseline. d, Forest plot showing the ORs for associations between CH subtypes and smoking status, for previous and current 912 
smokers. e-h, Forest plots showing the hazard ratios (HRs) for associations between CH at baseline and subsequent: e, 913 
hematological neoplasms, f, other malignant neoplasms, g, cardiovascular diseases, and h, selected causes of death. For g 914 
and h, both overall CH and CH characterized by large clones (“CH large”) are shown. ORs/HR markers with a P-value<0.05 915 
are depicted in blue. Error bars represent 95% confidence intervals (CIs). Numerical values for ORs/HRs, 95% CIs, and P-916 
values are reported in Supplementary Tables 5—13. Abbreviations: RDW, red blood cell (erythrocyte) distribution width; 917 
PDW, platelet distribution width; PCT, plateletcrit; PLT, platelet count: WBC, white blood cell (leukocyte) count;  NE, 918 
neutrophil count; HLR, high light scatter reticulocyte count; RET, reticulocyte count; MO, monocyte count; MCV, mean 919 
corpuscular volume; HT, hematocrit percentage; HGB, hemoglobin concentration; LY, lymphocyte count; RBC, red blood cell 920 
(erythrocyte) count; EO, eosinophil count; CYS, cystatin C; PHOS, phosphate; AST, aspartate aminotransferase; HBA1C,  921 
glycosylated hemoglobin; APOA, apolipoprotein A; APOB, apolipoprotein B; HDL, HDL cholesterol; LDLD, LDL direct 922 
cholesterol; CHOL, total cholesterol; T2DM, type 2 diabetes mellitus; MPN, myeloproliferative neoplasms; MDS, 923 
myelodysplastic syndromes; AML, acute myeloid leukemia; CMML, chronic myelomonocytic leukemia. 924 
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 925 
Fig. 3: Cell type-specific enrichment of the CH polygenic signal. 926 
a, Heritability enrichment of CH across histone marks profiled in 10 cell type groups. b, Heritability enrichment of CH across 927 
open chromatin regions identified by ATAC-seq in hematopoietic progenitor cells/lineages at different stages of 928 
differentiation. Partitioned heritability cell-type group analysis in the LDSC software was used to compute these enrichments 929 
and corresponding P-values. The data underlying the figures is available in Supplementary Tables 14 and 15. Abbreviations: 930 
CNS, central nervous system; GI, gastrointestinal; CLP, common lymphoid progenitor; CMP, common myeloid progenitor; 931 
MPP, multipotent progenitor; HSC, hematopoietic stem cell; GMP, granulocyte/macrophage progenitor; LMPP, lymphoid-932 
primed multipotent progenitor; NK, natural killer cell; Mono, monocyte; Erythro, erythroid progenitor; LDSC, linkage 933 
disequilibrium score regression; ATAC-seq, (Assay for Transposase-Accessible Chromatin using sequencing).  934 
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 935 
Fig. 4: Manhattan plots displaying genome-wide associations between common germline genetic variants and each of five 936 
CH traits. 937 
The Y-axes depict P-values (-log10) for associations derived from the non-infinitesimal mixed model association test 938 
implemented in BOLT-LMM. The X-axes depict chromosomal position on build 37 of the human genome (GRCh37). The 939 
dotted lines indicate the genome-wide significance threshold of P=5x10-8. Known (previously published) and new loci are 940 
indicated by cytoband and target gene (based on the prioritization exercise described in the text). Since there were multiple 941 
independent loci at 5p15.33 (LD r2<0.05), we also label the 5p15.33 signals using the lead variant rs number for each signal. 942 
Our prioritization exercise was focused on protein coding genes near each lead variant and since there were no protein 943 
coding genes within 1 Mb of the lead variant at 5p13.3, we labeled this association using the nearest non-coding RNA. The 944 
CH traits corresponding to each Manhattan plot are: a, overall CH. b, CH with mutant DNTM3A. c, CH with mutant TET2. d, 945 
CH with large clones. e, CH with small clones.  946 
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 947 
 948 
Fig. 5: Gene-level association and protein-protein interaction network analyses, and functional target gene prioritization 949 
matrix. 950 
a, Gene-level associations in the 6q21 region within 250 kilobases of CRIP3, i.e., between GRCh37 positions 43,017,448 and 951 
43,526,535 on chromosome 6. The X-axis lists all the genes in this region that were tested by both MAGMA and SMR. CRIP3 952 
was the only gene located more than one megabase away from a GWAS-identified lead variant that was found to be 953 
