Lineage replacement and evolution captured by three years of the United Kingdom Covid Infection Survey

Katrina Lythgoe^{*+1,2,15}, Tanya Golubchik^{*1,16}, Matthew Hall¹, Thomas House³, Roberto Cahuantzi³, George MacIntyre-Cockett^{1,4}, Helen Fryer¹, Laura Thomson¹, Anel Nurtay¹, Mahan Ghafani¹, David Buck⁴, Angie Green⁴, Amy Trebes⁴, Paolo Piazza⁴, Lorne J Lonie⁴, Ruth Studley⁵, Emma Rourke⁵, Darren Smith⁶, Matthew Bashton⁶, Andrew Nelson⁶, Matthew Crown⁶, Clare McCann⁷, Gregory R Young⁶, Rui Andre Nunes dos Santos⁷, Zack Richards⁷, Adnan Tariq⁷, Wellcome Sanger Institute COVID-19 Surveillance Team^{**}, COVID-19 Infection Survey Group, The COVID-19 Genomics UK (COG-UK) Consortium^{++,8}, Christophe Fraser^{1,4,9,15}, Ian Diamond⁵, Jeff Barrett⁹, Ann Sarah Walker^{10,11,12,13}, David Bonsall^{1,4,14}

*Equal contribution

⁺Corresponding author: <u>katrina.lythgoe@bdi.ox.ac.uk</u>

¹Big Data Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK.

²Department of Biology, University of Oxford, Oxford OX1 3SZ, UK

³Department of Mathematics, University of Manchester, Manchester, M13 9PL, UK

⁴Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Biomedical Research Centre, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK.

⁵Office for National Statistics, Newport, UK

⁶The Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK

⁷Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University,

Newcastle upon Tyne, NE1 8ST, UK

⁸https://www.cogconsortium.uk

⁹Wellcome Sanger Institute, Cambridge CB10 1SA, UK

¹⁰Nuffield Department of Medicine, University of Oxford, Oxford, UK

¹¹The National Institute for Health Research Health Protection Research Unit in Healthcare

Associated Infections and Antimicrobial Resistance at the University of Oxford, Oxford, UK.

¹²The National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford,Oxford, UK

¹³MRC Clinical Trials Unit at UCL, UCL, London, UK

¹⁴Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK

¹⁵Pandemic Sciences Institute, University of Oxford, Oxford, UK

¹⁶University of Sydney, Sydney, Australia

^{The} full list of names is available at https://www.sanger.ac.uk/project/wellcome-sanger-institutecovid-19-surveillance-team/

⁺⁺The full list of names and affiliations of COG-UK members is provided in the appendix

Abstract

The Office for National Statistics COVID-19 Infection Survey (ONS-CIS) is the largest surveillance study of SARS-CoV-2 positivity in the community, and collected data on the United Kingdom (UK) epidemic from April 2020 until March 2023 before being paused. Here, we report on the epidemiological and evolutionary dynamics of SARS-CoV-2 determined by analysing the sequenced samples collected by the ONS-CIS during this period. We observed a series of sweeps or partial sweeps, with each sweeping lineage having a distinct growth advantage compared to their predecessors. The sweeps also generated an alternating pattern in which most samples had either S-gene target failure (SGTF) or non-SGTF over time. Evolution was characterised by steadily increasing divergence and diversity within lineages, but with step increases in divergence associated with each sweeping major lineage. This led to a faster overall rate of evolution when measured at the between-lineage level compared to within lineages, and fluctuating levels of diversity. These observations highlight the value of viral sequencing integrated into community surveillance studies to monitor the viral epidemiology and evolution of SARS-CoV-2, and potentially other pathogens, particularly in the current phase of the pandemic with routine RT-PCR testing now ended in the community.

Introduction

A crucial component of the global response to COVID-19 has been the identification, tracking and characterisation of new SARS-CoV-2 lineages. As well as enabling researchers to identify patterns of spread, variants can be identified that might pose a particular risk. For instance, they may be able to transmit more easily, or evade immune responses. Prominent examples include the variants of concern (VOCs) Alpha, Beta, Gamma, Delta and Omicron (WHO 2023; UKHSA 2023), and individual mutations such as E484K, an immune escape mutation in the Spike protein (Harvey et al. 2021; Carabelli et al. 2023). As of April 2023, around 3 million SARS-CoV-2 sequences had been generated in the United Kingdom (UK) via the COG-UK Genomics Consortium (The COVID-19 Genomics UK (COG-UK) consortium 2020) and the four UK Public Health Agencies, with this substantial surveillance effort generating a snapshot of the leading edge of infection across the UK.

Estimating the prevalence of SARS-CoV-2 lineages and/or mutations can, however, be subject to biases as a consequence of the sampling regime (Franceschi et al. 2021; Kraemer et al. 2019; Pouwels et al. 2021; Mohanan et al. 2021; Wu et al. 2020; Oude Munnink et al. 2021). Sampling has been heavily focussed on symptomatic infections, even though a high proportion of infections are asymptomatic or may not reach the criteria for testing (Sah et al. 2021). For example, in the early phase of the UK epidemic most testing was conducted among hospitalised patients with severe disease, with a later focus on symptomatic individuals. Where testing of asymptomatic individuals has been conducted, it has often been in the context of specific settings, such as returning travellers, schools, or as part of surge testing in geographical areas where VOCs have been identified (UKHSA 2021). Large-scale community surveillance studies, such as the Office for National Statistics Covid Infection Survey (ONS-CIS) (Pouwels et al. 2021), are thus valuable since sampling is not subject to these biases, they consist of a random, potentially more representative sample of the population, and, crucially, identify both symptomatic and asymptomatic infections. Moreover, community-based surveillance studies are not reliant on sequencing samples collected as part of national RT-PCR testing programmes and may therefore become

increasingly important as countries seek to enhance surveillance capabilities for SARS-CoV-2 and other pathogens.

The ONS-CIS is a UK household-based surveillance study, with households approached from address lists to ensure as representative a sample of the population as possible (Pouwels et al. 2021; Office for National Statistics 2021a). Here, we present an analysis of over 125,000 good quality consensus sequences from RT-PCR positive samples collected over the first three years of the survey with the aim of reconstructing the key epidemiological and evolutionary features of the UK epidemic. These data captured the sequential sweeps and partial sweeps of the B.1.177, B.1.1.7/Alpha, B.1.617.2/Delta, and Omicon (BA.1, BA.2, BA.4, BA.5) lineages, the BA.2 recombinant lineage XBB, and BA.2.75 (a sublineage of BA.2) and BQ.1 (a sublineage of BA.5). For each sweeping lineage, we calculated the growth rate advantage using a novel method based on Gaussian processes. This method has the benefit of providing smooth estimates for prevalence and growth rates at both the very low and sometimes zero case counts observed for some variants when they first emerge, and the very high counts once they are established. We also captured the curious alternation of sweeping lineages that exhibit RT-PCR S-gene target failure (SGTF) caused by the Spike DH69/V70 deletion, with those without the deletion, a pattern also observed in other countries such as South Africa (Tegally et al. 2022).

Finally, we determined how these sweeps impacted measures of the genetic diversity and divergence of the virus, both at the within-lineage and between-lineage levels. Using only samples collected as part of the ONS-CIS, we observed a consistent pattern of low within-lineage diversity on first emergence, followed by a steady increase. To capture measures of divergence in a computationally efficient way, we downsampled sequences using weighted random sampling, enabling us to generate a phylogeny in which the major lineages were as evenly distributed through time as possible. Using linear regression we compared the overall rate of divergence with those of the major lineages, with consistently much lower rates of evolution within than between lineages.

Although sequences from the ONS-CIS represented about 4% of the total number of SARS-CoV-2 sequences obtained in the UK during this period, and at times much less than 1%, we were able to reconstruct the key epidemiological and evolutionary aspects of the epidemic. Our observations highlight that representative sampling can capture key aspects of epidemics, and the important role that community-based genomic surveillance studies can have in the monitoring of infectious disease. Although the ONS-CIS is based in the UK, in which sequencing effort has been unprecedented, this is of particular importance in settings where routine testing is likely to be scaled back, and for countries exploring the best strategies for tracking SARS-CoV-2 as well as other respiratory pathogens in the future (Subissi et al. 2022; WHO 2022)

Results

Sequential replacement of lineages in the UK

Throughout the ONS-CIS, which was launched in April 2020, a selection of the samples positive by RT-PCR have been sequenced (Figure S1), and from December 2020 onwards the aspiration was to sequence all samples with Ct<=30. Here we report on the sequenced samples with over 50% genome coverage collected between 26th April 2020 and 13th

March 2023. The Pango lineage (Rambaut, Holmes, et al. 2020) for all the samples was determined using Pangolin (O'Toole et al. 2021), and from 7 December 2020 onwards we provided publicly available weekly reports, giving the breakdown of sequenced samples (with >50% genome coverage) by lineage (Office for National Statistics 2021b).

