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Abstract 
The Office for National Statistics COVID-19 Infection Survey (ONS-CIS) is the largest 
surveillance study of SARS-CoV-2 positivity in the community, and collected data on the 
United Kingdom (UK) epidemic from April 2020 until March 2023 before being paused. Here, 
we report on the epidemiological and evolutionary dynamics of SARS-CoV-2 determined by 
analysing the sequenced samples collected by the ONS-CIS during this period. We 
observed a series of sweeps or partial sweeps, with each sweeping lineage having a distinct 
growth advantage compared to their predecessors. The sweeps also generated an 
alternating pattern in which most samples had either S-gene target failure (SGTF) or non-
SGTF over time. Evolution was characterised by steadily increasing divergence and diversity 
within lineages, but with step increases in divergence associated with each sweeping major 
lineage. This led to a faster overall rate of evolution when measured at the between-lineage 
level compared to within lineages, and fluctuating levels of diversity. These observations 
highlight the value of viral sequencing integrated into community surveillance studies to 
monitor the viral epidemiology and evolution of SARS-CoV-2, and potentially other 
pathogens, particularly in the current phase of the pandemic with routine RT-PCR testing 
now ended in the community. 
 

Introduction 
A crucial component of the global response to COVID-19 has been the identification, 
tracking and characterisation of new SARS-CoV-2 lineages. As well as enabling researchers 
to identify patterns of spread, variants can be identified that might pose a particular risk. For 
instance, they may be able to transmit more easily, or evade immune responses. Prominent 
examples include the variants of concern (VOCs) Alpha, Beta, Gamma, Delta and Omicron 
(WHO 2023; UKHSA 2023), and individual mutations such as E484K, an immune escape 
mutation in the Spike protein (Harvey et al. 2021; Carabelli et al. 2023). As of April 2023, 
around 3 million SARS-CoV-2 sequences had been generated in the United Kingdom (UK) 
via the COG-UK Genomics Consortium (The COVID-19 Genomics UK (COG-UK) 
consortium 2020) and the four UK Public Health Agencies, with this substantial surveillance 
effort generating a snapshot of the leading edge of infection across the UK. 
  
Estimating the prevalence of SARS-CoV-2 lineages and/or mutations can, however, be 
subject to biases as a consequence of the sampling regime (Franceschi et al. 2021; 
Kraemer et al. 2019; Pouwels et al. 2021; Mohanan et al. 2021; Wu et al. 2020; Oude 
Munnink et al. 2021). Sampling has been heavily focussed on symptomatic infections, even 
though a high proportion of infections are asymptomatic or may not reach the criteria for 
testing (Sah et al. 2021). For example, in the early phase of the UK epidemic most testing 
was conducted among hospitalised patients with severe disease, with a later focus on 
symptomatic individuals. Where testing of asymptomatic individuals has been conducted, it 
has often been in the context of specific settings, such as returning travellers, schools, or as 
part of surge testing in geographical areas where VOCs have been identified (UKHSA 2021). 
Large-scale community surveillance studies, such as the Office for National Statistics Covid 
Infection Survey (ONS-CIS) (Pouwels et al. 2021), are thus valuable since sampling is not 
subject to these biases, they consist of a random, potentially more representative sample of 
the population, and, crucially, identify both symptomatic and asymptomatic infections. 
Moreover, community-based surveillance studies are not reliant on sequencing samples 
collected as part of national RT-PCR testing programmes and may therefore become 
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increasingly important as countries seek to enhance surveillance capabilities for SARS-CoV-
2 and other pathogens. 
 
The ONS-CIS is a UK household-based surveillance study, with households approached 
from address lists to ensure as representative a sample of the population as possible 
(Pouwels et al. 2021; Office for National Statistics 2021a). Here, we present an analysis of 
over 125,000 good quality consensus sequences from RT-PCR positive samples collected 
over the first three years of the survey with the aim of reconstructing the key epidemiological 
and evolutionary features of the UK epidemic. These data captured the sequential sweeps 
and partial sweeps of the B.1.177, B.1.1.7/Alpha, B.1.617.2/Delta, and Omicon (BA.1, BA.2, 
BA.4, BA.5) lineages, the BA.2 recombinant lineage XBB, and BA.2.75 (a sublineage of 
BA.2) and BQ.1 (a sublineage of BA.5). For each sweeping lineage, we calculated the 
growth rate advantage using a novel method based on Gaussian processes. This method 
has the benefit of providing smooth estimates for prevalence and growth rates at both the 
very low and sometimes zero case counts observed for some variants when they first 
emerge, and the very high counts once they are established. We also captured the curious 
alternation of sweeping lineages that exhibit RT-PCR S-gene target failure (SGTF) caused 
by the Spike DH69/V70 deletion, with those without the deletion, a pattern also observed in 
other countries such as South Africa (Tegally et al. 2022). 
 
