1	Prevalence and disease expression of pathogenic and likely pathogenic variants associated
2	with inherited cardiomyopathies in the general population
3	
4	Mimount Bourfiss, MD ¹ *; Marion van Vugt, MSc ¹ *; Abdulrahman I. Alasiri, MSc ¹ ; Bram Ruijsink, MD,
5	PhD ^{1,2} ; Jessica van Setten, MSc, PhD ¹ ; Amand F. Schmidt, MSc, PhD ^{1,3} ; Dennis Dooijes, PhD ⁴ ; Esther
6	Puyol-Antón, PhD ² ; Birgitta K. Velthuis, MD, PhD ⁵ ; J. Peter van Tintelen, MD, PhD ⁴ ; Anneline S.J.M. te
7	Riele, MD, PhD ^{1,6} ; Annette F. Baas, MD, PhD ⁴ ; Folkert W. Asselbergs, MD, PhD ^{1,3,7} .
8	*Shared first authorship
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	 Affiliations Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom Institute of Cardiovascular Science, London, Faculty of Population Health Sciences, University College London, United Kingdom Department of Genetics, University Medical Center Utrecht, Utrecht, Utrecht University, Utrecht, the Netherlands Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands Netherlands Netherlands Heart Institute, Utrecht, the Netherlands Health Data Research UK and Institute of Health Informatics, University College London, London, United Kingdom
24	Short title: Cardiomyopathy variants in the general population
25	Corresponding author: Mimount Bourfiss; Department of Medicine, Division of Cardiology;
26	University Medical Center Utrecht; room E.02.561; Heidelberglaan 100; 3584 CX Utrecht, the
27	Netherlands. Email address: m.bourfiss-2@umcutrecht.nl Telephone number: +31-88-77570240. Fax
28	number: +31-88-7555660.
29	Journal Subjects Terms: Cardiomyopathy, Genetics, Heart failure, Hypertrophy, Magnetic Resonance
30	imaging
31	Total word count: 6993
32	

CIRCCVG/2022/003704/R2

33 Abstract

34	Background. Pathogenic and likely pathogenic variants associated with arrhythmogenic
35	right ventricular cardiomyopathy (ARVC), dilated cardiomyopathy (DCM) and hypertrophic
36	cardiomyopathy (HCM) are recommended to be reported as secondary findings in genome
37	sequencing studies. This provides opportunities for early diagnosis, but also fuels
38	uncertainty in variant carriers (G+), since disease penetrance is incomplete. We assessed the
39	prevalence and disease expression of G+ in the general population.
40	Methods. We identified pathogenic and likely pathogenic variants associated with ARVC,
41	DCM and/or HCM in 200,643 UK Biobank individuals, who underwent whole exome
42	sequencing. We calculated the prevalence of G+ and analysed the frequency of
43	cardiomyopathy/heart failure diagnosis. In undiagnosed individuals, we analysed early signs
44	of disease expression using available electrocardiography and cardiac magnetic resonance
45	imaging data.
46	Results . We found a prevalence of 1:578, 1:251 and 1:149 for pathogenic and likely
47	pathogenic variants associated with ARVC, DCM and HCM respectively. Compared to
48	controls, cardiovascular mortality was higher in DCM G+ (OR 1.67 [95% Cl 1.04;2.59],
49	p=0.030), but similar in ARVC and HCM G+ (p≥0.100). Cardiomyopathy or heart failure
50	diagnosis were more frequent in DCM G+ (OR 3.66 [95% Cl 2.24;5.81], p=4.9×10 ⁻⁷) and HCM
51	G+ (OR 3.03 [95% Cl 1.98;4.56], p=5.8×10 ⁻⁷), but comparable in ARVC G+ (p=0.172). In
52	contrast, ARVC G+ had more ventricular arrhythmias (p=3.3×10 ⁻⁴). In undiagnosed
53	individuals, left ventricular ejection fraction was reduced in DCM G+ (p=0.009).
54	Conclusions. In the general population, pathogenic and likely pathogenic variants associated
55	with ARVC, DCM or HCM are not uncommon. Although G+ have increased mortality and
56	morbidity, disease penetrance in these carriers from the general population remains low

- 57 (1.2-3.1%). Follow-up decisions in case of incidental findings should not be based solely on a
- variant, but on multiple factors, including family history and disease expression.
- 59
- 60 Key Words: whole exome sequencing, genetics, arrhythmogenic right ventricular
- 61 cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy
- 62
- 63 Non-standard Abbreviations and Acronyms
- 64 **ACMG –** American College of Medical Genetics and Genomics
- 65 ACTC1 Actin Alpha Cardiac Muscle 1
- 66 ACTN1 Alpha-actinin 2
- 67 **AHA** American Heart Association
- 68 **ARVC –** Arrhythmogenic right ventricular cardiomyopathy
- 69 BAG3 BAG Cochaperone 3
- 70 BMI Body mass index
- 71 CI Confidence interval
- 72 **ClinGen –** Clinical Genome Resource
- 73 **CMR** Cardiac magnetic resonance imaging
- 74 **CSRP3** Cysteine And Glycine Rich Protein 3
- 75 **DCM** Dilated cardiomyopathy
- 76 **DES –** Desmin
- 77 **DSC2** Desmocollin 2
- 78 **DSG2** Desmoglein 2
- 79 **DSP** Desmoplakin
- 80 ECG Electrocardiography

- 81 EDM End diastolic mass
- 82 EDV End diastolic volume
- 83 **EF** Ejection fraction
- 84 **ESV** End systolic volume
- 85 **FLNC –** Filamin-C
- 86 **G+** Genotype positive (variant carriers)
- 87 **G** – Genotype negative (controls)
- 88 i Indexed, corrected for body surface area
- 89 JPH2 Junctophilin 2
- 90 JUP Junction Plakoglobin
- 91 **HCM** Hypertrophic cardiomyopathy
- 92 LMNA Lamin A/C
- 93 **LoF** Loss of function
- 94 LV Left ventricular
- 95 **MAF** Minor allele frequency
- 96 **MET –** Metabolic equivalent of task minutes
- 97 MVR Mass to EDV ratio
- 98 **MYBPC3** Myosin Binding Protein C3
- 99 MYH7 Myosin Heavy Chain 7
- 100 MYL2 Myosin Light Chain 2
- 101 MYL3 Myosin Light Chain 3
- 102 NEXN Nexilin F-Actin Binding Protein
- 103 NGS Next generation sequencing
- 104 **OR** Odds ratio

- **P+** Phenotype positive
- **P-** Phenotype negative
- **PKP2 –** Plakophilin 2
- **PLN** Phospholamban
- **RBM20** RNA Binding Motif Protein 20
- **RV** Right ventricular
- 111 SCN5A Sodium Voltage-Gated Channel Alpha Subunit 5
- **SD** Standard deviation
- 113 SV Stroke volume
- **TFC** Task force criteria
- **TMEM43 –** Transmembrane Protein 43
- **TNNC1** Troponin C1, Slow Skeletal And Cardiac Type
- 117 TNNI3 Troponin I3, Cardiac Type
- **TNNT2 –** Troponin T2, Cardiac Type
- **TPM1 –** Tropomyosin 1
- **TTN –** Titin
- 121 UKB UK Biobank
- 122 VKGL Vereniging Klinische Genetische Laboratoriumdiagnostiek
- 123 VCL Vinculin
- **WES –** Whole exome sequencing