The proportion of samples that were RT-PCR positive waxed and waned during the UK epidemic (Figure 1A, S1). There was a small 2020 autumn peak dominated by B.1.177 and its sub-lineages, followed by a decline in cases due to the second national lockdown which lasted from 5th November to 2nd December 2020. Subsequent to this, the number of positives started to rise again. This rise is attributed to a relaxation of restrictions during the Christmas period and corresponded to a rapid rise in the number of B.1.1.7/Alpha infections. After the commencement of a further lockdown in England, Scotland and Northern Ireland in early January 2021, cases declined again, before another rapid increase in the number of sequenced samples that were dominated by B.1.617.2/Delta, with this increase corresponding to a phased reopening on the 19th May and 20th June 2021. Three larger peaks in infections were observed between December 2021 and August 2022, each associated with the sequential emergence of the major Omicron lineages (BA.1, BA.2, and BA.4 and BA.5). Two subsequent smaller waves were not associated with any one lineage, but were dominated by sublineages of BA.2 and BA.5, before a final wave in which XBB, a recombinant BA.2 lineage, gained the advantage. Notably these three final waves all had higher peaks than the earlier B.1.1.77, B.1.1.7/Alpha, and B.1.617.2/Delta waves.

Sweeping lineages each had a substantial growth rate advantage over previously circulating lineages

For each of the sweeping lineages, that is those that rose from low to high frequency, we calculated the relative growth advantage compared to the background of all other lineages that were circulating at the same time (Figure 1C). Because the ONS-CIS data was collected over periods during which the number of positive samples by lineage varied considerably depending on the phase of the epidemic curve, we developed a new method based on Gaussian processes. The code and details for this method are available at https://github.com/thomasallanhouse/covid19-lineages. Importantly, because we compare a specific lineage to all other contemporary lineages, its growth rate advantage will depend on the composition of the background viral population and is not static in time. Hence a lineage which initially enjoys a growth rate advantage will eventually transition to having a disadvantage, as subsequent variants emerge and sweep through the population. Declining growth rate advantages after initial high values have also been noted in previous reports (Kraemer et al. 2021; Volz et al. 2021; Davies, Abbott, et al. 2021; Jones et al. 2021; Vöhringer et al. 2021).

In line with previous findings (Lemey et al. 2021; Hodcroft et al. 2021; Vöhringer et al. 2021; Sonabend et al. 2021; Tegally et al. 2022; Viana et al. 2021) we found that all of the sweeping lineages, including B.1.177, had a significant growth rate advantage compared to all other co-circulating SARS-CoV-2 lineages during emergence, with the maximum per day advantage observed for each major lineage ranging from around 5% (a 14 day doubling time) for B.1.177, BA.2.75/Omicron, and XBB, to around 10% (7 day doubling time) for B.1.1.7/Alpha, B.1.617.2/Delta, BA.2/Omicron, BA.4/5/Omicron, and BQ.1, and around 33% (2 day doubling time) for BA.1/Omicron (Figure 1C).

Alternating SGTF and non-SGTF

Curiously, the successive sweeps of distinct lineages observed in the UK, as also found in South Africa (Tegally et al. 2022; Viana et al. 2021), have been characterised by the alternation of lineages that exhibit RT-PCR S-gene target failure (SGTF) caused by the Spike DH69/V70 deletion, with those that do not have SGTF (Figure 1D, Figures S1). For all

5

sequenced samples with an assigned lineage, we classed those as having SGTF if, during RT-PCR testing, N and ORF1ab were successfully amplified but S was not, and non-SGTF samples as those where all three genes were amplified. Lineage was generally a good indicator of SGTF, with 98.84% (3416/3456) of B.1.1.7/Alpha, 99.82% (24511/24556) of BA.1/Omicron, 99.77% (3428/3464) of BA.4/Omicron, and 99.53% (27106/27234) of BA.5/Omicron, including BQ.1, samples having SGTF; all four of these lineages have the DH69/V70 deletion. Other lineages, which generally lack the deletion, typically did not have SGTF; 0.48% (7/1450) of B.1.177 samples had SGTF, 0.16% (29/17766) of B.1.617.2/Delta, and 0.53% (226/42938) of BA.2/Omicron, including BA.2.75, and XBB. As previously reported (Thomson et al. 2021), a clear exception was the B.1.258 lineage, of which around two-thirds of samples had both the DH69/V70 deletion and SGTF (48/71), and some B.1.617.2/Delta and BA.2 sequences also had the DH69/V70 deletion, and hence had SGTF (Figure S1).

The independent emergence of DH69/70 on different lineages, including B.1.258, B.1.1.7/Alpha, and BA.1/Omicron, is a prominent example of the convergence that has been observed repeatedly during the evolution of SARS-CoV-2 (McCarthy et al. 2021). This pattern of alternating SGTF greatly facilitated the rapid quantification of the prevalence of different VOCs without the need for genome sequencing, enabling samples with high Ct to be included in epidemiological analyses, and avoiding delays associated with sequencing (Kidd et al. 2021; Walker et al. 2021; Volz et al. 2021; Davies, Jarvis, et al. 2021; Vogels et al. 2021; Tegally et al. 2022; Office for National Statistics 2021c); Intriguingly, the pattern of alternating SGTF and non-SGTF has continued until at least mid-March 2023, even though no new major lineages emerged, with BA.2 recombinant and sublineages that do not have SGTF (including XBB and BA.2.75) gradually outcompeting BA.5 and its sublineages (including BQ.1) which all have SGTF. As of mid-March 2023, XBB was the dominant lineage circulating in the UK.

However, SGTF or non-SGTF has not always been a reliable indicator of the major lineage of a sample. This can be due to i) co-circulation of lineages with the same SGTF pattern such as B.1.358 and B.1.1.7/Alpha; BA.4 and BA.5; and BA.2.75 and XBB; ii) lineages with sub-lineages that have different SGTF patterns, such as B.1.258; and iii) a small proportion of samples being assigned the opposite to expected SGTF pattern - this will have a disproportionate impact when the prevalence of the lineage of interest is low whilst the prevalence of another lineage with the opposite SGTF pattern is high. This highlights the need for caution when using SGTF as a marker for lineage, particularly when prevalences are low, and the necessity of sequencing in obtaining a full understanding of the genetic landscape at any particular time.

Diversity increases within lineages through time, but fluctuates when measured across all lineages

With the exception of B.1.617.2/Delta, within-lineage diversity was generally low when each major lineage first appeared in the ONS-CIS, and gradually increased through time before replacement by a new variant (Figure 1E). This initial low diversity is a consequence of their relatively recent emergence before first detection in the ONS-CIS data. On the other hand, B.1.617.2/Delta had high initial diversity (Figure 1E), reflecting its repeated introduction from an already diverse source population in India (Public Health England 2021).

In contrast, when we consider overall genetic diversity, we see transient increases, peaking when two or more major lineages are at relatively high frequencies (Figure 1E), but then declining as single lineages dominate the population. This is unsurprising given the large number of mutations distinguishing the different major lineages, which will push up diversity when two or more lineages are relatively frequent. Nonetheless, it is striking that from the Autumn of 2020 to the Spring of 2023 we did not see a trend of increasing levels of global diversity despite nearly two and a half years of evolution during this time. The most sustained period of gradually increasing diversity was during the second half of 2022 as multiple sublineages of BA.2 and BA.5 co-circulated over a prolongued period of time, but this was then followed by a decline as the BA.2 recombinant lineage XBB began to dominate.

Divergence increases slower within than among lineages

Phylogenies can be difficult to generate for large alignments, although a fast approximate maximum likelihood method has been developed specifically for SARS-CoV-2 (Turakhia et al. 2021). These large phylogenies can also be subject to biases if lineages or epochs are unevenly sampled, and difficult to visualise. To overcome some of these issues, we subsampled 3000 high-coverage (>95%) consensus sequences from the ONS-CIS data using weighted random sampling, so that the VOCs, and the sweeping and partially sweeping lineages, were as similarly represented and as evenly distributed through time as possible. The sequential sweeps of the major lineages are readily observable on the resultant time-scaled phylogeny, with each of the major lineages representing a distinct clade or sub-clade (Figure 2, S2). The sampling methodology meant that lineages that were rarely sampled in the UK, such as B.1.351/Beta, B.1.525/Eta, P.1/Gamma, and BA.3/Omicron, were represented in the phylogeny. Apart from B.1.617.2/Delta, the major UK lineages have times of most recent common ancestor (tMRCAs) close to the time of first sampling in the ONS-CIS, indicating the recent emergence of these lineages when first sampled.

As expected, divergence from the root of the phylogeny increased gradually through time, both within-lineages and across all lineages (Figure 2), demonstrating the presence of a strong molecular clock. The estimated overall mutation rate was 1.39x10⁻³ substitutions per site per year by simple linear regression. It has been noted previously that although divergence within the B.1.1.7/Alpha lineage increased at a similar rate to previously circulating lineages, it had accumulated a disproportionate number of lineage defining mutations at the time of emergence (Hill et al. 2022), and that this pattern is also observed for other VOC lineages (Tay et al. 2022; Neher 2022). We can readily see this pattern using the subsampled ONS-sequences, and we formally investigate it using a linear regression of root-to-tip divergence versus calendar time, with lineage used as an interaction term (Table S1). B.1.177, used as the reference category, evolved at an estimated 4.06×10^{-4} substitutions per site per year, and there was no evidence that the rate of evolution differed for most other lineages (exceptions being BA.2.75 and BA.4, which were slightly faster). Substitution rates in the "Other" category, which represents a diverse collection of early sequences and minor lineages, and whose estimate could be seen as representing between-lineage rate, was much faster (1.29x10⁻³ subs/site/year). For this analysis, we split the BA.2 samples (excluding BA.2.75) into those collected prior to 12th September 2022 and those after. The later sampled lineages were contemporary to the BA.2.75 wave, and were members of the BA.2 sublineage BA.2.3.20, which harbours a large number of mutations

compared to its predecessors, and are observed at a time when all other BA.2 lineages had effectively gone extinct.