Finally, we determined how these sweeps impacted measures of the genetic diversity and 
divergence of the virus, both at the within-lineage and between-lineage levels. Using only 
samples collected as part of the ONS-CIS, we observed a consistent pattern of low within-
lineage diversity on first emergence, followed by a steady increase. To capture measures of 
divergence in a computationally efficient way, we downsampled sequences using weighted 
random sampling, enabling us to generate a phylogeny in which the major lineages were as 
evenly distributed through time as possible. Using linear regression we compared the overall 
rate of divergence with those of the major lineages, with consistently much lower rates of 
evolution within than between lineages. 
 
Although sequences from the ONS-CIS represented about 4% of the total number of SARS-
CoV-2 sequences obtained in the UK during this period, and at times much less than 1%, we 
were able to reconstruct the key epidemiological and evolutionary aspects of the epidemic. 
Our observations highlight that representative sampling can capture key aspects of 
epidemics, and the important role that community-based genomic surveillance studies can 
have in the monitoring of infectious disease. Although the ONS-CIS is based in the UK, in 
which sequencing effort has been unprecedented, this is of particular importance in settings 
where routine testing is likely to be scaled back, and for countries exploring the best 
strategies for tracking SARS-CoV-2 as well as other respiratory pathogens in the future 
(Subissi et al. 2022; WHO 2022)  
 

Results 
Sequential replacement of lineages in the UK  
Throughout the ONS-CIS, which was launched in April 2020, a selection of the samples 
positive by RT-PCR have been sequenced (Figure S1), and from December 2020 onwards 
the aspiration was to sequence all samples with Ct<=30. Here we report on the sequenced 
samples with over 50% genome coverage collected between 26th April 2020 and 13th 
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March 2023. The Pango lineage (Rambaut, Holmes, et al. 2020) for all the samples was 
determined using Pangolin (O’Toole et al. 2021), and from 7 December 2020 onwards we 
provided publicly available weekly reports, giving the breakdown of sequenced samples 
(with >50% genome coverage) by lineage (Office for National Statistics 2021b).  
 
 
 

 
 
Figure 1. Lineage dynamics and genetic diversity through time. A. Proportion of swabs taken as 
part of the ONS-CIS that were positive with Ct <=30 (Figure S1), with bars coloured by the proportion 
of sequenced samples belonging to each major lineage. B. Number of Variant of Concern (VOC) 
sequenced samples from rarer lineages. C. Per day growth rate advantage of each of the major 
lineages compared to all other contemporary samples. BA.4 and BA.5 were considered together due 
to their concordant trajectories, and uncertainty is represented by 200 data bootstraps. The horizontal 
lines represent how long it would take the VOC prevalence to double (14 days, dashed; 7 days dotted; 
2 days dot-dash). D. The bold markers represent the proportion of sequenced samples that were of 
both the indicated lineage and had S-gene target failure (SGTF) during RT-PCR testing. The pale 
markers indicate those samples that were non-SGTF. E. Genetic diversity among all samples and 
among samples of the same major lineages. Lineage designations include all sub-lineages except 
where indicated, and all samples were grouped by the week in which they were collected, with the 
date giving the first day of the collection week (every third week labelled for clarity). 
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The proportion of samples that were RT-PCR positive waxed and waned during the UK 
epidemic (Figure 1A, S1). There was a small 2020 autumn peak dominated by B.1.177 and 
its sub-lineages, followed by a decline in cases due to the second national lockdown which 
lasted from 5th November to 2nd December 2020. Subsequent to this, the number of 
positives started to rise again. This rise is attributed to a relaxation of restrictions during the 
Christmas period and corresponded to a rapid rise in the number of B.1.1.7/Alpha infections. 
After the commencement of a further lockdown in England, Scotland and Northern Ireland in 
early January 2021, cases declined again, before another rapid increase in the number of 
sequenced samples that were dominated by B.1.617.2/Delta, with this increase 
corresponding to a phased reopening on the 19th May and 20th June 2021. Three larger 
peaks in infections were observed between December 2021 and August 2022, each 
associated with the sequential emergence of the major Omicron lineages (BA.1, BA.2, and 
BA.4 and BA.5). Two subsequent smaller waves were not associated with any one lineage, 
but were dominated by sublineages of BA.2 and BA.5, before a final wave in which XBB, a 
recombinant BA.2 lineage, gained the advantage. Notably these three final waves all had 
higher peaks than the earlier B.1.1.77, B.1.1.7/Alpha, and B.1.617.2/Delta waves. 
 
