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 2

Abstract 17 

 18 

Blood biomarkers include disease intervention targets that may interact with genetic and 19 

environmental factors resulting in subgroups of individuals who respond differently to 20 

treatment. Such interactions may be observed in genetic effects on trait variance. Variance 21 

prioritisation is an approach to identify genetic loci with interaction effects by estimating 22 

their association with trait variance, even where the modifier is unknown or unmeasured. 23 

Here, we develop and evaluate a regression-based Brown-Forsythe test and variance effect 24 

estimate to detect such interactions. We provide scalable open-source software (varGWAS) 25 

for genome-wide association analysis of SNP-variance effects 26 

(https://github.com/MRCIEU/varGWAS) and apply our software to 30 blood biomarkers in 27 

UK Biobank. We find 468 variance quantitative trait loci across 24 biomarkers and follow up 28 

findings to detect 82 gene-environment and six gene-gene interactions independent of 29 

strong scale or phantom effects. Our results replicate existing findings and identify novel 30 

epistatic effects of TREH rs12225548 x FUT2 rs281379 and TREH rs12225548 x ABO 31 

rs635634 on alkaline phosphatase and ZNF827 rs4835265 x NEDD4L rs4503880 on gamma 32 

glutamyltransferase. These data could be used to discover possible subgroup effects for a 33 

given biomarker during preclinical drug development. 34 

 35 

Introduction 36 

 37 

Blood biomarkers provide valuable information for diagnosis and prognosis of disease1, 38 

insight into biological mechanisms2, and a source of causal modifiable risk factors which may 39 

be intervened upon to create therapies1. For example, lipids, glucose, and urate have 40 
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become successful therapeutic targets for cardiovascular disease3, type 2 diabetes4, and 41 

gout5, respectively, among others. However, as biomarkers are complex traits they are 42 

affected by genetic and environmental factors which may interact producing gene-gene 43 

(GxG, epistasis) or gene-environment (GxE) effects6. Intervening on biomarkers which have 44 

an interaction effect on disease outcome will produce subgroup effects with individual 45 

variation in response to treatment dependent on the modifier7. Identifying these 46 

interactions may contribute to stratified medicine which aims to provide optimum 47 

treatments and preventative advice for disease based on individual characteristics6. 48 

 49 

Detecting interaction effects can be challenging. Statistical power to detect an interaction is 50 

lower than for main effects; for randomised control trials the sample size needed to detect 51 

an interaction with equal sized subgroups is around four times the size needed to detect the 52 

main effect of the same magnitude7,8. Low power is exacerbated by multiple testing 53 

correction that is essential to account for evaluating the large numbers of candidate 54 

modifiers. To reduce multiple testing, pairwise interaction analyses of SNPs with moderate 55 

main effects can be performed. However, this approach could miss subgroups with an effect 56 

in only one group or opposing effect directionality (known as qualitative interaction effects7) 57 

hence weaker overall effects, yet these offer the most potential for stratified medicine. An 58 

alternative approach to select SNPs for GxG/GxE testing is variance prioritisation9,10 which 59 

identifies differences in outcome variance across genotype levels (variance quantitative trait 60 

loci, vQTL). Although not conclusive evidence, this observation is consistent with a SNP-61 

interaction effect11 and detection of vQTLs does not require the modifier to be measured11. 62 

 63 
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Variance QTLs can arise as a consequence of heterogeneous mean effects that could occur 64 

from changing environment, background genetics and temporal regulation11. Among the 65 

first reported vQTL effects in humans was rs7202116 (FTO locus), associated with a large 66 

change in variance (as well as mean) of body mass index (BMI)12. More recently, systematic 67 

testing of vQTL effects on 13 quantitative traits in UK Biobank and subsequent GxE testing 68 

identified 16 GxE effects modified by age, sex, physical activity, sedentary behaviour, and 69 

smoking13. Variance QTLs have also been identified for gene expression14, DNA 70 

methylation15, Vitamin D16 and facial morphology17. To date, gene-interaction studies have 71 