8

The almost one-to-one concordance that we see between the emergence of lineages divergent compared to their predecessors, their growth rate advantage, and the resulting epidemic waves provides a clear narrative of epidemiological dynamics driven by saltational evolutionary events. Since new VOCs and other major lineages are characterised by nonsynonymous mutations (Neher 2022), it has been hypothesised that they arose during long-term chronic infections with the virus subject to strong immune selection (Rambaut, Loman, et al. 2020; Ghafari et al. 2023; Markov et al. 2023).

Discussion

Surveillance studies are valuable tools for tracking the emergence and spread of an infectious disease. Using sequenced samples collected as part of the ONS-CIS, we have demonstrated the utility of large-scale surveillance studies to identify key epidemiological and evolutionary features of the UK epidemic. Since participating households are chosen to be representative of the UK population, and enrolled individuals are periodically tested for SARS-CoV-2 infection regardless of symptoms, the ONS-CIS gives a picture of SARS-CoV-2 prevalence in the UK that is not subject to the biases arising from focussing on symptomatic individuals or other groups (Franceschi et al. 2021; Kraemer et al. 2019; Pouwels et al. 2021).

The sequential sweeps of different major lineages in the UK observed during the first three years of the UK epidemic resulted in a pattern of relatively steady within-lineage evolution and gradual increases in within-lineage diversity, followed by step-increases in the number of substitutions as each new major lineage emerged. This in turn produced faster estimates of overall rates of evolution when measured across all lineages, and fluctuating levels of genetic diversity. Whether this pattern will be an ongoing feature of SARS-CoV-2 evolution remains to be seen. However, it is noticeable that even though more recent major lineages have been descendants of previously circulating lineages (BA.2.75 and BA.2.3.20 are both descendents of BA.2, and BQ.1 is descended from BA.5), or recombinants, the large number of mutations these lineages have acquired compared to their predecessors is evident. If the hypothesis that these major lineages arose or partially arose from chronicallyinfected individuals is correct (Hill et al. 2022; Ghafari et al. 2023), it will be difficult to predict what the next sweeping lineage will look like, as it could potentially be a descendant of Omicron or of one of the earlier circulating lineages, including the more pathogenic B.1.617.2/Delta. This again emphasises the need for effective genomic surveillance at a global scale.

A key observation from our study is that the growth rate advantage for a sweeping lineage will not be static in time. Instead, the relative growth rate of a variant will be determined by a number of factors, including its intrinsic transmissibility and the other viral lineages circulating at the time, but also immune escape and levels of population immunity to all extant variants (Markov et al. 2023). As a result, growth rate advantages may differ by both regions and calendar time, and there should be no *a priori* expectation that variants that have previously disappeared due to competition could not re-emerge, potentially seeded from chronically infected individuals, once the immunological background has changed.

It is tempting to argue that the alternating high prevalences of non-SGTF (B.1.177, B.617.2/Delta, BA.2) and SGTF lineages (B.1.1.7/Alpha, BA.1, BA.4/5), caused by the

9

absence and presence of the DH69/V70 deletion, is a consequence of the changes in the immunological background. DH60/V70 causes conformational changes in the NTD loop and this in turn may compensate for, or have other epistatic interactions with, immune escape mutations (Meng et al. 2021). The gradual increase in the proportion of BA.2 sequences that had DH60/V70 when BA.2 as a whole was in decline, and when BA.4 and BA.5 were beginning to sweep through the population, supports this idea, as does the resurgence of non-SGTF BA.2 recombinant and sub-lineages in the UK population towards the end of 2022, coinciding with a fall in BA.5 lineages. However, without a clear mechanism causing the switching, this remains a hypothesis only, and it is hard to predict whether the pattern will continue into the future.

A crucial drawback to genomic surveillance is the delay between sample collection and subsequent sequencing (in the ONS-CIS this was between two and three weeks) and the need for high viral load samples to produce adequate sequence data. This in turn could impact the success of any interventions. The earliest signals that both B.1.1.7/Alpha and BA.1/Omicron (Viana et al. 2021) had a growth rate advantage were serendipitously inferred from the increasing incidence of SGTF during RT-PCR testing, and conversely increasing non-SGTF was observed when B.1.617/Delta and BA.2 were emerging. However, the simultaneous rise in BA.4 and BA.5, both with SGTF, required sequencing to distinguish between them, and similarly the BA.2 recombinant and sublineages that subsequently overtook BA.4 and BA.5 cannot be distinguished in this way. The introduction of qPCRbased genotyping for specific lineages into diagnostic pipelines has the potential to speed-up detection of known variants (Vogels et al. 2021), but the lead time required to manufacture them means they cannot be relied upon to characterise emerging variants fast enough to contain them. Moreover, substantial genome sequencing efforts will always be required to detect variants that have not previously been identified as of concern, to monitor the ongoing specificity of rapid genotyping in the face of ongoing evolution, and to better characterise the evolution and spread of the virus.

Although only a fraction of the COG-UK sequences were comprised of samples collected as part of the ONS-CIS, we were able to use ONS-CIS sequenced samples to monitor the emergence, spread and evolution of the major lineages and sublineages sweeping through the UK population. Moving forwards, the implementation of genomic surveillance globally should be considered a key development goal, enabling the early detection of worrisome and/or rapidly growing lineages wherever they emerge. Whilst community surveillence at the scale of the ONS-CIS is unlikely to be feasible in most regions of the world, the survey is an important benchmark, and provides data and lessons to be learnt for when designing surveillance studies in other countries. Incorporating the detection and sequencing of other pathogens into the same community surveillance frameworks will only act to enhance the positive public health and scientific outcomes from these studies whilst maximising value for money.

Methods

ONS COVID-19 Infection Survey

The ONS-CIS is a UK household-based surveillance study whose participant households are chosen to provide a representative sample of the population. For a full description of the sampling design see (Pouwels et al. 2021), but in brief, swabs were taken from individuals aged two years and older, living in private households, from 26th April 2020 to the 13th March 2023. These households were selected randomly from address lists and previous ONS surveys to provide a representative sample of the population. Participants could provide consent for optional follow-up sampling weekly for the first five weeks, and monthly thereafter.

This work contains statistical data from ONS which is Crown Copyright. The use of the ONS statistical data in this work does not imply the endorsement of the ONS in relation to the interpretation or analysis of the statistical data. This work uses research datasets which may not exactly reproduce National Statistics aggregates.

Sequencing

A selection of RT-PCR samples were sequenced each week, with some additional retrospective sequencing of stored samples. From December 2020 onwards, the ambition was to sequence all positive samples with Ct<=30. Most samples were sequenced on Illumina Novaseq, but with a small number using Oxford Nanopore GridION or MINION. One of two protocols were used: either the ARTIC amplicon protocol (COG-UK 2020) with consensus FASTA sequence files generated using the ARTIC Nextflow processing pipeline (COG-UK 2020), or veSeq, an RNASeq protocol based on a quantitative targeted enrichment strategy (Lythgoe et al. 2021; Bonsall et al. 2020) with consensus sequences produced using shiver (Wymant et al. 2018). For veSeg we have previously shown that viral load is positively correlated with the number of mapped reads, and that Ct is negatively correlated with the Log10 number of mapped reads (Lythgoe et al. 2021; Golubchik et al. 2021; Fryer et al. 2022). Where there was duplicate sequencing, either of the same sample or of multiple samples taken from an individual at the same time, only the sequence with the highest coverage was kept. The proportion of swabs RT-PCR positive, RT-PCR positive and with Ct<=30, and RT-PCR positive, Ct<=30 and sequenced with >50% genome coverage is shown in Figure S1.

Lineage calling

Lineages using the Pango nomenclature (Rambaut, Holmes, et al. 2020) were determined using the Pangolin software (O'Toole et al. 2021). Reported major lineages include any sublineages, with the exception of BA.2, which did not include BA.2.75 and sublineages of BA.2.75, and BA.5 which did not BQ.1 and sublineages of BQ.1. When comparing SGTF with lineage, we excluded samples where the lineage resolved to A, B, B.1 or B.1.1 since sequences can be given these Pango lineages if an insufficient number of loci have coverage at lineage defining sites. The COG-UK ID, collection dates, Pango lineage, major lineage for all sequences included in this study can be downloaded from <u>https://github.com/katrinalythgoe/ONSLineages</u>. All sequences have been made publicly available as part of the COG-UK consortium. The sequences have also been deposited in the European Nucleotide Archive (ENA) at EMBL-EBI as part of the COG-UK consortium,

which has accession number PRJEB37886 (https://www.ebi.ac.uk/ena/browser/view/PRJEB37886).

Lineage growth rates and doubling times

For each of the major lineages, sublineages and recombinant lineages observed at high frequency, B.1.177, B.1.1.7/Alpha, B.1.617.2/Delta, the Omicron variants BA.1, BA.2, and BA.4 and BA.5, BA.2.75, BQ.1 and XBB, we calculated their relative growth rate advantage compared to all other lineages. BA.4 and BA.5 were considered together because of their concordant dynamics. We used a combination of Gaussian process regression and classification (Rasmussen and Williams 2005) together with bootstrapping as detailed fully at https://github.com/thomasallanhouse/covid19-lineages.