Sweeping lineages each had a substantial growth rate advantage over previously 
circulating lineages 
For each of the sweeping lineages, that is those that rose from low to high frequency, we 
calculated the relative growth advantage compared to the background of all other lineages 
that were circulating at the same time (Figure 1C). Because the ONS-CIS data was collected 
over periods during which the number of positive samples by lineage varied considerably 
depending on the phase of the epidemic curve, we developed a new method based on 
Gaussian processes. The code and details for this method are available at 
https://github.com/thomasallanhouse/covid19-lineages. Importantly, because we compare a 
specific lineage to all other contemporary lineages, its growth rate advantage will depend on 
the composition of the background viral population and is not static in time. Hence a lineage 
which initially enjoys a growth rate advantage will eventually transition to having a 
disadvantage, as subsequent variants emerge and sweep through the population. Declining 
growth rate advantages after initial high values have also been noted in previous reports 
(Kraemer et al. 2021; Volz et al. 2021; Davies, Abbott, et al. 2021; Jones et al. 2021; 
Vöhringer et al. 2021).  
 
In line with previous findings (Lemey et al. 2021; Hodcroft et al. 2021; Vöhringer et al. 2021; 
Sonabend et al. 2021; Tegally et al. 2022; Viana et al. 2021) we found that all of the 
sweeping lineages, including B.1.177, had a significant growth rate advantage compared to 
all other co-circulating SARS-CoV-2 lineages during emergence, with the maximum per day 
advantage observed for each major lineage ranging from around 5% (a 14 day doubling 
time) for B.1.177, BA.2.75/Omicron, and XBB, to around 10% (7 day doubling time) for 
B.1.1.7/Alpha, B.1.617.2/Delta, BA.2/Omicron, BA.4/5/Omicron, and BQ.1, and around 33% 
(2 day doubling time) for BA.1/Omicron (Figure 1C). 
 
Alternating SGTF and non-SGTF 
Curiously, the successive sweeps of distinct lineages observed in the UK, as also found in 
South Africa (Tegally et al. 2022; Viana et al. 2021), have been characterised by the 
alternation of lineages that exhibit RT-PCR S-gene target failure (SGTF) caused by the 
Spike DH69/V70 deletion, with those that do not have SGTF (Figure 1D, Figures S1). For all 
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sequenced samples with an assigned lineage, we classed those as having SGTF if, during 
RT-PCR testing, N and ORF1ab were successfully amplified but S was not, and non-SGTF 
samples as those where all three genes were amplified. Lineage was generally a good 
indicator of SGTF, with 98.84% (3416/3456) of B.1.1.7/Alpha, 99.82% (24511/24556) of 
BA.1/Omicron, 99.77% (3428/3464) of BA.4/Omicron, and 99.53% (27106/27234) of 
BA.5/Omicron, including BQ.1, samples having SGTF; all four of these lineages have the 
DH69/V70 deletion. Other lineages, which generally lack the deletion, typically did not have 
SGTF; 0.48% (7/1450) of B.1.177 samples had SGTF, 0.16% (29/17766) of B.1.617.2/Delta, 
and 0.53% (226/42938) of BA.2/Omicron, including BA.2.75, and XBB. As previously 
reported (Thomson et al. 2021), a clear exception was the B.1.258 lineage, of which around 
two-thirds of samples had both the DH69/V70 deletion and SGTF (48/71), and some 
B.1.617.2/Delta and BA.2 sequences also had the DH69/V70 deletion, and hence had SGTF 
(Figure S1).  
 