mostly focused on testing a small number of candidate interactions, but hypothesis-free 72 

testing of vQTL effects on blood biomarkers could lead to the identification of unanticipated 73 

intervention targets with subgroup effects. 74 

 75 

Existing studies of vQTLs have employed a range of methods13,18–20. Wang et al compared 76 

the power and type I error of four widely used variance tests and found the median variant 77 

of Levene’s test21 also known as the Brown-Forsythe test13,22 to be most robust. However, 78 

this test does not allow for inclusion of covariates or continuous genotype data (i.e., 79 

imputed allelic dose) and does not provide an effect estimate, all of which are limitations 80 

when applied in a GWAS. However, the Brown-Forsythe test can be reformulated using 81 

least-absolute deviation15,23 (LAD) regression using the same structure as the Glejser test24. 82 

Regression-based variance tests offer greater flexibility to overcome these limitations. 83 

Recent developments in LAD regression have vastly reduced the computational burden for 84 

large high-dimensional datasets25. 85 

 86 
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In this study we compare the utility of the original Brown-Forsythe test and our LAD 87 

regression-based reformulation of the Brown-Forsythe test (LAD-BF) to detect SNP-88 

interaction effects under simulation and develop scalable open-source software 89 

(https://github.com/MRCIEU/varGWAS) for performing variance GWAS using the latter. We 90 

apply our regression-based model to estimate SNP effects on the variance of 30 blood 91 

biomarkers in ~337K UK Biobank participants and follow up vQTLs with formal interaction 92 

tests to detect GxG and GxE interactions. 93 

 94 

Material and methods 95 

 96 

Original Brown-Forsythe test 97 

 98 

The Brown-Forsythe22 test (median variant of Levene’s test21) refers to the original 99 

published non-parametric test and will be used throughout. We applied the Brown-Forsythe 100 

test to detect differences in trait variability across the three genotypic groups.  101 

 102 

The test statistic � is F-distributed ��2, � � 3	 given by: 103 

 104 
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 105 

Where � is the total number of observations. �� is the number of observations with the �th 106 

genotype group �0, 1 ,2�. 
�� is the absolute residual of the outcome for the �th observation 107 
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in the �th genotype group from the median. 
�� is the mean of 
�� for the �th genotype group 108 

and 
� is the mean of 
�� across genotype groups. 109 

 110 

All analyses of the original Brown-Forsythe test used the omic-data-based complex trait 111 

analysis (OSCA) software package13,26 which additionally produces a variance effect estimate 112 

derived from the test P-value assuming linearity between the SNP and outcome variance27. 113 

 114 

LAD-BF test 115 

 116 

Our reformulated regression-based Brown-Forsythe test uses LAD regression of outcome � 117 

on independent variable 
 to estimate the residuals adjusting for any covariates: 118 

 119 

� 
 ��� � ���
 � �� 

 120 

Where 
 is the genotype measured by continuous (expected value from genotype 121 

imputation) or ordinal (directly genotyped) variable and �� is the residual of this first-stage 122 

model. 123 

 124 

A second-stage ordinary least squares (OLS) model regressed the absolute residuals |��| of 125 

the first-stage model on the genotype values coded as dummy variables (genotype expected 126 

values were rounded to the nearest whole number resulting in some loss of precision) 127 

including any covariates given in the first-stage model: 128 

 129 
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 130 

The test P-value was estimated from an F-test comparing the second-stage residual sum of 131 

squares to an intercept-only model to test the null hypothesis of variability homogeneity 132 

across genotypes.  133 

 134 

SNP effects on trait variance were calculated from second-stage regression coefficients 135 

which are estimates of mean-absolute deviation. This transformation assumes trait 136 

normality. 137 

The "#$��|% 

 1	 was estimated using: 138 

2 � γ
�

� � γ
�

� � γ
�
�� /�

2
'�

	 

The "#$��|% 

 2	 was estimated using: 139 

2 � γ
�

� � γ
�

� � γ
�
�� /�

2
'�

	 