CIRCCVG/2022/003704/R2

129 Background

130	The major inherited cardiomyopathies arrhythmogenic right ventricular cardiomyopathy
131	(ARVC), dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM) are
132	characterized by ventricular dysfunction and ventricular arrhythmias that can lead to
133	progressive heart failure and sudden cardiac death ¹ . ARVC is mainly caused by pathogenic
134	variants in desmosomal genes, whereas DCM and HCM are mainly caused by sarcomeric
135	gene variants ² . These cardiomyopathies are typically inherited in an autosomal dominant
136	fashion with incomplete penetrance and variable expressivity. As such, phenotypic
137	expression may vary greatly, even among family members or individuals carrying the same
138	pathogenic variant.
139	With the implementation of next-generation sequencing (NGS), genetic testing has
140	become an important part of routine clinical care in the diagnosis of inherited
141	cardiomyopathies ³ . Technical advances and commercial availability of NGS, have led to
142	more affordable and accessible genetic testing. The American College of Medical Genetics
143	and Genomics (ACMG) has developed recommendations for the reporting of incidental or
144	secondary findings unrelated to the test indication ⁴ . In this framework, variants in genes
145	associated with ARVC, DCM and HCM are recommended to be reported as secondary
146	findings from clinical exome and other genome sequencing tests ⁴ . Although this offers the
147	potential to prevent morbidity and mortality of heart failure and sudden cardiac death by
148	early treatment, it also fuels uncertainty in carriers of likely pathogenic or pathogenic
149	variants (G+) and their family members, since factors that influence disease penetrance in
150	the general population are largely unknown. More knowledge about disease penetrance of
151	these variants in an unselected population cohort is needed to determine screening
152	protocols in these individuals.

153	In this study, we aimed to assess the prevalence of pathogenic and likely pathogenic
154	variants in the general population using a set of recently curated genes for ARVC ⁵ , DCM ⁶ and
155	HCM ⁷ in two (inter)national databases ⁸ (see Figure 1 and Table I). In order to do so, we
156	leveraged data from the UK Biobank (UKB), a population-based cohort with whole exome
157	sequencing (WES) data available of 200,643 individuals ⁹ . Furthermore, we looked into the
158	UKB-reported phenotypical characteristics of these G+ and assessed the occurrence of early
159	signs of disease in undiagnosed G+ using available electrocardiography and cardiac magnetic
160	resonance (CMR) imaging data.
161	
162	Methods
163	Ethics approval for the UKB study was obtained from the North West Centre for Research
164	Ethics Committee (11/NW/0382) and all participants provided informed consent. All data
165	and materials have been made publicly available on Github and can be accessed at
166	https://github.com/CirculatoryHealth/Inherited-cardiomyopathies. Full methods are
167	available in the Supplemental Material . Disease definitions are given in Table II .
168	
169	Results
170	Population characteristics
171	We identified 2,207/200,643 unique G+ individuals from a total of 2,493 included individuals
172	(89%) (see Figure 2) classified as 1) ARVC G+ (n=347, 54% female, median age of 57 [50-64]
173	years); 2) DCM G+ (n=800, 56% female, median age of 58 [51-64] years) and; 3) HCM G+
174	(n=1,346, 54% female, median age of 56 [49-63] years). The matched control group
175	consisted of 9,972 individuals (55% females, median age of 57 [49-63] years). Table 1 and
176	Table III show the baseline characteristics of the included individuals. The majority of G+

CIRCCVG/2022/003704/R2

177 were of white ethnic	ty (ARVC 90%, DCM 96%, HCM 75	%), followed by Asian (ARVC 3%,
--------------------------	-------------------------------	---------------------------------

- 178 DCM 1%, HCM 19%) and black ethnicity (ARVC 2%, DCM 2% and HCM 2%). This is
- 179 comparable to what is observed in the UKB, where the majority is of white ethnicity (94%),
- 180 followed by Asian (2%) and black ethnicity (2%).
- 181
- 182 Genotypic characteristics of pathogenic and likely pathogenic variant carriers
- 183 <u>Prevalence of pathogenic and likely pathogenic variants in the general population</u>
- 184 We found a prevalence of 1 ARVC G+ in 578 people in the general population (1:578 [1:521;
- 185 1:644]) and identified 75 variants out of the 593 (13%) pathogenic and likely pathogenic
- variants described in ClinVar and VKGL: 13 missense and 62 loss of function (LoF) (Table IV).
- 187 As shown in Figure 3, most ARVC G+ harbored a pathogenic variant in PKP2 (n=185, 53%),
- 188 followed by DSP (n=49, 14%), DSC2 (n=42, 12%), DSG2 (n=31, 9%), JUP (n=24, 7%), DES
- 189 (n=15, 4%), and *PLN* (n=1, 0.3%).

190 We found a prevalence of 1:251 [1:234; 1:269] DCM G+ and identified 216 out of

- 191 3,460 (6%) pathogenic and likely pathogenic variants described in ClinVar and VKGL: 80
- 192 missense and 136 LoF (Table IV). Variants in TTN (n=272, 34%) and MYH7 (n=158, 20%)
- 193 were most prevalent among DCM G+, followed by SCN5A (n=59, 7%), FLNC (n=56, 7%), DSP
- 194 (n=49, 6%), DES (n=49, 6%), LMNA (n=42, 5%), TNNI3 (n=35, 4%) and TNNT2 (n=32, 4%).
- 195 Eight more genes with a frequency of less than 3% were identified: BAG3, PLN, TNNC1,
- 196 ACTN2, RBM20, NEXN, TPM1, and ACTC1 (Figure 3).
- 197 We found a prevalence of 1:149 [1:141; 1:157] HCM G+ and identified 131 out of
- 198 1,512 (9%) pathogenic and likely pathogenic variants from ClinVar and VKGL: 98 missense
- and 23 LoF (Table IV). Most individuals carried a pathogenic and likely pathogenic variant in
- 200 MYBPC3 (n=723, 54%), followed by TNNT2 (n=274, 20%), MYH7 (n=232, 17%), and TNNI3

201	(n=50, 4%). A frequency of less than 3% was found in CSRP3, MYL2, TNNC1, JPH2, TPM1,
202	ACTC1, and MYL3 (Figure 3). Interestingly, a variant in TNNT2 (c.862C>T p.Arg288Cys)
203	affected 242 individuals (18%). Four of these carriers were diagnosed with heart failure, of
204	whom one also with HCM. All four heart failure patients also suffered from chronic ischemic
205	heart disease. Furthermore, a variant in <i>MYBPC3</i> (c.3628-41_3628-17del) was mainly seen in
206	individuals with an Asian ethnicity (n=237, 18% of the total HCM G+). Four of these
207	individuals were diagnosed with heart failure, of whom two also had coronary artery disease
208	and one was diagnosed with DCM, however none were diagnosed with HCM. When
209	excluding these two variants, we found a HCM G+ prevalence of 1:250 [1:234; 1:269].
210	MYBPC3 remained the most prevalent gene (52%), whereas the TNNT2 frequency decreased
211	to 4%.
212	The prevalence of G+ per gene for all cardiomyopathies is depicted in Table V .
213	
214	Overlapping variants and individuals
215	Some pathogenic and likely pathogenic variants were identified in multiple cardiomyopathy
216	subtypes. First, 26 variants were described in both ARVC and DCM, affecting 53 individuals.
217	Most of these variants (n=20/26 variants, 77%) were found in <i>DSP</i> (n=37 individuals, 70%),
218	of whom one individual (3%) had heart failure and one (3%) was diagnosed with a
219	cardiomyopathy. Five variants out of 26 (19%) were found in <i>DES</i> (n=15 individuals, 28%) of
220	whom two individuals (13%) had heart failure, and one was diagnosed with both DCM and
221	HCM. One variant out of 26 (4%) was found in <i>PLN</i> (c.26G>A; p.Arg9His, NM_002667.5) in
222	one individual (2%) who was not diagnosed with a cardiomyopathy or heart failure.
223	Second, 52 variants were described in DCM and HCM, affecting 232 individuals. Most
224	of these variants (n=33/52 variants. 63%) were found in MYH7 (n=158 individuals. 68%).