The independent emergence of DH69/70 on different lineages, including B.1.258, 
B.1.1.7/Alpha, and BA.1/Omicron, is a prominent example of the convergence that has been 
observed repeatedly during the evolution of SARS-CoV-2 (McCarthy et al. 2021). This 
pattern of alternating SGTF greatly facilitated the rapid quantification of the prevalence of 
different VOCs without the need for genome sequencing, enabling samples with high Ct to 
be included in epidemiological analyses, and avoiding delays associated with sequencing 
(Kidd et al. 2021; Walker et al. 2021; Volz et al. 2021; Davies, Jarvis, et al. 2021; Vogels et 
al. 2021; Tegally et al. 2022; Office for National Statistics 2021c); Intriguingly, the pattern of 
alternating SGTF and non-SGTF has continued until at least mid-March 2023, even though 
no new major lineages emerged, with BA.2 recombinant and sublineages that do not have 
SGTF (including XBB and BA.2.75) gradually outcompeting BA.5 and its sublineages 
(including BQ.1) which all have SGTF. As of mid-March 2023, XBB was the dominant 
lineage circulating in the UK. 
 
However, SGTF or non-SGTF has not always been a reliable indicator of the major lineage 
of a sample. This can be due to i) co-circulation of lineages with the same SGTF pattern 
such as B.1.358 and B.1.1.7/Alpha; BA.4 and BA.5; and BA.2.75 and XBB; ii) lineages with 
sub-lineages that have different SGTF patterns, such as B.1.258; and iii) a small proportion 
of samples being assigned the opposite to expected SGTF pattern - this will have a 
disproportionate impact when the prevalence of the lineage of interest is low whilst the 
prevalence of another lineage with the opposite SGTF pattern is high. This highlights the 
need for caution when using SGTF as a marker for lineage, particularly when prevalences 
are low, and the necessity of sequencing in obtaining a full understanding of the genetic 
landscape at any particular time. 
 
Diversity increases within lineages through time, but fluctuates when measured 
across all lineages  
With the exception of B.1.617.2/Delta, within-lineage diversity was generally low when each 
major lineage first appeared in the ONS-CIS, and gradually increased through time before 
replacement by a new variant (Figure 1E). This initial low diversity is a consequence of their 
relatively recent emergence before first detection in the ONS-CIS data. On the other hand, 
B.1.617.2/Delta had high initial diversity (Figure 1E), reflecting its repeated introduction from 
an already diverse source population in India (Public Health England 2021).  
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In contrast, when we consider overall genetic diversity, we see transient increases, peaking 
when two or more major lineages are at relatively high frequencies (Figure 1E), but then 
declining as single lineages dominate the population. This is unsurprising given the large 
number of mutations distinguishing the different major lineages, which will push up diversity 
when two or more lineages are relatively frequent. Nonetheless, it is striking that from the 
Autumn of 2020 to the Spring of 2023 we did not see a trend of increasing levels of global 
diversity despite nearly two and a half years of evolution during this time. The most 
sustained period of gradually increasing diversity was during the second half of 2022 as 
multiple sublineages of BA.2 and BA.5 co-circulated over a prolongued period of time, but 
this was then followed by a decline as the BA.2 recombinant lineage XBB began to 
dominate.   
 
Divergence increases slower within than among lineages 
Phylogenies can be difficult to generate for large alignments, although a fast approximate 
maximum likelihood method has been developed specifically for SARS-CoV-2 (Turakhia et 
al. 2021). These large phylogenies can also be subject to biases if lineages or epochs are 
unevenly sampled, and difficult to visualise. To overcome some of these issues, we 
subsampled 3000 high-coverage (>95%) consensus sequences from the ONS-CIS data 
using weighted random sampling, so that the VOCs, and the sweeping and partially 
sweeping lineages, were as similarly represented and as evenly distributed through time as 
possible. The sequential sweeps of the major lineages are readily observable on the 
resultant time-scaled phylogeny, with each of the major lineages representing a distinct 
clade or sub-clade (Figure 2, S2). The sampling methodology meant that lineages that were 
rarely sampled in the UK, such as B.1.351/Beta, B.1.525/Eta, P.1/Gamma, and 
BA.3/Omicron, were represented in the phylogeny. Apart from B.1.617.2/Delta, the major UK 
lineages have times of most recent common ancestor (tMRCAs) close to the time of first 
sampling in the ONS-CIS, indicating the recent emergence of these lineages when first 
sampled.  
 