The standard error of the variance effect was estimated using the delta method28 and 140 

heteroscedastic-consistent standard errors for the second-stage model coefficients29. 141 

 142 

LAD regression was implemented using the majorise-minimisation25,30 (MM) model with 143 

default values for iterations (200) and tolerance (0.001) and first-stage OLS regression 144 

coefficients provided as initial values. 145 

 146 

Software 147 

 148 

The LAD-BF test was implemented in varGWAS available in C++ v1.2.3 and R v1.0.0 (refer to 149 

the code and data availability section). The MM model used functionality from the cqrReg R-150 
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package25 (https://cran.r-project.org/web/packages/cqrReg/index.html). OLS and general 151 

matrix functionality were provided with Eigen v3.4.031. BGEN file processing used the BGEN 152 

library32 v1.1.6.  153 

 154 

The original Brown-Forsythe test used the OSCA software package v0.4613,26. Simulations 155 

and follow up UK Biobank analyses were performed using R v3.6.0. 156 

 157 

Simulations 158 

 159 

The bias and statistical power of the two Brown-Forsythe tests were evaluated through a 160 

series of simulation studies reported using the ADEMP structure33 (Table 1 & Supplemental 161 

Material and Methods). 162 

 163 

Participants 164 

 165 

UK Biobank is a large prospective cohort study of approximately 500,000 UK participants 166 

aged 37-73 at recruitment34. Recruitment took place between 2006-2010 from across the 167 

UK. Measures were collected on lifestyle, socio-demographics, physical parameters, health-168 

related factors, and biological samples for genetic testing and biomarker measurements. 169 

Ethical approval for the UK Biobank study was granted by the National Research Ethics 170 

Service (NRES) Committee North West (ref 11/NW/0382). All analyses were performed 171 

under approved UK Biobank project 15825 (dataset ID 33352). 172 

 173 
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Genetic data 174 

 175 

Genetic array data were available on 488,377 participants measured using a combination of 176 

UK Biobank AxiomTM array (n=438,398) and UK BiLEVE array (n=49,979). Genotype 177 

imputation was performed using a reference set combined with UK10K haplotypes and HRC 178 

reference panels with the IMPUTE235 software as described36. The following SNPs were 179 

removed from analysis leaving a total of 6,812,700: multi-allelic loci, minor allele frequency 180 

< 5%, Hardy-Weinberg violations (P < 1 x 10-5), genotype missing rate >5%, low imputation 181 

score (INFO < 0.3) and HLA locus (hg19/GRCh37 chr6:23477797-38448354). 182 

 183 

Quality control 184 

 185 

We applied standard exclusion criteria (Figure S1) to remove genotype-phenotype sex 186 

mismatches, aneuploidies, and outliers for missingness or heterozygosity as previously 187 

described36 leaving n=486,565 participants. To ensure data independence, closely related 188 

subjects were removed as described elsewhere36 leaving n=407,176 participants. Finally, 189 

‘non-white British’ participants defined using published methodology36 were removed to 190 

avoid confounding by population stratification providing a total sample size of n=377,076. 191 

 192 

Phenotypes 193 

 194 

UK Biobank measures of 30 serum biochemistry markers were available for approximately 195 

500k participants. Each measure was chosen based on being an established risk factor for 196 

disease, a clinical diagnostic measure or because it characterises a phenotype that is not 197 
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well assessed by other approaches as described in the UK Biobank documentation37. 198 

Quantification and quality control was performed as previously described37. Total physical 199 

activity was calculated by summing self-reported duration of walking, moderate and 200 

vigorous activity collected using the International Physical Activity Questionnaire as 201 

described38. For each analysis participants with missing data were removed. All continuous 202 

outcomes were SD normalised. 203 

 204 

Genome-wide association studies (GWAS) 205 

 206 

GWAS of biomarker variability were performed using our LAD regression-based Brown-207 