CIRCCVG/2022/003704/R2

225	followed by 10 v	ariants (19%) in <i>T</i>	NNT2 (n=29 individuals	s, 13%), 6 variants	(12%) in <i>TNNI3</i>
-----	------------------	---------------------------	------------------------	---------------------	-----------------------

- 226 (n=35 individuals, 15%), and 1 (2%) variant in TNNC1, ACTC1 as well as TPM1. In this group
- of 232 individuals, 9 (4%) individuals had a cardiomyopathy or heart failure diagnosis, of
- whom 5 were diagnosed with HCM and none with DCM.
- 229 Furthermore, three individuals carried two pathogenic variants. Individual 1 was a
- 230 65-year old male, carrying variants in *MYBPC3* (c.3628-41_3628-17del, NM_000256.3) and
- 231 TNNT2 (c.460C>T; p.Arg154Trp, NM_001276345.2) and was diagnosed with heart failure,
- with underlying chronic ischemic heart disease. Individual 2 was a 65-year old male, carrying
- 233 variants in FLNC (c.7450G>A; p.Gly2484Ser, NM_001458.5) and PKP2 (c.1867G>T;
- p.Glu623Ter, NM_001005242.3) and was therefore included in both the ARVC as well as the
- 235 DCM G+ group. Individual 3 was a 64-year old male, carrying variants in MYBPC3
- 236 (c.1504C>T; p.Arg502Trp, NM_000256.3) and MYH7 (c.5655G>A; p.Ala1885=,
- 237 NM_000257.4). Individuals 2 and 3 were not diagnosed with a cardiomyopathy or heart
- failure and none had CMR data available.
- 239 **Table VI** shows the prevalence of the cardiomyopathy variants, with and without the
- 240 inclusion of overlapping variants.
- 241

242 Phenotypic characteristics of pathogenic and likely pathogenic variant carriers

- 243 <u>Cardiovascular risk factors</u>
- 244 Hypertension, BMI, and level of activity in metabolic equivalent of task minutes (MET) per
- 245 week were comparable between G- and G+ for all cardiomyopathies (p≥0.055; Table 1 and
- Table VII). Diabetes was more prevalent in G+ HCM (9.2% (G-) vs 11.4% (G+), p=0.008),
- while smoking was more prevalent in DCM G+ (41.4% vs 46.4%, p=0.007) (Table VIII).

CIRCCVG/2022/003704/R2

249 <u>Cardiovascular disease</u>

250	As seen in Figure 4 and Table VIII, compared to G-, cardiomyopathy/heart failure without
251	previous ischemic heart disease (P+, phenotype positive) was more often diagnosed in DCM
252	G+ (OR 3.66 [95% CI 2.24;5.81], p=4.9×10 ⁻⁷) and HCM G+ (OR 3.03 [95% CI 1.98;4.56],
253	p=5.8×10 ⁻⁷). Among DCM G+, 25 individuals (3.1%, genes: 8 <i>MYH7</i> , 8 <i>TTN</i> , 2 <i>BAG3</i> , 2 <i>DSP</i> , 2
254	FLNC, 1 DES, 1 SCN5A and 1 TNNT2) were P+. Within HCM G+, 32 individuals (4.0%, genes:
255	20 MYBPC3, 10 MYH7, 1 TNNI3 and 1 TNNT2) were P+. For ARVC G+, 4 individuals (1.2%,
256	genes: 2 DSP, 1 DES and 1 PKP2) were P+, being comparable to G- controls (87 subjects,
257	0.8%).
258	Ventricular arrhythmias occurred more often in G+ compared to G-, reaching
259	statistical significance for ARVC (OR 6.20 [95% CI 2.30;14.38], $p=3.3\times10^{-4}$) and DCM (OR 4.97
260	[95% CI 2.39;9.75], p=1.9×10 ⁻⁵). Atrial arrhythmias were more prevalent among DCM G+ (OR
261	2.27 [95% CI 1.52;3.31], p=8.2×10 ⁻⁵). Finally, all-cause mortality (OR 1.39 [95% CI 1.02;1.85],
262	p=0.032) and death due to a cardiovascular cause were more prevalent in DCM G+ (OR 1.67
263	[95% CI 1.04;2.59], p=0.030) but did not reach statistical significance for ARVC G+ and HCM
264	G+ (p≥0.100). Figure I depicts the overlap in cardiomyopathy, heart failure, ventricular
265	arrhythmia and ischemic heart disease diagnosis. Figure II depicts the forest plots when
266	excluding the more prevalent TNNT2 and MYBPC3 variants in HCM G+ individuals and Figure
267	III shows the association between different outcomes stratified by genes for each
268	cardiomyopathy.
269	

270 Deep phenotyping of undiagnosed pathogenic variant carriers

CIRCCVG/2022/003704/R2

- 271 Next, we set out to study early signs of disease in G+ without a cardiomyopathy/heart
- failure diagnosis (P-) using registered ICD-10 codes, self-reported cardiac symptoms, and
- abnormal ECG and CMR values.
- 274
- 275 Diagnosis and symptoms
- 276 Ventricular arrhythmias were more prevalent in ARVC G+P- (OR 5.85 [95% CI 1.98;14.40],
- 277 p=0.001) and DCM G+P- (OR 3.43 [95% CI 1.35;7.68], p=0.005) but not in HCM G+P- (OR 1.01
- 278 [95% CI 0.26;2.86], p=1.000) compared to G-P- controls. Also, atrial arrhythmias (OR 2.12
- 279 [95% Cl 1.36;3.19], p=7.9×10⁻⁴) were more frequent in DCM G+P- compared to G-P- controls.
- Finally, angina pectoris occurred more often in HCM G+P- (OR 1.38 [95% CI 1.01;1.85],
- 281 p=0.038), but not in ARVC G+P- and DCM G+P- (p≥0.117; **Table VII**).
- 282
- 283 <u>Electrocardiography</u>
- 284 In total, 231 out of 2,207 G+P- and 1,058 out of 9,885 G-P- had various ECG variables
- available. None of these ECG variables differed significantly between all undiagnosed G+ and
- 286 control individuals (Table VIII).
- 287

288 <u>Cardiac magnetic resonance imaging</u>

- 289 CMR data was available in 225 G+P- of the 2,207 unique G+P- individuals: n=33 for ARVC
- 290 G+P-, n=87 for DCM G+P- and n=130 for HCM G+P-) and 986 of the 9,885 G-P- controls. As
- shown in Table IX, G+P- and G-P- individuals with CMR data available were mostly
- 292 comparable. Only smoking was more prevalent among DCM G+P- compared to G-P- controls
- 293 (OR 1.59 [95%Cl 1.00; 2.53], p=0.041). Outliers were observed in G-P- controls: 4 individuals
- with a median age of 64 [60-67] years had a left ventricular ejection fraction (LVEF) below