As expected, divergence from the root of the phylogeny increased gradually through time, 
both within-lineages and across all lineages (Figure 2), demonstrating the presence of a 
strong molecular clock. The estimated overall mutation rate was 1.39x10-3 substitutions per 
site per year by simple linear regression. It has been noted previously that although 
divergence within the B.1.1.7/Alpha lineage increased at a similar rate to previously 
circulating lineages, it had accumulated a disproportionate number of lineage defining 
mutations at the time of emergence (Hill et al. 2022), and that this pattern is also observed 
for other VOC lineages (Tay et al. 2022; Neher 2022). We can readily see this pattern using 
the subsampled ONS-sequences, and we formally investigate it using a linear regression of 
root-to-tip divergence versus calendar time, with lineage used as an interaction term (Table 
S1). B.1.177, used as the reference category, evolved at an estimated 4.06x10-4 
substitutions per site per year, and there was no evidence that the rate of evolution differed 
for most other lineages (exceptions being BA.2.75 and BA.4, which were slightly faster). 
Substitution rates in the “Other” category, which represents a diverse collection of early 
sequences and minor lineages, and whose estimate could be seen as representing 
between-lineage rate, was much faster (1.29x10-3 subs/site/year). For this analysis, we split 
the BA.2 samples (excluding BA.2.75) into those collected prior to 12th September 2022 and 
those after. The later sampled lineages were contemporary to the BA.2.75 wave, and were 
members of the BA.2 sublineage BA.2.3.20, which harbours a large number of mutations 
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compared to its predecessors, and are observed at a time when all other BA.2 lineages had 
effectively gone extinct. 

 
Figure 2. Dated phylogeny and root-to-tip distance of ONS-CIS sequences. A maximum 
likelihood phylogeny of 3000 ONS sequences with over 95% genome coverage was generated using 
IQ-TREE (Figure S2). The samples were chosen using a weighted random sampling, ensuring VOCs 
and other major lineages were as evenly distributed through time as possible Top. Root to tip distance 
for samples from the maximum likelihood phylogeny. BA.2 sequences (excluding BA.2.75) collected 
before and after 12th September 2022 were considered separately; the later sequences are all from 
the BA.2.3.20 lineage or its descendents. Bottom. Time tree generated from the maximum likelihood 
phylogeny using TreeTime (Sagulenko, Puller, and Neher 2018).   
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The almost one-to-one concordance that we see between the emergence of lineages 
divergent compared to their predecessors, their growth rate advantage, and the resulting 
epidemic waves provides a clear narrative of epidemiological dynamics driven by saltational 
evolutionary events. Since new VOCs and other major lineages are characterised by 
nonsynonymous mutations (Neher 2022), it has been hypothesised that they arose during 
long-term chronic infections with the virus subject to strong immune selection (Rambaut, 
Loman, et al. 2020; Ghafari et al. 2023; Markov et al. 2023).  

 
Discussion 
Surveillance studies are valuable tools for tracking the emergence and spread of an 
infectious disease. Using sequenced samples collected as part of the ONS-CIS, we have 
demonstrated the utility of large-scale surveillance studies to identify key epidemiological 
and evolutionary features of the UK epidemic. Since participating households are chosen to 
be representative of the UK population, and enrolled individuals are periodically tested for 
SARS-CoV-2 infection regardless of symptoms, the ONS-CIS gives a picture of SARS-CoV-
2 prevalence in the UK that is not subject to the biases arising from focussing on 
symptomatic individuals or other groups (Franceschi et al. 2021; Kraemer et al. 2019; 
Pouwels et al. 2021).  
 