Forsythe test adjusted for age, sex, and the top ten genetic principal components in first and 208 

second regression models. We removed outlier biomarker values with a Z-score > 5SD from 209 

the mean to control type I error inflation as previously described13. Quality control was 210 

undertaken visually using Q-Q plots to check for a departure of P-value distribution from 211 

that expected under the null. Independent vQTLs were identified by clumping GWAS loci 212 

that passed the experiment-wise genome-wide evidence threshold P < 1.67  x 10-9 213 

(Bonferroni correction of standard GWAS threshold: p = 5 x 10-8 / 30) using the OpenGWAS 214 

API39 with default R2 threshold of 0.001 and 1000 genomes phase 3 European ancestry40. 215 

 216 

Gene interaction test 217 

 218 

Independent vQTLs (see above) were tested for interaction effects on additive and 219 

multiplicative scales using heteroscedasticity-consistent standard errors29 adjusted for age, 220 

sex, and top ten genetic principal components. To ensure effects were robust to phantom 221 
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effects41, we performed sensitivity analyses adjusting for fine-mapped main effects 222 

identified using SuSiE42 (Supplemental Material and Methods). Interactions surpassing 223 

genome-wide association significance (P < 5 x 10-8) on additive and multiplicative scales that 224 

did not strongly attenuate with adjustment for fine-mapped main effects were prioritised 225 

for subgroup analyses. GxG effects were identified through interaction testing with 226 

independent (R2 < 0.001) vQTLs excluding pairwise combinations of vQTLs within a 10Mb 227 

window as previously described13. GxE testing was performed using candidate modifiers: 228 

age, sex, body mass index, alcohol intake, smoking status, physical activity, daily sugar 229 

intake, and daily fat intake. 230 

 231 

Subgroup analyses 232 

 233 

Subgroup effects of top interaction effects were presented by estimating the SNP effect on 234 

the outcome stratified by modifier using heteroscedasticity-consistent standard errors29 235 

adjusted for age, sex and top ten genetic principal components. Modifiers were rounded 236 

genetic dosage values or prepared by dichotomisation as follows: below or above the 237 

median value for continuous variables (group [G] 1, below median; G2, median or greater), 238 

ever (G1) vs never (G2) smoker, alcohol intake once a week or more (G1) vs less than once a 239 

week on average (G2), males (G1) vs females (G2). Subgroup effects are presented along 240 

with the SNP-variance estimates adjusted for age, sex and top ten genetic principial 241 

components with and without adjustment for the interaction term (variance effects were 242 

not adjusted for sex when sex was the modifier). 243 

 244 
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Gene annotation 245 

 246 

Variance QTLs were annotated with the nearest gene using the closest function of 247 

bedtools43 (v2.3.0) and Ensembl v104 (GRCh37) protein-coding features which were filtered 248 

to retain HUGO44 valid identifiers. The following annotations were recoded based on 249 

expression QTL evidence45,46: rs4530622 SLC2A9, rs11244061 ABO, rs71633359 HSD17B13, 250 

rs28413939 TREH, rs281379 FUT2, rs635634 ABO, rs964184 APOA5. 251 

 252 

Results 253 

 254 

Simulated power and type I error to detect interaction effects by change in variance 255 

 256 

The power to detect a difference in trait variability due to an interaction effect was low and 257 

equivalent for both methods (Figure S2). Suppose a SNP has a main effect on a normally 258 

distributed outcome detectable with 80% power, then 10x the sample size needed to detect 259 

the main effect was required to detect the interaction with only 50% power assuming the 260 

interaction was half the size of the main effect. Positive skew and kurtosis reduced power. 261 

Both methods had equally well controlled type I error (Figure S3). 262 

 263 

Simulated variance effect estimate and confidence interval coverage 264 

 265 

Under a simulated linear effect of genotype on outcome variance both methods gave the 266 

correct effect estimate and 95% confidence interval coverage (Figure 1). However, when the 267 

difference in variance was a consequence of an interaction effect, the relationship between 268 
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the genotype and outcome variance was non-linear and dependent on the modifier. Under 269 

these conditions, the variance effect estimate produced using OSCA26,27 from the Brown-270 