CIRCCVG/2022/003704/R2

295	40% and 3 of them were diagnosed with hypertension and 2 with acute myocardial
296	infarction in the past. In addition, 2 individuals with an age of 42 and 52 years old had an
297	RVEF below 40%. They did not suffer from hypertension and did not have any cardiac
298	diagnosis.
299	As shown in Figure 5 and Table VIII , all RV (p≥0.546) and LV (p≥0.052) functional and
300	structural parameters in ARVC G+P- were comparable to G-P- controls. Three ARVC G+P-
301	individuals had an RVEDV corrected for body surface area (RVEDVi) between 100-110 mL/m 2
302	for males or 90-100 mL/m 2 for females, meeting the minor CMR task force criteria (TFC) if
303	wall motion abnormalities were present, and two ARVC G+P- individuals had an RVEDVi
304	larger than 110 mL/m ² for males or 100 mL/m ² for females, meeting the major CMR TFC ¹⁰ .
305	In addition, ARVC G+P- had reduced inferior and posterolateral wall thickness compared to
306	controls (p≤0.035).
307	Overall, DCM G+P- and G-P- controls had comparable RV functional and structural
308	measures (p≥0.048). However, DCM G+P- had lower LVEF (57.3% [52.6, 62.8] vs. 59.5%
309	[55.3, 63.5] vs, p=0.009) and less negative LV peak longitudinal strain (-22.3% [-24.6, -19.86]
310	vs23.3% [-26.0, -21.4], p=0.009). Although LVEDVi was not significantly increased in DCM
311	G+P-, the LVEDV/RVEDV ratio (0.9 [0.9, 1.0] vs 1.0 [0.9, 1.1], p=8.2×10 ⁻⁴) and LVESVi (30.0
312	ml/m² [25.1, 35.7] vs 31.7 ml/m² [26.2, 39.8], p=0.032) were increased. Six individuals had
313	an LVEF below 45%, but none of the individuals met the Henry criteria for DCM (LVEF below
314	45% and LVEDVi two times the normal SD) ¹¹ .
315	For HCM G+P-, most RV and LV functional and dimension parameters were
316	comparable to G-P- controls (p \geq 0.051). Only RVEF was higher than controls (58.4% [54.2,
317	62.7] vs 59.6% [54.8, 64.0], p=0.025). Importantly, wall thickness was not significantly
318	different between HCM G+P- without a cardiomyopathy/heart failure diagnosis and G-P-

CIRCCVG/2022/003704/R2

319	(p≥0.160). None c	of the G+P- individuals r	net HCM criteria ¹²	² of ≥15 mm wal	l thickness, but
-----	-------------------	---------------------------	--------------------------------	----------------------------	------------------

- two individuals met the criteria for limited hypertrophy (13-15mm) in the presence of a
- 321 positive genetic test¹².
- 322 **Figure IV** shows a summary of all the differences tested.
- 323
- 324 Exclusion of the more prevalent TNNT2 and MYBPC3 variants
- 325 When excluding the more prevalent TNNT2 and MYBPC3 variants in HCM G+P- individuals,
- the occurrence of ventricular arrhythmias (OR 1.72 [95% CI 0.44;4.89], p=0.306) and atrial
- 327 arrhythmias (OR 1.43 [95% CI 0.84;2.32], p=0.156) was comparable to G-P- controls.
- 328 However, the maximum wall thickness (8.47mm [7.59, 9.94] vs. 8.09mm [7.24, 9.01],
- 329 p=0.008) and basal anterior wall thickness (7.93mm [6.97, 9.11] vs. 7.65mm [6.81, 8.49], p
- 330 =0.029) were significantly increased in HCM G+P- compared to controls (Table VIII). Two
- individuals had a maximum wall thickness between 13-15mm.
- 332

333 Discussion

- 334 In this study we leveraged the largest European population database including WES and
- 335 phenotype data to evaluate the prevalence and penetrance of previously reported
- pathogenic and likely pathogenic variants associated with ARVC, DCM and HCM. Our study
- has several interesting findings. First, we found a prevalence of 1:578, 1:251, and 1:149 for
- 338 variants previously associated with ARVC, DCM and HCM respectively. Second, 1.2% of ARVC
- 339 G+, 3.1% of DCM G+ and 2.6% of HCM G+ were diagnosed with a cardiomyopathy or heart
- 340 failure without previous chronic ischemic heart disease. Finally, 3.2% of the undiagnosed
- 341 ARVC G+, 1.8% of the undiagnosed DCM G+, 0.5% of the undiagnosed HCM G+ reported

CIRCCVG/2022/003704/R2

ventricular arrhythmias or had CMR abnormalities. These results confirm the low disease
penetrance in G+ in the general population.

344

365

- 345 Prevalence of pathogenic and likely pathogenic variant carriers in the general population
- 346 Since rare genetic variants are the major cause of inherited cardiomyopathies , a large

347 dataset is needed to accurately identify the population prevalence of these variants.

- 348 Prevalence of pathogenic variants in populations has been the focus of several previous
- 349 studies^{4, 13-15}, however they were mostly limited by the number of included individuals. At
- time of analysis, we had access to an unprecedented number of 200,643 individuals.

351 Previously reported prevalence of ARVC G+ in the general population ranges

between 1:143 to 1:1,706¹³⁻¹⁵. This variability is likely to be explained by heterogeneity in

353 study populations and definitions of variant pathogenicity. For example, many previous

354 studies did not include all eight curated genes with strong or moderate disease-gene

association but also marked other genes (e.g. TGFB3) with only limited evidence as

associated with ARVC^{14,15}. In addition, we included both missense and LoF variants whereas

357 prior studies only included LoF variants.

For DCM, little is known about the prevalence of DCM causing variants in the general population. Studies focusing on truncating *TTN* variants in the general population found a prevalence ranging between 1:33 and 1:526^{16,17}. This wide range can partly be explained by the used definition of pathogenicity. Also, disease causing truncating *TTN* variants associated with DCM are known to be highly enriched in the A band. However, recently, truncating variants in the distal I-band region have also been implicated in DCM¹⁸. When solely focussing on *TTN* variants, we found a prevalence of only 1:735. This differs from the

previous studies, probably because not all TTN variants are reported as pathogenic or likely

CIRCCVG/2022/003704/R2

366	pathogenic in ClinVar and VKGL. Including all curated DCM-associated genes, we report a
367	prevalence of 1:251.
368	For HCM, we found a prevalence ranging between 1:250 and 1:149 individuals
369	carrying a pathogenic or likely pathogenic variant, which approaches previous estimates of
370	1:164 ¹⁹ . In a recent study, including the UKB population, a prevalence of 1:407 was
371	reported ²⁰ . They included 8 sarcomere-encoding genes described to be associated with
372	HCM (ACTC1, MYBPC3, MYH7, MYL2, MYL3, TNNI3, TNNT2 and TPM1) and variants that
373	were described as pathogenic or likely pathogenic in ClinVar or annotated as pathogenic or
374	likely pathogenic according to ACMG criteria and filtered variants for an allele frequency of
375	0.00004. We included additional genes (CSRP3, JPH2 and TNNC1) and pathogenic and likely
376	pathogenic variants from the VKGL database and filtered for a minor allele frequency of
377	0.001. Especially the latter is a driving force behind the higher prevalence in this study.
378	When also using a minor allele frequency (MAF) <0.00004, the prevalence of our study
379	would be 1:475, approaching the prevalence reported by de Marvao <i>et al</i> . ²⁰ .
380	
381	Disease expression of pathogenic and likely pathogenic variants in the general population
382	Most information on disease penetrance in ARVC, DCM or HCM G+ is based on observations
383	in G+ relatives of cardiomyopathy patients. Previous studies have shown that 37% of ARVC
384	G+ relatives ²¹ and up to 50% of HCM G+ relatives with sarcomeric variants ²² show disease
385	expression during follow-up. Our findings suggest that disease penetrance in the general
386	population is much lower. We found that 1.2% of ARVC G+, 3.1% of DCM G+ and 2.6% of
387	HCM G+ in the UKB were diagnosed with a cardiomyopathy or heart failure, in the absence
388	of chronic ischemic heart disease. Our additional analysis of ventricular function and ECG in
389	undiagnosed G+ subjects also suggests a low disease penetrance. We found significantly