The sequential sweeps of different major lineages in the UK observed during the first three 
years of the UK epidemic resulted in a pattern of relatively steady within-lineage evolution 
and gradual increases in within-lineage diversity, followed by step-increases in the number 
of substitutions as each new major lineage emerged. This in turn produced faster estimates 
of overall rates of evolution when measured across all lineages, and fluctuating levels of 
genetic diversity. Whether this pattern will be an ongoing feature of SARS-CoV-2 evolution 
remains to be seen. However, it is noticeable that even though more recent major lineages 
have been descendants of previously circulating lineages (BA.2.75 and BA.2.3.20 are both 
descendents of BA.2, and BQ.1 is descended from BA.5), or recombinants, the large 
number of mutations these lineages have acquired compared to their predecessors is 
evident. If the hypothesis that these major lineages arose or partially arose from chronically-
infected individuals is correct (Hill et al. 2022; Ghafari et al. 2023), it will be difficult to predict 
what the next sweeping lineage will look like, as it could potentially be a descendant of 
Omicron or of one of the earlier circulating lineages, including the more pathogenic 
B.1.617.2/Delta. This again emphasises the need for effective genomic surveillance at a 
global scale. 
 
A key observation from our study is that the growth rate advantage for a sweeping lineage 
will not be static in time. Instead, the relative growth rate of a variant will be determined by a 
number of factors, including its intrinsic transmissibility and the other viral lineages 
circulating at the time, but also immune escape and levels of population immunity to all 
extant variants (Markov et al. 2023). As a result, growth rate advantages may differ by both 
regions and calendar time, and there should be no a priori expectation that variants that 
have previously disappeared due to competition could not re-emerge, potentially seeded 
from chronically infected individuals, once the immunological background has changed.  
 
It is tempting to argue that the alternating high prevalences of non-SGTF (B.1.177, 
B.617.2/Delta, BA.2) and SGTF lineages (B.1.1.7/Alpha, BA.1, BA.4/5), caused by the 
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absence and presence of the DH69/V70 deletion, is a consequence of the changes in the 
immunological background. DH60/V70 causes conformational changes in the NTD loop and 
this in turn may compensate for, or have other epistatic interactions with, immune escape 
mutations (Meng et al. 2021). The gradual increase in the proportion of BA.2 sequences that 
had DH60/V70 when BA.2 as a whole was in decline, and when BA.4 and BA.5 were 
beginning to sweep through the population, supports this idea, as does the resurgence of 
non-SGTF BA.2 recombinant and sub-lineages in the UK population towards the end of 
2022, coinciding with a fall in BA.5 lineages. However, without a clear mechanism causing 
the switching, this remains a hypothesis only, and it is hard to predict whether the pattern will 
continue into the future. 
 
A crucial drawback to genomic surveillance is the delay between sample collection and 
subsequent sequencing (in the ONS-CIS this was between two and three weeks) and the 
need for high viral load samples to produce adequate sequence data. This in turn could 
impact the success of any interventions. The earliest signals that both B.1.1.7/Alpha and 
BA.1/Omicron (Viana et al. 2021) had a growth rate advantage were serendipitously inferred 
from the increasing incidence of SGTF during RT-PCR testing, and conversely increasing 
non-SGTF was observed when B.1.617/Delta and BA.2 were emerging. However, the 
simultaneous rise in BA.4 and BA.5, both with SGTF, required sequencing to distinguish 
between them, and similarly the BA.2 recombinant and sublineages that subsequently 
overtook BA.4 and BA.5 cannot be distinguished in this way. The introduction of qPCR-
based genotyping for specific lineages into diagnostic pipelines has the potential to speed-up 
detection of known variants (Vogels et al. 2021), but the lead time required to manufacture 
them means they cannot be relied upon to characterise emerging variants fast enough to 
contain them. Moreover, substantial genome sequencing efforts will always be required to 
detect variants that have not previously been identified as of concern, to monitor the ongoing 
specificity of rapid genotyping in the face of ongoing evolution, and to better characterise the 
evolution and spread of the virus.  
 