Nucleotide genetic diversity

Nucleotide genetic diversity was calculated using the π statistic, since this has been shown to be the least sensitive to differences in the number of sequences used in the analysis (Zhao and Illingworth 2019). Mean pairwise genetic diversity across the genome is given by:

$$\pi = \frac{1}{L} \sum_{l=1}^{L} D_l$$

Where *L* represents the length of the genome, and D_l the pairwise genetic diversity at locus *l*. This is calculated as:

$$D_l = \frac{2}{N(N-1)} \sum_{i \neq j} n_i n_j$$

Where n_i represents the number of alleles *i* observed at that locus, and *N* the number of samples with a consensus base call. Within-lineage genetic diversity was similarly calculated as above, but limiting only to the major lineages.

Phylogenetics

For the phylogenetic analysis, 3000 consensus sequences with at least 95% coverage were chosen using weighted random sampling, with each sample of major lineage *i* collected in week *j* given a weight $1/x_{ij}$, where x_{ij} is the number of sequences of major lineage *i* collected during week *j*. The major lineages included B.1.177, all of the identified VOCs (with BA.1 - BA.5 each given their own weighting), BA.2.75, BQ.1 and XBB. All other well-resolved lineages were placed in the category 'Other'. The sub-sampled sequences are indicated in the table deposited at <u>https://github.com/katrinalythgoe/ONSLineages</u>. All were pairwise aligned to the Wuhan-Hu-1 reference strain using MAFFT (Katoh and Standley 2013) and then combined to generate a single alignment of 29903 base pairs.

The alignment of 3000 sequences, combined with Wuhan-Hu-1, were used for phylogenetic reconstruction using IQ-TREE version 1.6.12 (Kozlov et al. 2019). The substitution model used was GTR+F+R4 with four FreeRate rate categories, and the resulting tree was rooted using Wuhan-1 and then fit to the calendar using TreeTime version 0.8.2 (Sagulenko, Puller, and Neher 2018). Tips representing the reference strain and sequences judged by TreeTime as outliers on the root-to-tip divergence plot were pruned from the phylogeny and excluded from further analysis. Visualisation used ggtree (Yu, Smith, and Tsan-Yuk 2017).

12

A linear regression analysis of root-to-tip divergence as a function of time since 1 January 2020 (in decimal years) and lineage was conducted. B.1.177 was used as the baseline category for lineage (Table S1). This included an interaction term for the two dependent variables. For this analysis, the BA.2 lineage was split into two (one for sequences sampled before the 12th September 2022 and one for those after) and any lineages with less than ten examples amongst the 3000 were combined with the "Other" category.

Funding Statement

The CIS is funded by the Department of Health and Social Care with in-kind support from the Welsh Government, the Department of Health on behalf of the Northern Ireland Government and the Scottish Government. COG-UK is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) [grant code: MC_PC_19027], and Genome Research Limited, operating as the Wellcome Sanger Institute. The authors acknowledge the support of the NHS Test and Trace Genomics Programme through sequencing of SARS-CoV-2 genomes analysed in this study. ASW is supported by the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford in partnership with the UK Health Security Agency (UK HSA) (NIHR200915) and the NIHR Oxford Biomedical Research Centre, and is an NIHR Senior Investigator. TH is supported by the Royal Society and Alan Turing Institute for Data Science and Artificial Intelligence. KAL is supported by the Royal Society and the Wellcome Trust (107652/Z/15/Z) and the Li Ka Shing Foundation. The views expressed are those of the authors and not necessarily those of the National Health Service, NIHR, Department of Health, or UKHSA.

References

- Bonsall, David, Tanya Golubchik, Mariateresa de Cesare, Mohammed Limbada, Barry Kosloff, George MacIntyre-Cockett, Matthew Hall, et al. 2020. "A Comprehensive Genomics Solution for HIV Surveillance and Clinical Monitoring in Low-Income Settings." *Journal of Clinical Microbiology* 58 (10). https://doi.org/10.1128/JCM.00382-20.
- Carabelli, Alessandro M., Thomas P. Peacock, Lucy G. Thorne, William T. Harvey, Joseph Hughes, Sharon J. Peacock, Wendy S. Barclay, Thushan I. de Silva, Greg J. Towers, and David L. Robertson. 2023. "SARS-CoV-2 Variant Biology: Immune Escape, Transmission and Fitness." *Nature Reviews. Microbiology* 21 (3): 162–77.
- COG-UK. 2020. "COG-UK Publication." 2020. https://www.protocols.io/workspaces/coguk/publication.
- Davies, Nicholas G., Sam Abbott, Rosanna C. Barnard, Christopher I. Jarvis, Adam J. Kucharski, James D. Munday, Carl A. B. Pearson, et al. 2021. "Estimated Transmissibility and Impact of SARS-CoV-2 Lineage B.1.1.7 in England." *Science* 372 (6538). https://doi.org/10.1126/science.abg3055.
- Davies, Nicholas G., Christopher I. Jarvis, W. John Edmunds, Nicholas P. Jewell, Karla Diaz-Ordaz, and Ruth H. Keogh. 2021. "Increased Mortality in Community-Tested Cases of SARS-CoV-2 Lineage B.1.1.7." *Nature* 593 (7858): 270–74.
- Franceschi, Vinícius Bonetti, Andressa Schneiders Santos, Andressa Barreto Glaeser, Janini Cristina Paiz, Gabriel Dickin Caldana, Carem Luana Machado Lessa, Amanda de Menezes Mayer, et al. 2021. "Population-Based Prevalence Surveys during the Covid-19 Pandemic: A Systematic Review." *Reviews in Medical Virology* 31 (4): e2200.
- Fryer, Helen R., Tanya Golubchik, Matthew Hall, Christophe Fraser, Robert Hinch, Luca

Ferretti, Laura Thomson, et al. 2022. "Viral Burdens Are Associated with Age and Viral Variant in a Population-Representative Study of SARS-CoV-2 That Accounts for Timesince-Infection Related Sampling Bias." *bioRxiv*_

https://doi.org/10.1101/2022.12.02.518847. (PLoS Pathogens, accepted).

- Ghafari, Mahan, Matthew Hall, Tanya Golubchik, Daniel Ayoubkhani, Thomas House, George MacIntyre-Cockett, Helen Fryer, et al. 2023. "High Number of SARS-CoV-2 Persistent Infections Uncovered through Genetic Analysis of Samples from a Large Community-Based Surveillance Study." *medRxiv*. https://doi.org/10.1101/2023.01.29.23285160.
- Golubchik, Tanya, Katrina A. Lythgoe, Matthew Hall, Luca Ferretti, Helen R. Fryer, George MacIntyre-Cockett, Mariateresa de Cesare, et al. 2021. "Early Analysis of a Potential Link between Viral Load and the N501Y Mutation in the SARS-COV-2 Spike Protein." *medRxiv*, January, 2021.01.12.20249080.
- Harvey, William T., Alessandro M. Carabelli, Ben Jackson, Ravindra K. Gupta, Emma C. Thomson, Ewan M. Harrison, Catherine Ludden, et al. 2021. "SARS-CoV-2 Variants, Spike Mutations and Immune Escape." *Nature Reviews. Microbiology* 19 (7): 409–24.
- Hill, V., L. Du Plessis, T. P. Peacock, D. Aggarwal, R. Colquhoun, A. M. Carabelli, N. Ellaby, et al. 2022. "The Origins and Molecular Evolution of SARS-CoV-2 Lineage B.1.1.7 in the UK." *Virus Evolution* 8 (2). https://doi.org/10.1093/ve/veac080.
- Hodcroft, Emma B., Moira Zuber, Sarah Nadeau, Timothy G. Vaughan, Katharine H. D. Crawford, Christian L. Althaus, Martina L. Reichmuth, et al. 2021. "Spread of a SARS-CoV-2 Variant through Europe in the Summer of 2020." *Nature* 595 (7869): 707–12.
- Jones, Terry C., Guido Biele, Barbara Mühlemann, Talitha Veith, Julia Schneider, Jörn Beheim-Schwarzbach, Tobias Bleicker, et al. 2021. "Estimating Infectiousness throughout SARS-CoV-2 Infection Course." *Science*, July. https://doi.org/10.1126/science.abi5273.
- Katoh, Kazutaka, and Daron M. Standley. 2013. "MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability." *Molecular Biology* and Evolution 30 (4): 772–80.
- Kidd, Michael, Alex Richter, Angus Best, Nicola Cumley, Jeremy Mirza, Benita Percival, Megan Mayhew, et al. 2021. "S-Variant SARS-CoV-2 Lineage B1.1.7 Is Associated With Significantly Higher Viral Load in Samples Tested by TaqPath Polymerase Chain Reaction." *The Journal of Infectious Diseases* 223 (10): 1666–70.
- Kraemer, Moritz U. G., D. A. T. Cummings, S. Funk, R. C. Reiner, N. R. Faria, O. G. Pybus, and S. Cauchemez. 2019. "Reconstruction and Prediction of Viral Disease Epidemics." *Epidemiology & Infection* 147. https://doi.org/10.1017/S0950268818002881.
- Kraemer, Moritz U. G., Verity Hill, Christopher Ruis, Simon Dellicour, Sumali Bajaj, John T. McCrone, Guy Baele, et al. 2021. "Spatiotemporal Invasion Dynamics of SARS-CoV-2 Lineage B.1.1.7 Emergence." *Science* 373 (6557): 889–95.
- Lemey, Philippe, Nick Ruktanonchai, Samuel L. Hong, Vittoria Colizza, Chiara Poletto, Frederik Van den Broeck, Mandev S. Gill, et al. 2021. "Untangling Introductions and Persistence in COVID-19 Resurgence in Europe." *Nature* 595 (7869): 713–17.
- Lythgoe, Katrina A., Matthew Hall, Luca Ferretti, Mariateresa de Cesare, George MacIntyre-Cockett, Amy Trebes, Monique Andersson, et al. 2021. "SARS-CoV-2 within-Host Diversity and Transmission." *Science* 372 (6539). https://doi.org/10.1126/science.abg0821.
- Markov, Peter V., Mahan Ghafari, Martin Beer, Katrina Lythgoe, Peter Simmonds, Nikolaos I. Stilianakis, and Aris Katzourakis. 2023. "The Evolution of SARS-CoV-2." *Nature Reviews. Microbiology*, April, 1–19.
- McCarthy, Kevin R., Linda J. Rennick, Sham Nambulli, Lindsey R. Robinson-McCarthy, William G. Bain, Ghady Haidar, and W. Paul Duprex. 2021. "Recurrent Deletions in the SARS-CoV-2 Spike Glycoprotein Drive Antibody Escape." *Science* 371 (6534): 1139– 42.
- Meng, Bo, Steven A. Kemp, Guido Papa, Rawlings Datir, Isabella A. T. Ferreira, Sara Marelli, William T. Harvey, et al. 2021. "Recurrent Emergence of SARS-CoV-2 Spike