CIRCCVG/2022/003704/R2

390	worse LVEF and strain parameters in DCM G+P- compared to controls, however none met
391	the diagnostic Henry criteria (LVEF below 45% and LVEDVi two times the normal SD) 11 .
392	Although CMR data was only available in a subgroup of undiagnosed G+ patients, these
393	findings make it unlikely that the low penetrance found in our study arises from missed
394	diagnoses or covert disease in the G+ cohort. Furthermore, none of the G+P- individuals met
395	HCM criteria ¹² of \geq 15 mm wall thickness, two individuals did meet the criteria for limited
396	hypertrophy (13-15mm) in the presence of a positive genetic test ¹² . Interestingly, maximum
397	wall thickness in de Marvao <i>et al</i> . ²⁰ was higher compared to ours. Although this can partly
398	be explained by the inclusion of P+ by Marvao <i>et al.,</i> this may also be explained by
399	differences in wall thickness calculation method. While Marvao et al. uses the absolute
400	largest wall thickness value at a single point, we have used the AHA segment with the
401	largest wall thickness (which is an average of all the single points within one AHA segment
402	to reduce random outliers). In ARVC and DCM G+P- we found a low, but significantly higher
403	prevalence of ventricular arrhythmias compared to controls (1.7% vs. 0.3% (OR 5.85 [95% CI
404	1.98;14.40]) and 1.0% vs. 0.3% (OR 3.43 [95% Cl 1.35;7.68)) respectively). In ARVC, electrical
405	abnormalities are known to precede structural abnormalities ²³ . Therefore, these findings
406	may suggest early disease penetrance in a small subset of undiagnosed G+ individuals. The
407	discrepancy between the high disease penetrance found in G+ family members and the low
408	penetrance in the G+ general population points towards the interaction of possible other
409	(unidentified) genetic and environmental factors leading to this variation. The median age of
410	our study population was 57 [49-63] years, however inherited cardiomyopathies are
411	generally diagnosed at a younger age. For ARVC, Groeneweg et al. showed, in a cohort of
412	439 index-patients, that the mean age of first disease presentation is 36 \pm 14 years. Most of
413	these patients presented with symptoms (95%), of whom 11% with sudden cardiac arrest ²¹ .

CIRCCVG/2022/003704/R2

414	Likewise in DCM, the mean age of presentation is mostly between 30-50 years ²⁴ . Lastly, in
415	HCM a mean age at presentation of 49 ± 16 years was shown in a cohort of 4893 patients by
416	Lorenzini <i>et al.</i> ²⁵ . Interestingly, although mortality rates were low, young HCM patients
417	showed a worse prognosis compared to their healthy peers, with 80% of mortality being
418	caused by sudden cardiac death ²⁵ . Therefore, it should be taken into account that younger
419	patients with disease expression are likely underrepresented in our study. This is not only
420	due to higher mortality and morbidity in especially ARVC and HCM, but also because
421	individuals with a diagnosed cardiomyopathy may be less likely to participate in a large-scale
422	biobank study such as the UKB.
423	Interestingly, the South Asian MYBPC3 and the TNNT2 variant, showed a relatively
424	high prevalence in our cohort. In total, 19% of HCM G+ was Asian and most of these
425	individuals carried the c.3628-41_3628-17del variant in the <i>MYBPC3</i> gene. Although this
426	variant is indicated as likely pathogenic in ClinVar, a previous study suggests that this variant
427	may be reclassified as benign ²⁶ . In our study, none of these variant carriers were diagnosed
428	with HCM. Four were diagnosed with heart failure of whom one was diagnosed with DCM.
429	This suggests that this variant is associated with heart failure in the setting of multiple forms
430	of cardiomyopathy, and not simply HCM ²⁶ . Secondly, the c.862C>T p.Arg288Cys variant in
431	TNNT2 was previously found in HCM individuals but is often observed in patients with a mild
432	phenotype or in combination with other variants. These observations suggest that this
433	variant might not be a monogenic cause of severe HCM but acts in concert with other
434	variants ²⁷ . Interestingly, when excluding these variants from our G+P- population, a
435	significantly higher wall thickness is measured compared to controls. These two examples
436	emphasize that when pathogenic or likely pathogenic variants are identified as a secondary

CIRCCVG/2022/003704/R2

437 finding, other factors, such as the specific variant and the family history are crucial for

438 follow-up decisions.

459

439	We also assessed gene-specific associations with the cardiovascular outcomes. PKP2
440	variant carriers showed a stronger association with ventricular arrhythmias (OR 11.90 [95%
441	CI 4.38; 27.86], p = 6.4×10^{-6}) compared to heart failure (OR 1.50 [95% CI 0.48; 3.64],
442	p=0.395). This is in concordance with a previous study showing sustained ventricular
443	arrhythmias to be the first clinical presentation in 61% of ARVC patients ²¹ . During follow-up,
444	sustained arrhythmias occurred in 72% of ARVC patients, highlighting sustained arrhythmias
445	as the most important ARVC disease manifestation. On the contrary, symptomatic heart
446	failure was seen in 13% of ARVC patients ²¹ . In DCM G+, ventricular arrhythmias were
447	significantly more present compared to G- controls, especially in TTN (OR 4.49 [95% CI 1.15;
448	12.76], p=0.016), <i>DES</i> (OR 12.80 [95% CI 1.45; 52.55], p=0.013) and <i>LMNA</i> (OR 15.04 [95% CI
449	1.69; 62.32], p=0.009) variant carriers. A recent meta-analysis assessing predictors for
450	sustained ventricular arrhythmias, showed PLN and LMNA to be associated with
451	arrhythmogenic outcome ²⁸ . Although we did not have enough power to study <i>PLN</i> G+,
452	LMNA G+ did show significantly more ventricular arrhythmias compared to G- controls.
453	Furthermore, BAG3 variant carriers have been associated with significant risk of progressive
454	heart failure ²⁹ . In our study, <i>BAG3</i> variant carriers were significantly more often diagnosed
455	with a cardiomyopathy (OR 41.18 [95% CI 4.36; 192.17], p=0.002). Even though more heart
456	failure cases were seen compared to G- controls, this did not reach statistical significance
457	(Table X).
458	Interestingly, self-reported health-related quality of life and psychological well-being

460 at least similar to the general population, which suggests that reporting incidental findings

of 89 asymptomatic HCM G+ were previously evaluated in a Dutch cohort and found to be