associated with CH at gene-level genome-wide significance by both MAGMA and SMR. The Y-axis depicts the P-value (-log10) 954 
for association in the MAGMA and SMR analyses. The gene-level genome-wide significance threshold in MAGMA (P=2.6x10-955 
6 after accounting for 19,064 genes tested) is indicated by the blue dashed line and in SMR (P=3.2x10-6 after accounting for 956 
15,672 genes tested) by the orange dotted line. Both CRIP3 and SRF had SMR HEIDI P>0.05 indicating colocalization of the 957 
GWAS and expression quantitative trait locus associations. b, Largest sub-network of genes/proteins associated with overall 958 
CH risk. All genes (n=57) with PMAGMA<0.001 in the overall CH MAGMA analysis were mapped to proteins and used as “seeds” 959 
for network construction that was done by integrating high-confidence protein-protein interactions from the STRING 960 
database. The largest sub-network constructed contained 13 of the 57 seed proteins and included 210 nodes and 231 edges. 961 
The colored nodes indicate seed proteins that interact with at least two other proteins in this sub-network with the intensity 962 
of redness increasing with number of interacting proteins. Seed proteins that interact with six or more other proteins in the 963 
sub-network are named above their corresponding node. c, Matrix of target genes (protein coding) prioritized by seven 964 
approaches (Open Targets, fine-mapped variant-gene body overlap, MAGMA, SMR, network analysis hub, fine-mapped 965 
variant-ATAC-seq peak overlap followed by ATAC-RNA-seq correlation, and SIFT/PolyPhen scores) across the loci identified 966 
in this study. Only genes prioritized by at least two methods are shown, with the exception of SETBP1 that is shown despite 967 
being prioritized by only one method since it was the only gene prioritized at 18q12.3 and also happens to be an occasional 968 
somatic driver of CH. There were no protein coding genes within 1 Mb of the new small clone CH lead variant rs72755524 at 969 
5p13.3 (nearest non-protein coding gene: LINC02064, nearest protein coding gene: CDH6) and this locus is not shown in the 970 
matrix. Abbreviations: MAGMA, multi-marker analysis of genomic annotation; SMR, summary-based Mendelian 971 
randomization; HEIDI, heterogeneity in dependent instruments test; SIFT, Sorting Tolerant From Intolerant.  972 
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 973 
Fig. 6: Two-sample inverse-variance-weighted Mendelian randomization forest plots with CH traits as outcomes. 974 
Odds ratios (ORs) for CH risk are represented as per (i) standard deviation unit for continuous exposures (alcohol use in 975 
drinks per week, body mass index, waist-to-hip ratio adjusted for body mass index (WHRadjBMI) (a); leukocyte telomere 976 
length, two epigenetic aging traits, red cell, white cell and platelet counts (b), and five circulating lipid traits (c)) and (ii) log-977 
odds unit for binary exposures (smoking initiation (ever having smoked regularly) and genetic liability to type 2 diabetes (a)). 978 
Details of units are provided in Supplementary Table 30. OR markers with corresponding P-value<0.05 are represented by 979 
filled circles. Error bars represent 95% confidence intervals (CIs). Full results, including sensitivity analyses, are presented in 980 
Supplementary Tables 32, 33, and 34. Abbreviations: MR, Mendelian randomization; CH, clonal hematopoiesis; WHRadjBMI, 981 
waist-to-hip ratio adjusted for body mass index; LDL, low-density lipoprotein cholesterol; HDL, high-density lipoprotein 982 
cholesterol; IEAA, intrinsic epigenetic age acceleration.  983 
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 984 
Fig. 7: Two-sample inverse-variance-weighted Mendelian randomization forest plots with CH traits as exposures. 985 
Forest plots with odds ratio (OR) markers (for cancers and cardiovascular/metabolic traits) or exponentiated beta coefficient 986 
(exp(beta)) markers (for blood cell traits, lipids, adiposity measures, and epigenetic aging indices). ORs/exp(betas) are 987 
represented as per log-odds unit increase in genetic liability to a, overall CH, or b, DNMT3A CH. OR/exp(beta) markers with 988 
corresponding P-value<0.05 are represented by filled circles. Error bars represent 95% confidence intervals (CIs). Red 989 
markers and error bars represent results using genetic instruments comprised exclusively of genome-wide significant 990 
(P<5x10-8) variants. Black markers and error bars represent results when using genome-wide significant and sub-genome-991 