Deletion H69/V70 and Its Role in the Alpha Variant B.1.1.7." *Cell Reports* 35 (13). https://doi.org/10.1016/j.celrep.2021.109292.

- Minh, Bui Quang, Heiko A. Schmidt, Olga Chernomor, Dominik Schrempf, Michael D. Woodhams, Arndt von Haeseler, and Robert Lanfear. 2020. "IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era." *Molecular Biology and Evolution* 37 (5): 1530–34.
- Mohanan, Manoj, Anup Malani, Kaushik Krishnan, and Anu Acharya. 2021. "Prevalence of SARS-CoV-2 in Karnataka, India." *JAMA: The Journal of the American Medical Association* 325 (10): 1001–3.
- Neher, Richard A. 2022. "Contributions of adaptation and purifying selection to SARS-CoV-2 Evolution". *Virus Evolution 8 (2). https://doi.org/10.1093/ve/veac113*
- Office for National Statistics. 2021a. "Coronavirus (COVID-19) Infection Survey QMI." 2021. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditions anddiseases/methodologies/coronaviruscovid19infectionsurveyqmi.

----. 2021b. "Coronavirus (COVID-19) Infection Survey: Technical Data - Office for National Statistics." 2021.

https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditions and diseases/datasets/covid19infectionsurveytechnicaldata/2021.

----. 2021c. "Coronavirus (COVID-19) Infection Survey, UK - Office for National Statistics." Office for National Statistics. 2021.

https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditions and diseases/bulletins/coronaviruscovid19infectionsurveypilot/16july2021.

- O'Toole, Áine, Emily Scher, Anthony Underwood, Ben Jackson, Verity Hill, John T. McCrone, Rachel Colquhoun, et al. 2021. "Assignment of Epidemiological Lineages in an Emerging Pandemic Using the Pangolin Tool." *Virus Evolution* 7 (2). https://doi.org/10.1093/ve/veab064.
- Oude Munnink, Bas B., Nathalie Worp, David F. Nieuwenhuijse, Reina S. Sikkema, Bart Haagmans, Ron A. M. Fouchier, and Marion Koopmans. 2021. "The next Phase of SARS-CoV-2 Surveillance: Real-Time Molecular Epidemiology." *Nature Medicine* 27 (9): 1518–24.
- Pouwels, Koen B., Thomas House, Emma Pritchard, Julie V. Robotham, Paul J. Birrell, Andrew Gelman, Karina-Doris Vihta, et al. 2021. "Community Prevalence of SARS-CoV-2 in England from April to November, 2020: Results from the ONS Coronavirus Infection Survey." *The Lancet. Public Health* 6 (1): e30–38.
- Public Health England. 2021. "Variants of Concern Technical Briefing 10." 2021. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachmen t_data/file/984274/Variants_of_Concern_VOC_Technical_Briefing_10_England.pdf.

Rambaut, Andrew, Edward C. Holmes, Aine O'Toole, Verity Hill, John T. McCrone, Christopher Ruis, Louis du Plessis, and Oliver G. Pybus. 2020. "A Dynamic Nomenclature Proposal for SARS-CoV-2 Lineages to Assist Genomic Epidemiology." *Nature Microbiology* 5 (11): 1403–7.

- Rambaut, Andrew, N. Loman, O. Pybus, W. Barclay, J. Barrett, A. Carabelli, T. Connor, et al. 2020. "Preliminary Genomic Characterisation of an Emergent SARS-CoV-2 Lineage in the UK Defined by a Novel Set of Spike Mutations." December 18, 2020. https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563.
- Rasmussen, Carl Edward, and Christopher K. I. Williams. 2005. "Gaussian Processes for Machine Learning." https://doi.org/10.7551/mitpress/3206.001.0001.

Sagulenko, Pavel, Vadim Puller, and Richard A. Neher. 2018. "TreeTime: Maximum-Likelihood Phylodynamic Analysis." *Virus Evolution* 4 (1). https://doi.org/10.1093/ve/vex042.

Sah, Pratha, Meagan C. Fitzpatrick, Charlotte F. Zimmer, Elaheh Abdollahi, Lyndon Juden-Kelly, Seyed M. Moghadas, Burton H. Singer, and Alison P. Galvani. 2021.
"Asymptomatic SARS-CoV-2 Infection: A Systematic Review and Meta-Analysis."
Proceedings of the National Academy of Sciences of the United States of America 118

(34). https://doi.org/10.1073/pnas.2109229118.

- Sonabend, R., L. K. Whittkles, N. Imai, P. N. Perez-Guzman, E. S. Knock, T. Rawson, K. A. M. Gaythorpe, et al. 2021. "Non-Pharmaceutical Interventions, Vaccination, and the SARS-CoV-2 Delta Variant in England: A Mathematical Modelling Study." *Lancet.* https://doi.org/10.1016/S0140-6736(21)02276-5.
- Subissi, Lorenzo, Anne von Gottberg, Lipi Thukral, Nathalie Worp, Bas B. Oude Munnink, Surabhi Rathore, Laith J. Abu-Raddad, et al. 2022. "An Early Warning System for Emerging SARS-CoV-2 Variants." *Nature Medicine* 28 (6): 1110–15.
- Tay, John H., Ashleigh F. Porter, Wytamma Wirth, and Sebastian Duchene. 2022. "The Emergence of SARS-CoV-2 Variants of Concern Is Driven by Acceleration of the Substitution Rate." *Molecular Biology and Evolution* 39 (2): msac013.
- Tegally, Houriiyah, Monika Moir, Josie Everatt, Marta Giovanetti, Cathrine Scheepers, Eduan Wilkinson, Kathleen Subramoney, et al. 2022. "Emergence of SARS-CoV-2 Omicron Lineages BA.4 and BA.5 in South Africa." *Nature Medicine*, June, 1–6.
- The COVID-19 Genomics UK (COG-UK) consortium. 2020. "An Integrated National Scale SARS-CoV-2 Genomic Surveillance Network." *The Lancet Microbe*. https://doi.org/10.1016/S2666-5247(20)30054-9.
- Thomson, Emma C., Laura E. Rosen, James G. Shepherd, Roberto Spreafico, Ana da Silva Filipe, Jason A. Wojcechowskyj, Chris Davis, et al. 2021. "Circulating SARS-CoV-2 Spike N439K Variants Maintain Fitness While Evading Antibody-Mediated Immunity." *Cell* 184 (5): 1171–87.e20.
- Turakhia, Yatish, Bryan Thornlow, Angie S. Hinrichs, Nicola De Maio, Landen Gozashti, Robert Lanfear, David Haussler, and Russell Corbett-Detig. 2021. "Ultrafast Sample Placement on Existing tRees (UShER) Enables Real-Time Phylogenetics for the SARS-CoV-2 Pandemic." *Nature Genetics* 53 (6): 809–16.
- UKHSA. 2021. "Surge Testing for New Coronavirus (COVID-19) Variants." 2021. https://www.gov.uk/guidance/surge-testing-for-new-coronavirus-covid-19-variants.
- UKHSA. 2023. <u>Genome Sequence Prevalence and Growth Rate Update: 24 May 2023.</u> <u>GOV.UK. Accessed June 2, 2023.</u> https://www.gov.uk/government/publications/sarscov-2-genome-sequence-prevalence-and-growth-rate/sars-cov-2-genome-sequenceprevalence-and-growth-rate-update-24-may-2023.
- Viana, Raquel, Sikhulile Moyo, Daniel G. Amoako, Houriiyah Tegally, Cathrine Scheepers, Christian L. Althaus, Ugochukwu J. Anyaneji, et al. 2021. "Rapid Epidemic Expansion of the SARS-CoV-2 Omicron Variant in Southern Africa." *medRxiv*, December, 2021.12.19.21268028.
- Vogels, Chantal B. F., Mallery I. Breban, Isabel M. Ott, Tara Alpert, Mary E. Petrone, Anne E. Watkins, Chaney C. Kalinich, et al. 2021. "Multiplex qPCR Discriminates Variants of Concern to Enhance Global Surveillance of SARS-CoV-2." *PLoS Biology* 19 (5): e3001236.
- Vöhringer, Harald S., Theo Sanderson, Matthew Sinnott, Nicola De Maio, Thuy Nguyen, Richard Goater, Frank Schwach, et al. 2021. "Genomic Reconstruction of the SARS-CoV-2 Epidemic in England." *Nature*, October, 1–11.
- Volz, Erik, Swapnil Mishra, Meera Chand, Jeffrey C. Barrett, Robert Johnson, Lily Geidelberg, Wes R. Hinsley, et al. 2021. "Assessing Transmissibility of SARS-CoV-2 Lineage B.1.1.7 in England." *Nature* 593 (7858): 266–69.
- Walker, Ann Sarah, Karina-Doris Vihta, Owen Gethings, Emma Pritchard, Joel Jones, Thomas House, Iain Bell, et al. 2021. "Increased Infections, but Not Viral Burden, with a New SARS-CoV-2 Variant." *medRxiv*, January, 2021.01.13.21249721.
- WHO. 2023. WHO Global Genomic Surveillance Strategy for Pathogens with Pandemic and Epidemic Potential 2022-2032." n.d. Accessed June 2, 2023. https://www.who.int/initiatives/genomic-surveillance-strategy.
- WHO. 2023. "Tracking SARS-CoV-2 Variants." Accessed April 5, 2023. https://www.who.int/activities/tracking-SARS-CoV-2-variants.
- Wu, Sean L., Andrew N. Mertens, Yoshika S. Crider, Anna Nguyen, Nolan N. Pokpongkiat, Stephanie Djajadi, Anmol Seth, et al. 2020. "Substantial Underestimation of SARS-CoV-