CIRCCVG/2022/003704/R2

461	will not harm psychological well-being of G+ ³⁰ . However, frequent cardiological examination
462	of G+ and family members turning out to be carriers after cascade screening will put a
463	burden on health care and societal costs ³¹ . Genetic screening and cardiological examination
464	are necessary in family members of genetic cardiomyopathy patients since disease
465	expression in family members is considerable. Disease expression in the general population
466	on the other hand is low. Therefore, in case of an incidental finding, multiple factors like
467	family history, presence of symptoms, electrical and/or structural abnormalities and gene
468	and variant type should inform follow-up decisions. Further studies on the genotype-
469	phenotype associations and disease penetrance will aid in facilitating these decisions.
470	
471	Limitations
472	Several variants are associated with more than one cardiomyopathy. This is mainly due to
473	phenotypic heterogeneity but may also be partly explained by misdiagnosis. Information is
474	submitted to ClinVar by laboratories, not by clinicians. Phenotype description might
475	therefore be less reliable. To avoid selection bias, we included variants associated with
476	multiple cardiomyopathies in both cardiomyopathy categories, possibly leading to increased
477	prevalence estimates. Although the prevalence of cardiomyopathy variants is slightly
478	affected by including or excluding overlapping variants, this did not substantially affect the
479	results and conclusions (Table X). Future studies should focus on reaching consensus on
480	variant-phenotype associations for the variants described in multiple cardiomyopathies to
481	avoid variation in prevalence caused by the use of different definitions. Despite recent
482	efforts to harmonize knowledge on genes associated with inherited cardiomyopathies ⁵⁻⁷ ,
483	and guidelines for variant classification ³¹ , the adjudication of the clinical significance of
484	single variants can still differ between diagnostic laboratories ³¹ , which has led to

CIRCCVG/2022/003704/R2

485	interpretation differences and difficulties to compare results among studies using different
486	criteria. This highlights the importance of a single set of criteria to ascertain clinical
487	significance of a single variant. Furthermore, not all pathogenic or likely pathogenic variants
488	are reported in these databases, especially family-specific variants and pathogenic variants
489	in non-Caucasian populations are underreported.
490	Lastly, G+P- and G-P- individuals with CMR data available were age, sex and ethnicity
491	matched and comparable in the presence of cardiovascular risk factors and diseases.
492	Interestingly, outliers in CMR values were also present in G-P- controls, which could be
493	partly explained by the presence of past myocardial infarctions. Therefore, differences in
494	cardiac function and structure between G+P+ and G-P- could be underestimated.
495	
496	Conclusion
497	In a cohort of 200,643 individuals with WES and phenotype data we identified a prevalence
498	of pathogenic variants associated with ARVC, DCM and HCM of 1:578, 1:251 and 1:149
499	respectively. Among the identified G+ individuals, cardiomyopathy, heart failure and
500	ventricular arrhythmias were more common compared to G However, overall disease
501	penetrance was low (1.2-3.1%). Therefore, in case of incidental findings, decisions on
502	application of cascade screening and frequency of cardiological examination should be
503	based on multiple factors besides variant and gene type, such as family history and disease
504	expression.
505	
506	Acknowledgements
507	This research has been conducted using the UK Biobank Resource under Application

508 Number 24711.

CIRCCVG/2022/003704/R2

509 Funding sources

- 510 The work was financially supported by the Netherlands Cardiovascular Research Initiative,
- an initiative supported by the Dutch Heart Foundation (CardioVasculair Onderzoek
- 512 Nederland (CVON) projects: DOUBLE-DOSE 2020B005 (AB), PREDICT2 2018-30, eDETECT
- 513 2015-12 (PvT, AtR and FA) and PREDICT Young Talent Program (AtR)). In addition, this work
- was supported by the Dutch Heart Foundation (2015T058 (AtR), 2015T041 (AB) and
- 515 2019T045 (MvV and JvS)). Furthermore, MB is supported by the Alexandre Suerman Stipend
- of the UMC Utrecht (2017), AtR by the UMC Utrecht Fellowship Clinical Research Talent and
- 517 FA by the UCL Hospitals NIHR Biomedical Research Center.
- 518
- 519 Disclosures
- 520 None
- 521
- 522 Supplemental Material
- 523 Supplemental Methods
- 524 Tables I-XI
- 525 Figures I-IV
- 526 References 32–38
- 527

CIRCCVG/2022/003704/R2

528 References

529 530	1.	McKenna WJ, Judge DP. Epidemiology of the inherited cardiomyopathies. <i>Nat Rev</i> <i>Cardiol</i> . 2021;18:22-36.
531	2.	Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a
532	2	diverse genetic architecture. <i>Nat Rev Caralol.</i> 2013;10:531-547.
533	3.	Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, Naidu SS, Nishimura
534		RA, Ommen SR, Rakowski H, et al. 2011 ACCF/AHA guideline for the diagnosis and
535		treatment of hypertrophic cardiomyopathy: executive summary: a report of the
536 537		on Practice Guidelines. <i>Circulation</i> . 2011;124:2761-2796.
538	4.	Miller DT, Lee K, Chung WK, Gordon AS, Herman GE, Klein TE, Stewart DR, Amendola
539		LM, Adelman K, Bale SJ, et al. ACMG SF v3. 0 list for reporting of secondary findings
540		in clinical exome and genome sequencing: a policy statement of the American
541		College of Medical Genetics and Genomics (ACMG). Genet Med. 2021;23:1381-1390.
542	5.	James CA, Jongbloed JD, Hershberger RE, Morales A, Judge DP, Syrris P, Pilichou K,
543		Domingo AM, Murray B, Cadrin-Tourigny J, et al. International evidence based
544		reappraisal of genes associated with arrhythmogenic right ventricular
545		cardiomyopathy using the clinical genome resource framework. Circ Genom Precis
546		<i>Med</i> . 2021;14:e003273.
547	6.	Jordan E, Peterson L, Ai T, Asatryan B, Bronicki L, Brown E, Celeghin R, Edwards M,
548		Fan J, Ingles J, et al. Evidence-based assessment of genes in dilated cardiomyopathy.
549		<i>Circ</i> . 2021;144:7-19.
550	7.	Ingles J, Goldstein J, Thaxton C, Caleshu C, Corty EW, Crowley SB, Dougherty K,
551		Harrison SM, McGlaughon J, Milko LV, et al. Evaluating the clinical validity of
552		hypertrophic cardiomyopathy genes. <i>Circ Genom Precis Med</i> . 2019;12:e002460.
553	8.	Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, Gu B, Hart J,
554		Hoffman D, Jang W, et al. ClinVar: improving access to variant interpretations and
555		supporting evidence. Nucleic Acids Res. 2018;46:D1062-D1067.
556	9.	Szustakowski JD, Balasubramanian S, Kvikstad E, Khalid S, Bronson PG, Sasson A,
557		Wong E, Liu D, Wade Davis J, Haefliger C, et al. Advancing human genetics research
558		and drug discovery through exome sequencing of the UK Biobank. Nat Genet.
559		2021;53:942-948.
560	10.	Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, Calkins H, Corrado
561		D, Cox MG, Daubert JP, et al. Diagnosis of arrhythmogenic right ventricular
562		cardiomyopathy/dysplasia: proposed modification of the task force criteria.
563		Circulation. 2010;121:1533-1541.
564	11.	Henry WL, Gardin J, Ware J. Echocardiographic measurements in normal subjects
565		from infancy to old age. <i>Circulation</i> . 1980;62:1054-1061.
566	12.	Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P, Evanovich LL, Hung J,
567		Joglar JA, Kantor P, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of
568		patients with hypertrophic cardiomyopathy: executive summary: a report of the
569		American College of Cardiology/American Heart Association Joint Committee on
570		Clinical Practice Guidelines. J Am Coll Cardiol. 2020;76:3022-3055.
571	13.	Carruth ED, Young W, Beer D, James CA, Calkins H, Jing L, Raghunath S, Hartzel DN,
572		Leader JB, Kirchner HL, et al. Prevalence and electronic health record-based