Forsythe test P-value gave the incorrect effect size while LAD-BF produced the correct 271 

estimate albeit with slightly elevated coverage. 272 

 273 

Adjusting the LAD-BF test for an interaction effect through simulation 274 

 275 

We simulated an interaction effect and compared the LAD-BF test P-value distributions with 276 

and without adjusting for the simulated interaction (Figure S4). Including the interaction 277 

term in the first-stage regression model completely attenuated the variance test statistic. 278 

After identifying an interaction at a variance locus this approach could be applied to 279 

determine if additional strong interaction effects exist and could be used in a stepwise 280 

regression fashion until all interaction effects are identified. 281 

 282 

Runtime performance 283 

 284 

Increasing the number of CPU threads reduced the total runtime of both methods to 285 

process 1000 SNPs (Figure S5). For the C++ implementation of LAD-BF in varGWAS, the 286 

lowest average runtime was 13.6 second (95% CI 13.5, 13.7) using four threads of an Intel(R) 287 

Xeon(R) CPU E5-2680 v4 @ 2.40GHz. Under the same conditions, the original Brown-288 

Forsythe test implemented in OSCA was 1.78x faster (7.61 seconds [95% CI 7.60, 7.63]). 289 

 290 

GWAS of variance effects in UK Biobank 291 

 292 
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We identified 468 independent (R2 < 0.001) vQTLs influencing 24 biomarkers (Figure S6, 293 

Figure S7 & Table S1) using an experiment-wise P-value threshold of 1.67 x 10-9 (5 x 10-8 / 294 

30) and no variance effects for albumin, calcium, oestradiol, phosphate, rheumatoid factor, 295 

or total protein. Oestradiol and rheumatoid factor were measured on a subset of n=76,674 296 

and n=41,315 participants respectively and therefore were less well powered to detect 297 

effects. Of these vQTLs, 270 (57.7%) had suggestive evidence for a variance effect on the log 298 

scale (P < 5 x 10-5) and 453 (96.8%) had a mean effect (P < 5 x 10-8). The low concordance 299 

between natural and log scales and high concordance between mean and variance effects 300 

suggests the presence of mean-variance relationships which is a likely consequence of 301 

extreme non-normality for some of the trait distributions (Figure S8). 302 

 303 

Gene-environment interaction effects (GxE) 304 

 305 

We detected 139 additive and 104 multiplicative GxE effects (P < 5 x 10-8; Figure S9 & Figure 306 

S10). Adjusting the additive effects for fine-mapped main effects (Figure S11) led to a small 307 

increase in UGT1A8 rs2741047 x sex on direct bilirubin to 0.037 SD (95% CI 0.032, 0.042) 308 

from 0.028 SD (95% CI 0.023, 0.033) and minor attenuation of MAP3K4 rs1247295 x sex on 309 

lipoprotein a to -0.011 SD (95% CI -0.015, -0.007) from -0.016 SD (95% CI -0.021, -0.010). 310 

These findings could reflect the presence of large main effects in imperfect linkage 311 

disequilibrium with the index SNP which is known to inflate/deflate test statistics41.  312 

 313 

We prioritised 82 GxE effects with evidence on both scales (P < 5 x 10-8) to avoid spurious 314 

interactions dependent on scale (Table S2). Of these BMI (n=35), sex (n=27) and age (n=17) 315 

modified most effects and smoking status (n=2) and alcohol intake (n=1) fewer. We also 316 
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tested for interaction by physical activity, and sugar and fat intake but identified little 317 

evidence of interactions. The largest effects (Figure 2) were: PNPLA3 rs738409 x BMI on 318 

alanine aminotransferase (ALT; 0.08 SD [95% CI 0.08, 0.09]), SLC2A9 rs938555 x sex on urate 319 

(-0.08 SD [95% CI -0.09, -0.08]), APOE rs1065853 x sex on low-density lipoprotein (LDL; 0.06 320 