Although only a fraction of the COG-UK sequences were comprised of samples collected as 
part of the ONS-CIS, we were able to use ONS-CIS sequenced samples to monitor the 
emergence, spread and evolution of the major lineages and sublineages sweeping through 
the UK population. Moving forwards, the implementation of genomic surveillance globally 
should be considered a key development goal, enabling the early detection of worrisome 
and/or rapidly growing lineages wherever they emerge. Whilst community surveillence at the 
scale of the ONS-CIS is unlikely to be feasible in most regions of the world, the survey is an 
important benchmark, and provides data and lessons to be learnt for when designing 
surveillance studies in other countries. Incorporating the detection and sequencing of other 
pathogens into the same community surveillance frameworks will only act to enhance the 
positive public health and scientific outcomes from these studies whilst maximising value for 
money.  
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Methods 
ONS COVID-19 Infection Survey 
The ONS-CIS is a UK household-based surveillance study whose participant households are 
chosen to provide a representative sample of the population. For a full description of the 
sampling design see (Pouwels et al. 2021), but in brief, swabs were taken from individuals 
aged two years and older, living in private households, from 26th April 2020 to the 13th 
March 2023. These households were selected randomly from address lists and previous 
ONS surveys to provide a representative sample of the population. Participants could 
provide consent for optional follow-up sampling weekly for the first five weeks, and monthly 
thereafter.  
 
This work contains statistical data from ONS which is Crown Copyright. The use of the ONS 
statistical data in this work does not imply the endorsement of the ONS in relation to the 
interpretation or analysis of the statistical data. This work uses research datasets which may 
not exactly reproduce National Statistics aggregates. 
 
Sequencing 
A selection of RT-PCR samples were sequenced each week, with some additional 
retrospective sequencing of stored samples. From December 2020 onwards, the ambition 
was to sequence all positive samples with Ct<=30. Most samples were sequenced on 
Illumina Novaseq, but with a small number using Oxford Nanopore GridION or MINION. One 
of two protocols were used: either the ARTIC amplicon protocol (COG-UK 2020) with 
consensus FASTA sequence files generated using the ARTIC Nextflow processing pipeline 
(COG-UK 2020), or veSeq, an RNASeq protocol based on a quantitative targeted 
enrichment strategy (Lythgoe et al. 2021; Bonsall et al. 2020) with consensus sequences 
produced using shiver (Wymant et al. 2018). For veSeq we have previously shown that viral 
load is positively correlated with the number of mapped reads, and that Ct is negatively 
correlated with the Log10 number of mapped reads (Lythgoe et al. 2021; Golubchik et al. 
2021; Fryer et al. 2022). Where there was duplicate sequencing, either of the same sample 
or of multiple samples taken from an individual at the same time, only the sequence with the 
highest coverage was kept. The proportion of swabs RT-PCR positive, RT-PCR positive and 
with Ct<=30, and RT-PCR positive, Ct<=30 and sequenced with >50% genome coverage is 
shown in Figure S1.  
 
Lineage calling 
Lineages using the Pango nomenclature (Rambaut, Holmes, et al. 2020) were determined 
using the Pangolin software (O’Toole et al. 2021). Reported major lineages include any sub-
lineages, with the exception of BA.2, which did not include BA.2.75 and sublineages of 
BA.2.75, and BA.5 which did not BQ.1 and sublineages of BQ.1. When comparing SGTF 
with lineage, we excluded samples where the lineage resolved to A, B, B.1 or B.1.1 since 
sequences can be given these Pango lineages if an insufficient number of loci have 
coverage at lineage defining sites. The COG-UK ID, collection dates, Pango lineage, major 
lineage for all sequences included in this study can be downloaded from 
https://github.com/katrinalythgoe/ONSLineages. All sequences have been made publicly 
available as part of the COG-UK consortium. The sequences have also been deposited in 
the European Nucleotide Archive (ENA) at EMBL-EBI as part of the COG-UK consortium, 
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which has accession number PRJEB37886 
(https://www.ebi.ac.uk/ena/browser/view/PRJEB37886).  
 
Lineage growth rates and doubling times 
For each of the major lineages, sublineages and recombinant lineages observed at high 
frequency, B.1.177, B.1.1.7/Alpha, B.1.617.2/Delta, the Omicron variants BA.1, BA.2, and 
BA.4 and BA.5, BA.2.75, BQ.1 and XBB, we calculated their relative growth rate advantage 
compared to all other lineages. BA.4 and BA.5 were considered together because of their 
concordant dynamics. We used a combination of Gaussian process regression and 
classification (Rasmussen and Williams 2005) together with bootstrapping as detailed fully at 
https://github.com/thomasallanhouse/covid19-lineages. 
 . 
Nucleotide genetic diversity 
Nucleotide genetic diversity was calculated using the � statistic, since this has been shown 
to be the least sensitive to differences in the number of sequences used in the analysis 
(Zhao and Illingworth 2019). Mean pairwise genetic diversity across the genome is given by: 
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Where � represents the length of the genome, and ��  the pairwise genetic diversity at locus 
�. This is calculated as: 
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Where �  represents the number of alleles � observed at that locus, and 	 the number of 
samples with a consensus base call. Within-lineage genetic diversity was similarly calculated 
as above, but limiting only to the major lineages. 
 