573		phenotype of loss-of-function genetic variants in arrhythmogenic right ventricular
574		cardiomyopathy-associated genes. <i>Circ Genom Precis Med</i> . 2019;12:e002579.
575	14.	Haggerty CM, James CA, Calkins H, Tichnell C, Leader JB, Hartzel DN, Nevius CD,
576		Pendergrass SA, Person TN, Schwartz M, et al. Electronic health record phenotype in
577		subjects with genetic variants associated with arrhythmogenic right ventricular
578		cardiomyopathy: a study of 30,716 subjects with exome sequencing. <i>Genet Med</i> .
579		2017;19:1245-1252.
580	15.	Hall CL, Sutanto H, Dalageorgou C, McKenna WJ, Syrris P, Futema M. Frequency of
581		genetic variants associated with arrhythmogenic right ventricular cardiomyopathy in
582		the genome aggregation database. <i>Eur J Hum Genet</i> . 2018;26:1312-1318.
583	16.	Akinrinade O, Koskenvuo JW, Alastalo T-P. Prevalence of titin truncating variants in
584		general population. <i>PloS One</i> . 2015;10:e0145284.
585	17.	Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P, Christodoulou D, Conner L,
586		DePalma SR, McDonough B, Sparks E, et al. Truncations of titin causing dilated
587		cardiomyopathy. <i>N Engl J Med</i> . 2012;366:619-628.
588	18.	Schafer S, De Marvao A, Adami E, Fiedler LR, Ng B, Khin E, Rackham OJ, Van Heesch
589		S. Pua CJ, Kui M, et al. Titin-truncating variants affect heart function in disease
590		cohorts and the general population. <i>Nat Genet</i> . 2017;49:46-53.
591	19.	Bick AG, Flannick J, Ito K, Cheng S, Vasan RS, Parfenov MG, Herman DS, DePalma SR,
592		Gupta N, Gabriel SB, et al. Burden of rare sarcomere gene variants in the
593		Framingham and Jackson Heart Study cohorts. <i>Am J Hum Genet</i> . 2012;91:513-519.
594	20.	de Marvao A, McGurk KA, Zheng SL, Thanaj M, Bai W, Duan J, Biffi C, Mazzarotto F,
595		Statton B, Dawes TJ, et al. Phenotypic expression and outcomes in individuals with
596		rare genetic variants of hypertrophic cardiomyopathy. J Am Coll Cardiol.
597		2021;78:1097-1110.
598	21.	Groeneweg JA, Bhonsale A, James CA, Te Riele AS, Dooijes D, Tichnell C, Murray B,
599		Wiesfeld AC, Sawant AC, Kassamali B, et al. Clinical presentation, long-term follow-
600		up, and outcomes of 1001 arrhythmogenic right ventricular
601		dysplasia/cardiomyopathy patients and family members. <i>Circ Cardiovasc Genet</i> .
602		2015;8:437-446.
603	22.	van Velzen HG, Schinkel AF, Baart SJ, Oldenburg RA, Frohn-Mulder IM, van
604		Slegtenhorst MA, Michels M. Outcomes of contemporary family screening in
605		hypertrophic cardiomyopathy. <i>Circ Genom Precis Med</i> . 2018;11:e001896.
606	23.	Gomes J, Finlay M, Ahmed AK, Ciaccio EJ, Asimaki A, Saffitz JE, Quarta G, Nobles M,
607		Syrris P, Chaubey S, et al. Electrophysiological abnormalities precede overt structural
608		changes in arrhythmogenic right ventricular cardiomyopathy due to mutations in
609		desmoplakin-A combined murine and human study. <i>Eur Heart J.</i> 2012;33:1942-1953.
610	24.	Hershberger RE, Cowan J, Morales A, Siegfried JD. Progress with genetic
611		cardiomyopathies: screening, counseling, and testing in dilated, hypertrophic, and
612		arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Heart Fail.
613		2009;2:253-261.
614	25.	Lorenzini M, Anastasiou Z, O'Mahony C, Guttman OP, Gimeno JR, Monserrat L,
615		Anastasakis A, Rapezzi C, Biagini E, Garcia-Pavia P, et al. Mortality among referral
616		patients with hypertrophic cardiomyopathy vs the general European population.
617		JAMA Cardiol. 2020;5:73-80.
618	26.	Harper AR, Bowman M, Hayesmoore JB, Sage H, Salatino S, Blair E, Campbell C,
619		Currie B, Goel A, McGuire K, et al. Reevaluation of the South Asian MYBPC3 $\Delta 25$ bp

CIRCCVG/2022/003704/R2

620 621		Intronic Deletion in Hypertrophic Cardiomyopathy. <i>Circ Genom Precis Med.</i> 2020:13:e002783
622	27.	Ripoll-Vera T, Gámez JM, Govea N, Gómez Y, Núñez J, Socías L, Escandell Á, Rosell J.
623 624		Clinical and prognostic profiles of cardiomyopathies caused by mutations in the troponin T gene. <i>Rev Esp Card</i> . 2016;69:149-158.
625 626	28.	Kayvanpour E, Sedaghat-Hamedani F, Amr A, Lai A, Haas J, Holzer DB, Frese KS, Keller A Jensen K, Katus HA, et al. Genotype-phenotype associations in dilated
627		cardiomyonathy: meta-analysis on more than 8000 individuals. <i>Clin Res Cardiol</i>
628		2017:106:127-139
629	29	Domínguez E. Cuenca S. Bilińska Z. Toro R. Villard F. Barriales-Villa R. Ochoa IP
630	23.	Asselbergs E Sammani A Franaszczyk M et al. Dilated cardiomyonathy due to BLC2-
631		associated athanogene 3 (BAG3) mutations. <i>J Am Coll of Cardiol</i> 2018;72:2471-2481
632	30	Christiaans I. Van Langen IM. Birnie F. Bonsel G.I. Wilde AA. Smets F.M. Quality of life
633	50.	and neveral distress in hypertraphic cardiomyonathy mutation carriers: a
634		cross-sectional cohort study Am IM Genet 2009:149:602-612
635	31	Fontes Mary M Ataguha IF Vries Id Wonkam A Systematic Review of the Economic
636	51.	Evaluation of Returning Incidental Findings in Genomic Research. <i>Public Health</i>
637		Front. 2021;9:873.
638	32.	Strande NT, Riggs ER, Buchanan AH, Ceyhan-Birsoy O, DiStefano M, Dwight SS,
639 640		Goldstein J, Ghosh R, Seifert BA, Sneddon TP, et al. Evaluating the clinical validity of gene-disease associations: an evidence-based framework developed by the clinical
641		genome resource. Am J Hum Genet. 2017;100:895-906.
642	33.	Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon
643		E, Spector E, et al. Standards and guidelines for the interpretation of sequence
644		variants: a joint consensus recommendation of the American College of Medical
645		Genetics and Genomics and the Association for Molecular Pathology. Genet Med.
646		2015;17:405-423.
647	34.	Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, Shendure J.
648		Exome sequencing as a tool for Mendelian disease gene discovery. <i>Nat Rev Genet</i> .
649		2011;12:745-755.
650	35.	Petersen SE, Matthews PM, Francis JM, Robson MD, Zemrak F, Boubertakh R, Young
651		AA, Hudson S, Weale P, Garratt S, et al. UK Biobank's cardiovascular magnetic
652		resonance protocol. J Cardiovasc Magn Reson. 2015;18:1-7.
653	36.	Ruijsink B, Puyol-Antón E, Oksuz I, Sinclair M, Bai W, Schnabel JA, Razavi R, King AP.
654		Fully automated, quality-controlled cardiac analysis from CMR: validation and large-
655		scale application to characterize cardiac function. JACC <i>Cardiovasc Imaging</i> .
656		2020;13:684-695.
657	37.	Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ,
658		Rumberger JA, et al. Standardized myocardial segmentation and nomenclature for
659		tomographic imaging of the heart: a statement for healthcare professionals from the
660		Cardiac Imaging Committee of the Council on Clinical Cardiology of the American
661		Heart Association. Circulation. 2002;105:539-542.
662	38.	R Core Team. R: A language and environment for statistical computing: Vienna,
663		Austria: R Foundation for Statistical Computing; 2020.
664		