SD [95% CI 0.05, 0.07]), SHBG rs1799941 x sex on testosterone (0.06 SD [95% CI 0.06, 0.06]) 321 

and TM6SF2 rs58542926 x BMI on ALT (0.05 SD [95% CI 0.04, 0.06]). Adjusting the variance 322 

effect for the interaction term (Figure 2) led to attenuation of PNPLA3 rs738409 and 323 

TM6SF2 rs58542926 on ALT and SHBG rs1799941 on testosterone but strong variance 324 

effects on ALT remained at PNPLA3 rs738409 (LAD-BF P_adjust = 1.0 x 10-73) and TM6SF2 325 

rs58542926 (LAD-BF P_adjust = 1.84 x 10-8). There was no strong variance attenuation of 326 

APOE rs1065853 on LDL or SLC2A9 rs938555 on urate following adjustment for the 327 

interaction (Figure 2). 328 

 329 

Gene-gene interaction effects (GxG) 330 

 331 

We detected eight GxG effects on the additive scale (P < 5 x 10-8; Figure S12), six of which 332 

were also associated on the multiplicative scale (P < 5 x 10-8; Figure S13). There was no 333 

strong attenuation following adjustment for fine-mapped main effects (Figure S14) 334 

suggesting phantom epistasis41,47 was not a major source of bias. ZNF827 rs4835265 x 335 

NEDD4L rs4503880 was inversely associated with -0.04 SD (95% CI -0.05, -0.03) gamma 336 

glutamyltransferase (GGT), ABO rs635634 x FUT2 rs281379, ABO rs635634 x TREH 337 

rs12225548, and TREH rs12225548 x FUT2 rs281379 were associated with 0.08 SD (95% CI 338 

0.07, 0.09), 0.04 SD (95% CI 0.03, 0.05) and 0.02 SD (95% CI 0.02, 0.03) increase in alkaline 339 

phosphatase (ALP) respectively, HSD17B13 rs71633359 x PNPLA3 rs738409 and HSD17B13 340 
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rs71633359 x PNPLA3 rs3747207 were associated with -0.04 SD (95% CI -0.05, -0.03) and -341 

0.04 SD (95% CI -0.05, -0.03) decrease in ALT and aspartate aminotransferase (AST) 342 

respectively (Figure 3). Adjusting the variance effects for the interaction term had no strong 343 

impact on the variance estimate (Figure 3). 344 

 345 

Discussion 346 

 347 

Here we demonstrate the value of variance GWAS in identifying 468 independent vQTLs 348 

with evidence of interaction on 24 serum biochemistry phenotypes in UK Biobank and 349 

subsequently identify 82 GxE and six GxG scale independent effects. To facilitate this large-350 

scale analysis on ~337K UK Biobank participants we developed an efficient C++ 351 

implementation of a LAD regression-based Brown-Forsythe test22 (implemented in 352 

varGWAS) with functionality to reliably estimate variance effects and compared the test 353 

with the original non-parametric version (implemented in OSCA13,26) through a series of 354 

simulations. 355 

 356 

Although the power to detect genetic interaction effects using variance prioritisation was 357 

low, when applied to large sample sizes such as UK Biobank strong evidence for association 358 

can be identified as demonstrated in this study and by Wang et al
13. We found LAD-BF had 359 

several advantages over the original non-parametric test when applied to GWAS. First, LAD-360 

BF directly supports adjustment for covariates (although this could be achieved using the 361 

original test if applied to pre-adjusted phenotypes13). Second, LAD-BF can test effects of 362 

continuous genotypes which enables application to the expected genotype value (“dose”) 363 

from imputed SNP array data. Third, our model provides a variance effect estimate which is 364 
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valid when there is a SNP interaction effect, unlike the implementation of the original 365 

Brown-Forsythe test in OSCA which provides an incorrect variance effect estimate derived 366 

from the test P-value27. We also demonstrate through simulation that adjusting the variance 367 

effect for the interaction term causes attenuation which is useful to determine if other 368 

interactions exist and could potentially be applied using stepwise regression until all 369 

interaction effects are discovered, subject to sufficient power. However, there are some 370 

disadvantages. The runtime was 75% longer than the original test implemented in OSCA, 371 

although this is still fast enough to allow large-scale analyses. Second, the effect estimate 372 