wide significant (P<10-5) variants in the genetic instrument. Large effect size estimates (ORs/exp(betas)) are shown in the 992 
lower panels. Full results, including sensitivity analyses, are presented in Supplementary Tables 35 and 36. Abbreviations: 993 
MR, Mendelian randomization; IS, ischemic stroke; LDL, low-density lipoprotein cholesterol; HDL, high-density lipoprotein 994 
cholesterol; IEAA, intrinsic epigenetic age acceleration.  995 
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 996 
Extended Data Fig. 1: Characterization of CH in the UK Biobank. 997 
a, Histogram stratified by sex showing the age-distribution of individuals in the UKB cohort (n=200,453). b, Overall 998 
percentage of females and males in the UKB cohort. c, Percentage of the most common self-reported ethnic groups in the 999 
UKB cohort. Ethnic groups with a frequency lower than 1% were grouped under the “Other ethnic group” category. d, 1000 
Number of individuals with 1, 2, 3, and 4 somatic mutations. More than 90% of individuals with CH had only one driver 1001 
mutation identified. e, Percentages of different CH mutation types identified. f, Relative prevalence of each of the six base 1002 
substitution types amongst the identified CH mutations. g, Density plot showing the variant allele fraction (VAF) distribution 1003 
of all CH somatic mutations. h, Density plot showing similar VAF distribution for different mutation types. Mean and median 1004 
are indicated for g and h.  1005 
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 1006 
Extended Data Fig. 2: Age-distribution of CH by clone size, sex, and mutant gene. 1007 
a, Clone size, estimated by the variant allele fraction (VAF), increases with age. The blue line represents the smoothed model 1008 
fitted to a generalized additive model and the shadow represents the 95% confidence interval. b, Empirical cumulative 1009 
distribution (ECD) of the age of individuals with CH stratified by sex. CH was observed one year earlier in females than in 1010 
males (median 61 versus 62 years; P=1.6 x 10-4, two-sided pairwise Wilcoxon rank sum test). c, ECD of the age of individuals 1011 
with CH stratified by the eight most common driver genes. Compared to DNMT3A, mutations in ATM were observed 3 years 1012 
earlier (P=7.2x10-4), while mutations in ASXL1, PPM1D, SRSF2, and SF3B1 and were observed 1 (P=2.7x10-8), 1 (P=8.5x10-6), 1013 
2 (P=5.7x10-10), and 3 (P=6.5x10-6) years later, respectively. Differences were calculated using a pairwise Wilcoxon rank sum 1014 
test.  1015 
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 1016 
Extended Data Fig. 3: Associations between CH and diseases. 1017 
a, Association analysis of CH with International Classification of Diseases version-10 (ICD-10) disease codes, showing the risk 1018 
ratios (RRs) for ICD-10 codes with CH as exposure. Only ICD-10 codes with false discovery rate (FDR)<10-10 are represented. 1019 
Error bars represent 95% confidence intervals (CIs). b-c, Forest plots showing the hazard ratios (HRs) from Cox proportional-1020 
hazards models for association with subsequent hematological and other malignant neoplasms for CH with small and large 1021 
clones (b) and CH driven by mutations in specific genes (c). d, Forest plot showing the HRs for subsequent/incident lung 1022 
adenocarcinoma for overall CH, CH with large and small clones, and CH with DNMT3A, TET2, and ASXL1 mutations, as well 1023 
as for overall CH restricting to only self-reported “never-smokers”. e, HRs for subsequent/incident cardiovascular disease 1024 
(CVD) conditions after CH at baseline using a bivariable model containing age as the only covariate. For b-e, HR markers with 1025 
P-value<0.05 are depicted in blue. Error bars represent 95% CIs. Numerical values for RRs/HRs, 95% CIs, and P-values are 1026 
reported in Supplementary Tables 9—12.  1027 
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 1028 
Extended Data Fig. 4: Heterogeneity of lead GWAS variants across five CH traits. 1029 
Forest plots with odds ratios (ORs) and 95% confidence intervals (CIs) based on data from Supplementary Tables a, 16, b, 18, 1030 
c, 19, d, 20, and e, 21. Results for lead variants identified at genome-wide significance (P<5x10-8) for each CH trait (a, overall 1031 
CH, b DNMT3A-CH, c TET2-CH, d large clone CH, and e, small clone CH) are plotted alongside results for the same lead variants 1032 
in the four other genome-wide association analyses conducted. 1033 
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