CIRCCVG/2022/003704/R2

666 Tables

667 **Table 1: Baseline characteristics of variant carriers and controls**

6<u>6</u>8

	ARVC G+ n=347	DCM G+ n=800	HCM G+ n=1,346	Controls G- n=9,972		
Demographics						
Female (%)	187 (54)	450 (56)	720 (54)	5,436 (55)		
Age, years	57 [50- 64]	58 [51-64]	56 [49-63]	57 [49-63]		
Ethnicity (%)						
White	311 (90)	760 (96)	1,001 (75)	8,288 (84)		
Asian	10 (3)	8 (1)	251 (19)	1,076 (11)		
Black	7 (2)	12 (2)	22 (2)	164 (2)		
Other	17 (5)	15 (2)	55 (4)	348 (4)		
Cardiovascular risk factors	Cardiovascular risk factors					
BMI, kg/m ²	26 [24-30]	27 [24-30]	27 [24-30]	27 [24-30]		
Diabetes (%)	35 (10)	62 (8)	154 (11)*	914 (9)		
Hypertension (%)	116 (33)	287 (36)	475 (35)	3,420 (34)		
Hypercholesterolemia (%)	86 (25)	211 (26)	369 (27)*	2,416 (24)		
Ever Smoked (%)	161 (46)	371 (46)*	543 (40)	4,132 (41)		
MET minutes per week, ml/kg/min	2,001 [923- 3,551]	1,695 [784- 3,536]	1,762 [848- 3,426]	1,773 [810- 3,453]		
Family heart disease (%)	179 (52)*	380 (48)	623 (46)	4,458 (45)		
Cardiac disease/outcomes	·			•		
Cardiomyopathy (%)	3 (0.9)	22 (3)**	27 (2)**	37 (0.4)		
DCM (%)	2 (0.6)	9 (1)**	1 (0.1)	14 (0.1)		
HCM (%)	1 (0.3)	7 (1)**	20 (2)**	8 (0.1)		
Heart failure (%)	9 (3)	36 (5)**	33 (3)	182 (2)		
Ventricular arrhythmias (%)	7 (2)**	13 (2)**	8 (1)	33 (0.3)		

CIRCCVG/2022/003704/R2

Atrial arrhythmias (%)	7 (2)	34 (4)**	32 (2)	191 (2)	
Chronic ischemic heart disease (%)	35 (10)	73 (9)	93 (7)	725 (7)	
Acute myocardial infarction (%)	15 (4)	27 (3)	36 (3)	298 (3)	
Cardiac arrest (%)	0 (0)	6 (1)	5 (0.4)	34 (0.3)	
Cardiovascular death (%)	11 (3)	24 (3)*	18 (1)	181 (2)	
All cause mortality (%)	19 (6)	56 (7)*	62 (5)	513 (5)	
Cardiac symptoms					
Cardiac problem	3 (1)	3 (0.4)	5 (0.4)	41 (0.4)	
Angina pectoris	16 (5)	30 (4)	56 (4)*	312 (3)	

669

670 Number (percentages) are given or median [IQR]. * p=0.001-0.05 and ** p <0.001 difference

671 compared to the control group. A more extensive overview of the baseline characteristics

are given in **Table III.** Individuals with a variant in *PLN, DES* and *DSP* variant were included in

both ARVC and DCM. Individuals with a variant in *MYH7, ACTC, JPH, TNNC1, TNNI3, TNNT2,*

674 *TPM* were included in both DCM and HCM.

675 Abbreviations: ARVC= arrhythmogenic right ventricular cardiomyopathy; DCM= dilated

676 cardiomyopathy; HCM= hypertrophic cardiomyopathy; BMI= body mass index; MET=

677 *metabolic equivalent of task.*

CIRCCVG/2022/003704/R2

679 Figures

680 Figure 1: Included curated genes per cardiomyopathy

- 681 The Venn diagram of curated genes included in this study shows the overlap in genes per
- 682 cardiomyopathy. Unless otherwise indicated, pathogenicity of genes are classified as
- 683 definitive. If a superscript S or M is given, genes are classified as having a strong or
- 684 moderate pathogenicity respectively. In the overlapping circles, yellow, black and red colors
- 685 refer to ARVC, DCM, and HCM respectively. *Table I* gives an overview of the included genes
- 686 and pathogenicity classification per gene and abbreviation per gene.
- 687 Abbreviations: ARVC= arrhythmogenic right ventricular cardiomyopathy; DCM= dilated
- 688 cardiomyopathy; HCM= hypertrophic cardiomyopathy.
- 689

690 **Figure 2: Flowchart inclusion of variants**

- 691 Flowchart depicting the inclusion of pathogenic and likely pathogenic variants associated
- 692 with arrhythmogenic cardiomyopathy, dilated cardiomyopathy and hypertrophic
- 693 cardiomyopathy from the ClinVar⁸ and VKGL database.
- 694 Abbreviations: ARVC= arrhythmogenic right ventricular cardiomyopathy; DCM= dilated
- 695 cardiomyopathy; HCM= hypertrophic cardiomyopathy; VKGL= Vereniging Klinische
- 696 Genetische Laboratoriumdiagnostiek.
- 697
- 698 Figure 3: Distribution of genes per cardiomyopathy
- 699 Piecharts with the distribution of curated genes for A) arrhythmogenic right ventricular
- cardiomyopathy (ARVC); B) dilated cardiomyopathy (DCM); C) hypertrophic cardiomyopathy(HCM).
- 702 Abbreviations of the different genes are given in **Table III**
- 703 Abbreviations: G+= pathogenic variant carrier.
- 704

705 Figure 4: Forest plot cardiac outcomes stratified per inherited cardiomyopathy

- 706 Odds ratios and 95% confidence interval are given for the associations between cardiac
- 707 outcomes and ARVC, DCM, or HCM pathogenic variant carriers.
- 708 Abbreviations: ARVC= arrhythmogenic right ventricular cardiomyopathy; DCM= dilated
- 709 cardiomyopathy; G+= pathogenic variant carrier; HCM= hypertrophic cardiomyopathy.
- 710
- 711 Figure 5: CMR parameters stratified per inherited cardiomyopathy
- 712 Boxplots of CMR parameters showing the summary statistics of CMR parameters stratified
- by controls and individuals with a pathogenic variant associated with ARVC, DCM, or HCM.
- 714 Displayed summary statistics include the median, first and third quartile (lower and upper
- box edges), and the whiskers represent values within 1.5 times the interquartile range fromthe box edges.
- 716 the box edges.
 717 Abbreviations: ARVC= arrhythmogenic right ventricular cardiomyopa
- 717 Abbreviations: ARVC= arrhythmogenic right ventricular cardiomyopathy; DCM= dilated
- 718 cardiomyopathy; EDVi= body surface area corrected end-diastolic volume; EF= ejection
- 719 fraction; G+= pathogenic variant carrier; HCM= hypertrophic cardiomyopathy; LV= left
- 720 ventricular; RV= right ventricular.