(but not test statistic) is based on normality assumptions which may be violated in practice. 373 

 374 

The largest GxE effects replicate existing findings: PNPLA3 rs738409 x BMI on ALT levels48,49, 375 

SLC2A9 rs938555 x sex on urate50, APOE rs1065853 x sex on LDL51, SHBG rs1799941 x sex on 376 

testosterone52, and TM6SF2 rs58542926 x BMI on ALT48. Adjusting the variance effect for 377 

the interaction led to attenuation of PNPLA3 rs738409 and TM6SF2 rs58542926 on ALT and 378 

SHBG rs1799941 on testosterone, however strong evidence of variance effects remained for 379 

ALT at PNPLA3 rs738409 and TM6SF2 rs58542926 suggesting other interaction effects may 380 

exist at these loci. The variance effect of SHBG rs1799941 on testosterone was weak after 381 

adjusting for rs1799941 x sex suggesting no strong evidence of further interaction effects on 382 

testosterone at this locus, but the test may be underpowered to detect additional effects. 383 

 384 

We replicated previous GxG effects of ABO rs635634 x FUT2 rs281379 on ALP53,54 and 385 

HSD17B13 rs71633359 x PNPLA3 rs738409/rs3747207 on ALT and AST55,56 and find no 386 

strong evidence of ‘phantom epistasis’ 41,47 as a potential explanation. Additionally, we 387 

identified novel effects of TREH rs12225548 x FUT2 rs281379 and ABO rs635634 x TREH 388 
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rs12225548 on ALP and ZNF827 rs4835265 x NEDD4L rs4503880 on GGT. ABO blood group 389 

antigens and secretion status are thought to influence ALP clearance57,58.  TREH rs12225548 390 

has a strong main effect on ALP39,59,60 and interactions of these loci may be explained by 391 

interplay of ALP production and clearance mechanisms. ZNF827 and NEDD4L loci have 392 

previously been reported to influence GGT levels in independent populations but the 393 

mechanism is unclear61,62. 394 

 395 

None of the GxG loci variance effects strongly attenuated after adjusting for the interaction 396 

term. This could be a consequence of low power since the interaction effect likely explains a 397 

very small amount of the trait variance but could also indicate the presence of other 398 

interaction effects involving the same SNP not included in the variance model. Indeed, we 399 

found strong GxE evidence at some of these loci: ABO rs635634 x sex on ALP, HSD17B13 400 

rs71633359 x BMI and PNPLA3 rs738409/rs3747207 x BMI on ALT and AST. 401 

 402 

Evidence of gene-interaction effects could suggest the protein product also has an 403 

interaction effect. In which case interventions developed to target the protein will show 404 

differential effects on the indication and could have low or no efficacy in some subgroups63. 405 

Such evidence could be important to support developments in stratified medicine. 406 

Therefore, vQTL evidence may have a role in preclinical drug development to deprioritise 407 

targets given the possibility of target-outcome heterogeneous effects. Further research is 408 

needed to appraise the utility of vQTLs in the drug development pipeline as has been done 409 

for protein QTLs64.  410 

 411 
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However, there are other explanations for vQTLs that are not in terms of biology. First, loci 412 

that are weakly correlated with a SNP having a strong main effect can introduce a phantom 413 

vQTL65,66. In this situation variance is introduced through variability in LD between the 414 

artefactual vQTL and QTL. Second, vQTLs could signify fluctuation of a trait measurement 415 

within an individual over time10 and may originate from normal biological processes such as 416 

circadian rhythm. Third, we assume homogeneity of variance within each genotype group 417 

which could be violated by the mean-variance relationship and observed low concordance 418 

of vQTL effects on the log and natural scales are evidence for this. Additionally, our 419 

interactions could be explained by non-linear relationships between the exposure and 420 

outcome or scale artefacts67. We sought to reduce the latter by replicating effects on 421 

additive and multiplicative scales. 422 

 423 

Through this work we performed hypothesis-free analyses of genetic interaction effects on 424 