Phylogenetics 
For the phylogenetic analysis, 3000 consensus sequences with at least 95% coverage were 
chosen using weighted random sampling, with each sample of major lineage i collected in 
week j given a weight 1/xij, where xij is the number of sequences of major lineage i collected 
during week j. The major lineages included B.1.177, all of the identified VOCs (with BA.1 - 
BA.5 each given their own weighting), BA.2.75, BQ.1 and XBB. All other well-resolved 
lineages were placed in the category ‘Other’. The sub-sampled sequences are indicated in 
the table deposited at https://github.com/katrinalythgoe/ONSLineages.  All were pairwise 
aligned to the Wuhan-Hu-1 reference strain using MAFFT (Katoh and Standley 2013) and 
then combined to generate a single alignment of 29903 base pairs. 
 
The alignment of 3000 sequences, combined with Wuhan-Hu-1, were used for phylogenetic 
reconstruction using IQ-TREE version 1.6.12 (Kozlov et al. 2019). The substitution model 
used was GTR+F+R4 with four FreeRate rate categories, and the resulting tree was rooted 
using Wuhan-1 and then fit to the calendar using TreeTime version 0.8.2 (Sagulenko, Puller, 
and Neher 2018). Tips representing the reference strain and sequences judged by TreeTime 
as outliers on the root-to-tip divergence plot were pruned from the phylogeny and excluded 
from further analysis. Visualisation used ggtree (Yu, Smith, and Tsan-Yuk 2017). 
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A linear regression analysis of root-to-tip divergence as a function of time since 1 January 
2020 (in decimal years) and lineage was conducted. B.1.177 was used as the baseline 
category for lineage (Table S1). This included an interaction term for the two dependent 
variables. For this analysis, the BA.2 lineage was split into two (one for sequences sampled 
before the 12th September 2022 and one for those after) and any lineages with less than ten 
examples amongst the 3000 were combined with the “Other” category. 
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Figure S1. Number and proportion of samples sequenced, lineage dynamics, and patterns of 
S-gene target failure (SGTF). A. Proportion of swabs RT-PCR positive; RT-PCR positive and with 
Ct<=30; RT-PCR positive, Ct<=30, and sequenced with >50% genome coverage. B. Number of 
sequenced samples from the ONS-CIS coloured by major lineage and grouped by collection week. C.  
Proportion of sequenced samples of each major lineage with samples grouped by collection week. D. 
The proportion of samples belonging to each of the lineages compared to all other contemporary 
samples on each day of sampling, with uncertainty represented by 200 data bootstraps. For this 
analysis, BA.4 and BA.5 were considered together (dark brown) due to their concordant dynamics. E. 
Proportion of sequenced samples with RT-PCR SGTF. F. Proportion of samples, for the each of the 
major lineages, that had SGTF. Every third week is labelled for clarity. 
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Figure S2. Maximum likelihood phylogeny of ONS-CIS sequences. A maximum likelihood 
phylogeny of 3000 ONS sequences with over 95% genome coverage was generated using IQ-TREE. 
The samples were chosen using weighted random sampling, ensuring VOCs and other major 
lineages were as evenly distributed through time as possible.  
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Table S1: Linear regression of root-to-tip divergence as a function of time since 1 January 
2020 (in decimal years) and lineage  

Time since NYD (New Year’s Day, 1 January) 2020 gives the substitution rate for the 
B.1.177 lineage (substitutions per site per year), and the intercept gives where the 
regression line crosses the y-intercept. The lineage estimate gives the addition to the 
B.1.177 intercept for subsequence lineages, and the interaction estimate gives the addition 
to the substitution rate. 
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