30 blood biomarkers in UK Biobank using variance prioritisation and found evidence for 88 425 

effects. Many of our top findings replicate previously reported associations, but we also 426 

report first evidence of TREH rs12225548 x FUT2 rs281379 and TREH rs12225548 x ABO 427 

rs635634 on ALP and ZNF827 rs4835265 x NEDD4L rs4503880 on GGT. Additionally, we 428 

show variance attenuation of PNPLA3 rs738409 and TM6SF2 rs58542926 on ALT and SHBG 429 

rs1799941 on testosterone after adjusting for the interaction indicating these effects were 430 

contributing to the variance association, but the ALT effects were still strong suggesting 431 

additional interactions may exist at these loci. These data could be used to discover possible 432 

subgroup effects for a given biomarker during preclinical drug development. To facilitate our 433 

analysis, we developed C++ variance GWAS software that implements a LAD-regression 434 

based Brown-Forsythe test, provide a convenient R-package based on this software and 435 
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introduce methodology to estimate the variance effects which can be applied to other 436 

studies. 437 

 438 
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Figure 1. Variance effect estimate accuracy and confidence interval coverage 677 

Variance effect estimate accuracy (A, B) and 95% confidence interval coverage (C, D) of 678 

simulated genotypes with linear effect on outcome variance (A, C) or interaction effect (B, 679 

D). LAD-BF, least-absolute deviation regression Brown-Forsythe. OSCA-BF, original Brown-680 

Forsythe test implemented in OSCA26 including effect estimate derived from the test P-681 

value27. CI, confidence interval.  682 
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Figure 2. Effect of top gene-environment interaction loci on trait mean and variance  683 

Per-allele effect of SNP stratified by modifier on outcome mean estimated with 684 

heteroscedastic-consistent standard errors29 and unstratified effect of SNP on variance 685 

estimated using LAD-BF (genotype 0 vs 1 and 0 vs 2) with or without adjustment for the 686 

interaction term. All estimates were adjusted for age, sex (except for rs1065853, rs1799941 687 

and rs938555 on variance as the modifier was sex) and top ten genetic principal 688 

components. SD, standard deviation. CI, confidence interval. ALT, alanine aminotransferase. 689 

LDL, low-density lipoprotein. BMI, body mass index. Low BMI, <= 26.7 kg/m2. High BMI, > 690 

26.7 kg/m2.  691 
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Figure 3. Effect of top gene-gene interaction loci on trait mean and variance 692 

Per allele effect of SNP stratified by modifier on outcome mean estimated with 693 

heteroscedastic-consistent standard errors29 and unstratified effect of SNP on variance 694 

estimated using LAD-BF (genotype 0 vs 1 and 0 vs 2) with or without adjustment for the 695 

interaction term. All estimates were adjusted for age, sex, and top ten genetic principal 696 

components. SD, standard deviation. CI, confidence interval. ALP, alkaline phosphatase. ALT, 697 

alanine aminotransferase. AST, aspartate aminotransferase. GGT, gamma 698 

glutamyltransferase.  699 
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Table 1. Simulation studies of the Brown-Forsythe test 700 
Figure Aim Conditions 

1 Determine variance effect 
estimate accuracy and confidence 
interval coverage 

Increasing interaction effect size. 

S2 Estimate power of variance tests 
to detect interaction effects using 
normal/non-normal outcomes 

Increasing interaction effect size. 
Normal, log-normal, and t-distribution 
residuals 

S3 Estimate type I error of variance 
tests with normal/non-normal 
outcomes 

Increasing SNP minor allele frequency. 
Normal, log-normal, t-distribution, and mixed-
normal residuals 

S4 Adjusting for interaction effect on 
variance effect estimate 

With/without adjustment for modifier and 
interaction term in first-stage model 

S5 Estimate model runtime 
performance 

Increasing number of CPU threads 

SNP, single-nucleotide polymorphism. Log, natural logarithm. CPU, central processing unit. 701 
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