2 Infection in the United States." *Nature Communications* 11 (1): 1–10.

- Wymant, Chris, François Blanquart, Tanya Golubchik, Astrid Gall, Margreet Bakker, Daniela Bezemer, Nicholas J. Croucher, et al. 2018. "Easy and Accurate Reconstruction of Whole HIV Genomes from Short-Read Sequence Data with Shiver." *Virus Evolution* 4 (1): vey007.
- Yu, Guangchuang, David K. Smith, and Zhu Huachen Lam Tsan-Yuk. 2017. "Ggtree: An R Package for Visualization and Annotation of Phylogenetic Trees with Their Covariates and Other Associated Data." *Methods in Ecology and Evolution* 8: 28–36.
- Zhao, Lei, and Christopher J. R. Illingworth. 2019. "Measurements of Intrahost Viral Diversity Require an Unbiased Diversity Metric." *Virus Evolution* 5 (1): vey041.

Figure S2. Maximum likelihood phylogeny of ONS-CIS sequences. A maximum likelihood phylogeny of 3000 ONS sequences with over 95% genome coverage was generated using IQ-TREE. The samples were chosen using weighted random sampling, ensuring VOCs and other major lineages were as evenly distributed through time as possible.

	Coefficients			
Variable	Estimate	Standard Error	Statistic	p value
Constant	2.55e-04	7.09e-05	3.600	< 0.001
Time since NYD 2020 (years)	4.06e-04	7.72e-05	5.260	< 0.001
Lineage (baseline: B.1.177)				
B.1.1.7/Alpha	4.65e-04	8.65e-05	5.370	< 0.001
B.1.617.2/Delta	3.35e-04	9.03e-05	3.710	< 0.001
BA.1/Omicron	1.02e-03	1.68e-04	6.100	< 0.001
BA.2.75/Omicron	1.65e-03	1.54e-04	10.700	< 0.001
BA.2/Omicron (early)	1.44e-03	1.16e-04	12.400	< 0.001
BA.2/Omicron (late)	1.49e-03	5.78e-04	2.570	0.0102
BA.4/Omicron	1.33e-03	1.09e-04	12.200	< 0.001
BA.5/Omicron	1.93e-03	1.02e-04	18.900	< 0.001
BQ.1/Omicron	2.20e-03	1.74e-04	12.600	< 0.001
XBB/Omicron (recombinant)	2.02e-03	2.40e-04	8.420	< 0.001
Other	-6.55e-04	7.18e-05	-9.120	< 0.001
Interaction: time since NYD 2020 (years) \times lineage (baseline: B.1.177)				
Time \times B.1.1.7/Alpha	-7.94e-05	8.82e-05	-0.900	0.368
Time \times B.1.617.2/Delta	1.17e-04	8.38e-05	1.390	0.164
Time \times BA.1/Omicron	8.23e-05	1.05e-04	0.784	0.433
Time \times BA.2.75/Omicron	1.81e-04	9.05e-05	2.000	0.0452
Time \times BA.2/Omicron (early)	7.32e-05	8.69e-05	0.843	0.399
Time \times BA.2/Omicron (late)	2.35e-04	2.13e-04	1.100	0.27
Time \times BA.4/Omicron	1.74e-04	8.32e-05	2.090	0.0366
Time \times BA.5/Omicron	2.19e-05	8.18e-05	0.267	0.789
Time \times BQ.1/Omicron	-3.96e-05	9.43e-05	-0.420	0.675
Time \times XBB/Omicron (recombinant)	3.49e-05	1.09e-04	0.321	0.748
Time \times Other	8.87e-04	7.74e-05	11.500	< 0.001

Table S1: Linear regression of root-to-tip divergence as a function of time since 1 January 2020 (in decimal years) and lineage

Time since NYD (New Year's Day, 1 January) 2020 gives the substitution rate for the B.1.177 lineage (substitutions per site per year), and the intercept gives where the regression line crosses the y-intercept. The lineage estimate gives the addition to the B.1.177 intercept for subsequence lineages, and the interaction estimate gives the addition to the substitution rate.

20

Appendix

The COVID-19 Genomics UK (COG-UK) consortium FINAL (06-2021 V4)

Funding acquisition, Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, Software and analysis tools, and Visualisation:

Dr Samuel C Robson PhD^{13, 84}

Funding acquisition, Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, and Software and analysis tools:

Dr Thomas R Connor PhD ^{11, 74} and Prof Nicholas J Loman PhD ⁴³

Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, Software and analysis tools, and Visualisation: Dr Tanya Golubchik PhD ⁵

Funding acquisition, Leadership and supervision, Metadata curation, Samples and logistics, Sequencing and analysis, and Visualisation: Dr Rocio T Martinez Nunez PhD ⁴⁶

Funding acquisition, Leadership and supervision, Project administration, Samples and logistics, Sequencing and analysis, and Software and analysis tools: Dr David Bonsall PhD ⁵

Funding acquisition, Leadership and supervision, Project administration, Sequencing and analysis, Software and analysis tools, and Visualisation: Prof Andrew Rambaut DPhil ¹⁰⁴

Funding acquisition, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, and Software and analysis tools: Dr Luke B Snell MSc, MBBS ¹²

Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Software and analysis tools, and Visualisation: Rich Livett MSc ¹¹⁶

Funding acquisition, Leadership and supervision, Metadata curation, Project administration, and Samples and logistics: Dr Catherine Ludden PhD ^{20, 70}

Funding acquisition, Leadership and supervision, Metadata curation, Samples and logistics, and Sequencing and analysis: Dr Sally Corden PhD ⁷⁴ and Dr Eleni Nastouli FRCPath ^{96, 95, 30}

21

Funding acquisition, Leadership and supervision, Metadata curation, Sequencing and analysis, and Software and analysis tools: Dr Gaia Nebbia PhD, FRCPath ¹²

Funding acquisition, Leadership and supervision, Project administration, Samples and logistics, and Sequencing and analysis: Ian Johnston BSc ¹¹⁶

Leadership and supervision, Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis:

Prof Katrina Lythgoe PhD⁵, Dr M. Estee Torok FRCP^{19, 20} and Prof Ian G Goodfellow PhD²⁴

Leadership and supervision, Metadata curation, Project administration, Samples and logistics, and Visualisation:

Dr Jacqui A Prieto PhD 97, 82 and Dr Kordo Saeed MD, FRCPath 97, 83

Leadership and supervision, Metadata curation, Project administration, Sequencing and analysis, and Software and analysis tools:

Dr David K Jackson PhD ¹¹⁶

Leadership and supervision, Metadata curation, Samples and logistics, Sequencing and analysis, and Visualisation: Dr Catherine Houlihan PhD ^{96, 94}

Leadership and supervision, Metadata curation, Sequencing and analysis, Software and analysis tools, and Visualisation: Dr Dan Frampton PhD ^{94, 95}

Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, and Software and analysis tools: Dr William L Hamilton PhD¹⁹ and Dr Adam A Witney PhD⁴¹

Funding acquisition, Samples and logistics, Sequencing and analysis, and Visualisation: Dr Giselda Bucca PhD ¹⁰¹

Funding acquisition, Leadership and supervision, Metadata curation, and Project administration: Dr Cassie F Pope PhD^{40, 41}

Funding acquisition, Leadership and supervision, Metadata curation, and Samples and logistics:

Dr Catherine Moore PhD 74

Funding acquisition, Leadership and supervision, Metadata curation, and Sequencing and analysis:

Prof Emma C Thomson PhD, FRCP 53

22

Funding acquisition, Leadership and supervision, Project administration, and Samples and logistics:

Dr Teresa Cutino-Moguel PhD², Dr Ewan M Harrison PhD^{116, 102}

Funding acquisition, Leadership and supervision, Sequencing and analysis, and Visualisation:

Prof Colin P Smith PhD¹⁰¹

Leadership and supervision, Metadata curation, Project administration, and Sequencing and analysis:

Fiona Rogan BSc 77

Leadership and supervision, Metadata curation, Project administration, and Samples and logistics:

Shaun M Beckwith MSc⁶, Abigail Murray Degree⁶, Dawn Singleton HNC⁶, Dr Kirstine Eastick PhD, FRCPath³⁷, Dr Liz A Sheridan PhD⁹⁸, Paul Randell MSc, PgD⁹⁹, Dr Leigh M Jackson PhD¹⁰⁵, Dr Cristina V Ariani PhD¹¹⁶ and Dr Sónia Gonçalves PhD¹¹⁶

Leadership and supervision, Metadata curation, Samples and logistics, and Sequencing and analysis:

Dr Derek J Fairley PhD^{3,77}, Prof Matthew W Loose PhD¹⁸ and Joanne Watkins MSc⁷⁴

Leadership and supervision, Metadata curation, Samples and logistics, and Visualisation:

Dr Samuel Moses MD 25, 106

Leadership and supervision, Metadata curation, Sequencing and analysis, and Software and analysis tools:

Dr Sam Nicholls PhD ⁴³, Dr Matthew Bull PhD ⁷⁴ and Dr Roberto Amato PhD ¹¹⁶

Leadership and supervision, Project administration, Samples and logistics, and Sequencing and analysis:

Prof Darren L Smith PhD 36, 65, 66

Leadership and supervision, Sequencing and analysis, Software and analysis tools, and Visualisation:

Prof David M Aanensen PhD ^{14, 116} and Dr Jeffrey C Barrett PhD ¹¹⁶

Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis:

Dr Beatrix Kele PhD², Dr Dinesh Aggarwal MRCP^{20, 116, 70}, Dr James G Shepherd MBCHB, MRCP⁵³, Dr Martin D Curran PhD⁷¹ and Dr Surendra Parmar PhD⁷¹

Metadata curation, Project administration, Sequencing and analysis, and Software and analysis tools:

Dr Matthew D Parker PhD ¹⁰⁹

Metadata curation, Samples and logistics, Sequencing and analysis, and Software and

23

analysis tools: Dr Catryn Williams PhD 74

Metadata curation, Samples and logistics, Sequencing and analysis, and Visualisation: Dr Sharon Glaysher PhD ⁶⁸

Metadata curation, Sequencing and analysis, Software and analysis tools, and Visualisation:

Dr Anthony P Underwood PhD ^{14, 116}, Dr Matthew Bashton PhD ^{36, 65}, Dr Nicole Pacchiarini PhD ⁷⁴, Dr Katie F Loveson PhD ⁸⁴ and Matthew Byott MSc ^{95, 96}

Project administration, Sequencing and analysis, Software and analysis tools, and Visualisation:

Dr Alessandro M Carabelli PhD 20

Funding acquisition, Leadership and supervision, and Metadata curation: Dr Kate E Templeton PhD ^{56, 104}

Funding acquisition, Leadership and supervision, and Project administration: Prof Sharon J Peacock PhD ^{20,70}, Dr Thushan I de Silva PhD ¹⁰⁹, Dr Dennis Wang PhD ¹⁰⁹, Dr Cordelia F Langford PhD ¹¹⁶ and John Sillitoe BEng ¹¹⁶

Funding acquisition, Leadership and supervision, and Samples and logistics: Prof Rory N Gunson PhD, FRCPath ⁵⁵

Funding acquisition, Leadership and supervision, and Sequencing and analysis: Dr Simon Cottrell PhD ⁷⁴, Dr Justin O'Grady PhD ^{75, 103} and Prof Dominic Kwiatkowski PhD ^{116, 108}

Leadership and supervision, Metadata curation, and Project administration: Dr Patrick J Lillie PhD, FRCP ³⁷

Leadership and supervision, Metadata curation, and Samples and logistics: Dr Nicholas Cortes MBCHB ³³, Dr Nathan Moore MBCHB ³³, Dr Claire Thomas DPhil ³³, Phillipa J Burns MSc, DipRCPath ³⁷, Dr Tabitha W Mahungu FRCPath ⁸⁰ and Steven Liggett BSc ⁸⁶

Leadership and supervision, Metadata curation, and Sequencing and analysis: Angela H Beckett MSc ^{13, 81} and Prof Matthew TG Holden PhD ⁷³

Leadership and supervision, Project administration, and Samples and logistics: Dr Lisa J Levett PhD ³⁴, Dr Husam Osman PhD ^{70, 35} and Dr Mohammed O Hassan-Ibrahim PhD, FRCPath ⁹⁹

Leadership and supervision, Project administration, and Sequencing and analysis: Dr David A Simpson PhD ⁷⁷

24

Leadership and supervision, Samples and logistics, and Sequencing and analysis: Dr Meera Chand PhD⁷², Prof Ravi K Gupta PhD¹⁰², Prof Alistair C Darby PhD¹⁰⁷ and Prof Steve Paterson PhD¹⁰⁷

Leadership and supervision, Sequencing and analysis, and Software and analysis tools:

Prof Oliver G Pybus DPhil ²³, Dr Erik M Volz PhD ³⁹, Prof Daniela de Angelis PhD ⁵², Prof David L Robertson PhD ⁵³, Dr Andrew J Page PhD ⁷⁵ and Dr Inigo Martincorena PhD ¹¹⁶

Leadership and supervision, Sequencing and analysis, and Visualisation: Dr Louise Aigrain PhD ¹¹⁶ and Dr Andrew R Bassett PhD ¹¹⁶

Metadata curation, Project administration, and Samples and logistics:

Dr Nick Wong DPhil, MRCP, FRCPath ⁵⁰, Dr Yusri Taha MD, PhD ⁸⁹, Michelle J Erkiert BA ⁹⁹ and Dr Michael H Spencer Chapman MBBS ^{116, 102}

Metadata curation, Project administration, and Sequencing and analysis: Dr Rebecca Dewar PhD ⁵⁶ and Martin P McHugh MSc ^{56, 111}

Metadata curation, Project administration, and Software and analysis tools: Siddharth Mookerjee MPH ^{38, 57}

Metadata curation, Project administration, and Visualisation:

Stephen Aplin ⁹⁷, Matthew Harvey ⁹⁷, Thea Sass ⁹⁷, Dr Helen Umpleby FRCP ⁹⁷ and Helen Wheeler ⁹⁷

Metadata curation, Samples and logistics, and Sequencing and analysis:

Dr James P McKenna PhD³, Dr Ben Warne MRCP⁹, Joshua F Taylor MSc²², Yasmin Chaudhry BSc²⁴, Rhys Izuagbe²⁴, Dr Aminu S Jahun PhD²⁴, Dr Gregory R Young PhD^{36, 65}, Dr Claire McMurray PhD⁴³, Dr Clare M McCann PhD^{65, 66}, Dr Andrew Nelson PhD^{65, 66} and Scott Elliott⁶⁸

Metadata curation, Samples and logistics, and Visualisation:

Hannah Lowe MSc ²⁵

Metadata curation, Sequencing and analysis, and Software and analysis tools: Dr Anna Price PhD ¹¹, Matthew R Crown BSc ⁶⁵, Dr Sara Rey PhD ⁷⁴, Dr Sunando Roy PhD ⁹⁶ and Dr Ben Temperton PhD ¹⁰⁵

Metadata curation, Sequencing and analysis, and Visualisation: Dr Sharif Shaaban PhD ⁷³ and Dr Andrew R Hesketh PhD ¹⁰¹

Project administration, Samples and logistics, and Sequencing and analysis: Dr Kenneth G Laing PhD⁴¹, Dr Irene M Monahan PhD⁴¹ and Dr Judith Heaney PhD^{95, 96, 34}

Project administration, Samples and logistics, and Visualisation:

Dr Emanuela Pelosi FRCPath⁹⁷, Siona Silviera MSc⁹⁷ and Dr Eleri Wilson-Davies MD, FRCPath⁹⁷

25

Samples and logistics, Software and analysis tools, and Visualisation:

Dr Helen Fryer PhD 5

Sequencing and analysis, Software and analysis tools, and Visualization:

Dr Helen Adams PhD⁴, Dr Louis du Plessis PhD²³, Dr Rob Johnson PhD³⁹, Dr William T Harvey PhD^{53,42}, Dr Joseph Hughes PhD⁵³, Dr Richard J Orton PhD⁵³, Dr Lewis G Spurgin PhD⁵⁹, Dr Yann Bourgeois PhD⁸¹, Dr Chris Ruis PhD¹⁰², Áine O'Toole MSc¹⁰⁴, Marina Gourtovaia MSc¹¹⁶ and Dr Theo Sanderson PhD¹¹⁶

Funding acquisition, and Leadership and supervision:

Dr Christophe Fraser PhD ⁵, Dr Jonathan Edgeworth PhD, FRCPath ¹², Prof Judith Breuer MD ^{96, 29}, Dr Stephen L Michell PhD ¹⁰⁵ and Prof John A Todd PhD ¹¹⁵

Funding acquisition, and Project administration:

Michaela John BSc ¹⁰ and Dr David Buck PhD ¹¹⁵

Leadership and supervision, and Metadata curation: Dr Kavitha Gajee MBBS, FRCPath ³⁷ and Dr Gemma L Kay PhD ⁷⁵

Leadership and supervision, and Project administration:

David Heyburn 74

Leadership and supervision, and Samples and logistics:

Dr Themoula Charalampous PhD ^{12, 46}, Adela Alcolea-Medina ^{32, 112}, Katie Kitchman BSc ³⁷, Prof Alan McNally PhD ^{43, 93}, David T Pritchard MSc, CSci ⁵⁰, Dr Samir Dervisevic FRCPath ⁵⁸, Dr Peter Muir PhD ⁷⁰, Dr Esther Robinson PhD ^{70, 35}, Dr Barry B Vipond PhD ⁷⁰, Newara A Ramadan MSc, CSci, FIBMS ⁷⁸, Dr Christopher Jeanes MBBS ⁹⁰, Danni Weldon BSc ¹¹⁶, Jana Catalan MSc ¹¹⁸ and Neil Jones MSc ¹¹⁸

Leadership and supervision, and Sequencing and analysis:

Dr Ana da Silva Filipe PhD ⁵³, Dr Chris Williams MBBS ⁷⁴, Marc Fuchs BSc ⁷⁷, Dr Julia Miskelly PhD ⁷⁷, Dr Aaron R Jeffries PhD ¹⁰⁵, Karen Oliver BSc ¹¹⁶ and Dr Naomi R Park PhD ¹¹⁶

Metadata curation, and Samples and logistics:

Amy Ash BSc ¹, Cherian Koshy MSc, CSci, FIBMS ¹, Magdalena Barrow ⁷, Dr Sarah L Buchan PhD ⁷, Dr Anna Mantzouratou PhD ⁷, Dr Gemma Clark PhD ¹⁵, Dr Christopher W Holmes PhD ¹⁶, Sharon Campbell MSc ¹⁷, Thomas Davis MSc ²¹, Ngee Keong Tan MSc ²², Dr Julianne R Brown PhD ²⁹, Dr Kathryn A Harris PhD ^{29, 2}, Stephen P Kidd MSc ³³, Dr Paul R Grant PhD ³⁴, Dr Li Xu-McCrae PhD ³⁵, Dr Alison Cox PhD ^{38, 63}, Pinglawathee Madona ^{38, 63}, Dr Marcus Pond PhD ^{38, 63}, Dr Paul A Randell MBBCh ^{38, 63}, Karen T Withell FIBMS ⁴⁸, Cheryl Williams MSc ⁵¹, Dr Clive Graham MD ⁶⁰, Rebecca Denton-Smith BSc ⁶², Emma Swindells BSc ⁶², Robyn Turnbull BSc ⁶², Dr Tim J Sloan PhD ⁶⁷, Dr Andrew Bosworth PhD ^{70, 35}, Stephanie Hutchings ⁷⁰, Hannah M Pymont MSc ⁷⁰, Dr Anna Casey PhD ⁷⁶, Dr Liz Ratcliffe PhD ⁷⁶, Dr Christopher R Jones PhD ^{79, 105}, Dr Bridget A Knight PhD ^{79, 105}, Dr Tanzina Haque PhD, FRCPath ⁸⁰, Dr Jennifer Hart MRCP ⁸⁰, Dr Dianne Irish-Tavares FRCPath ⁸⁰, Eric Witele MSc ⁸⁰, Craig Mower BA ⁸⁶, Louisa K Watson DipHE ⁸⁶, Jennifer

26

Collins BSc ⁸⁹, Gary Eltringham BSc ⁸⁹, Dorian Crudgington ⁹⁸, Ben Macklin ⁹⁸, Prof Miren Iturriza-Gomara PhD ¹⁰⁷, Dr Anita O Lucaci PhD ¹⁰⁷ and Dr Patrick C McClure PhD ¹¹³

Metadata curation, and Sequencing and analysis:

Matthew Carlile BSc ¹⁸, Dr Nadine Holmes PhD ¹⁸, Dr Christopher Moore PhD ¹⁸, Dr Nathaniel Storey PhD ²⁹, Dr Stefan Rooke PhD ⁷³, Dr Gonzalo Yebra PhD ⁷³, Dr Noel Craine DPhil ⁷⁴, Malorie Perry MSc ⁷⁴, Dr Nabil-Fareed Alikhan PhD ⁷⁵, Dr Stephen Bridgett PhD ⁷⁷, Kate F Cook MScR ⁸⁴, Christopher Fearn MSc ⁸⁴, Dr Salman Goudarzi PhD ⁸⁴, Prof Ronan A Lyons MD ⁸⁸, Dr Thomas Williams MD ¹⁰⁴, Dr Sam T Haldenby PhD ¹⁰⁷, Jillian Durham BSc ¹¹⁶ and Dr Steven Leonard PhD ¹¹⁶

Metadata curation, and Software and analysis tools:

Robert M Davies MA (Cantab) ¹¹⁶

Project administration, and Samples and logistics:

Dr Rahul Batra MD¹², Beth Blane BSc²⁰, Dr Moira J Spyer PhD^{30, 95, 96}, Perminder Smith MSc^{32, 112}, Mehmet Yavus^{85, 109}, Dr Rachel J Williams PhD⁹⁶, Dr Adhyana IK Mahanama MD⁹⁷, Dr Buddhini Samaraweera MD⁹⁷, Sophia T Girgis MSc¹⁰², Samantha E Hansford CSci¹⁰⁹, Dr Angie Green PhD¹¹⁵, Dr Charlotte Beaver PhD¹¹⁶, Katherine L Bellis^{116, 102}, Matthew J Dorman¹¹⁶, Sally Kay¹¹⁶, Liam Prestwood¹¹⁶ and Dr Shavanthi Rajatileka PhD¹¹⁶

Project administration, and Sequencing and analysis:

Dr Joshua Quick PhD 43

Project administration, and Software and analysis tools:

Radoslaw Poplawski BSc 43

Samples and logistics, and Sequencing and analysis:

Dr Nicola Reynolds PhD ⁸, Andrew Mack MPhil ¹¹, Dr Arthur Morriss PhD ¹¹, Thomas Whalley BSc ¹¹, Bindi Patel BSc ¹², Dr Iliana Georgana PhD ²⁴, Dr Myra Hosmillo PhD ²⁴, Malte L Pinckert MPhil ²⁴, Dr Joanne Stockton PhD ⁴³, Dr John H Henderson PhD ⁶⁵, Amy Hollis HND ⁶⁵, Dr William Stanley PhD ⁶⁵, Dr Wen C Yew PhD ⁶⁵, Dr Richard Myers PhD ⁷², Dr Alicia Thornton PhD ⁷², Alexander Adams BSc ⁷⁴, Tara Annett BSc ⁷⁴, Dr Hibo Asad PhD ⁷⁴, Alec Birchley MSc ⁷⁴, Jason Coombes BSc ⁷⁴, Johnathan M Evans MSc ⁷⁴, Laia Fina ⁷⁴, Bree Gatica-Wilcox MPhil ⁷⁴, Lauren Gilbert ⁷⁴, Lee Graham BSc ⁷⁴, Jessica Hey BSc ⁷⁴, Ember Hilvers MPH ⁷⁴, Sophie Jones MSc ⁷⁴, Hannah Jones ⁷⁴, Sara Kumziene-Summerhayes MSc ⁷⁴, Dr Caoimhe McKerr PhD ⁷⁴, Jessica Powell BSc ⁷⁴, Georgia Pugh ⁷⁴, Sarah Taylor ⁷⁴, Alexander J Trotter MRes ⁷⁵, Charlotte A Williams BSc ⁹⁶, Leanne M Kermack MSc ¹⁰⁹, Benjamin H Foulkes MSc ¹⁰⁹, Marta Gallis MSc ¹⁰⁹, Hailey R Hornsby MSc ¹⁰⁹, Stavroula F Louka MSc ¹⁰⁹, Dr Manoj Pohare PhD ¹⁰⁹, Paige Wolverson MSc ¹⁰⁹, Peijun Zhang MSc ¹⁰⁹, George MacIntyre-Cockett BSc ¹¹⁵, Amy Trebes MSc ¹¹⁵, Dr Robin J Moll PhD ¹¹⁶, Lynne Ferguson MSc ¹¹⁷, Dr Emily J Goldstein PhD ¹¹⁷, Dr Alasdair Maclean PhD ¹¹⁷

Samples and logistics, and Software and analysis tools:

Dr Igor Starinskij MSc, MRCP 53

27

Sequencing and analysis, and Software and analysis tools:

Laura Thomson BSc ⁵, Joel Southgate MSc ^{11, 74}, Dr Moritz UG Kraemer DPhil ²³, Dr Jayna Raghwani PhD ²³, Dr Alex E Zarebski PhD ²³, Olivia Boyd MSc ³⁹, Lily Geidelberg MSc ³⁹, Dr Chris J Illingworth PhD ⁵², Dr Chris Jackson PhD ⁵², Dr David Pascall PhD ⁵², Dr Sreenu Vattipally PhD ⁵³, Timothy M Freeman MPhil ¹⁰⁹, Dr Sharon N Hsu PhD ¹⁰⁹, Dr Benjamin B Lindsey MRCP ¹⁰⁹, Dr Keith James PhD ¹¹⁶, Kevin Lewis ¹¹⁶, Gerry Tonkin-Hill ¹¹⁶ and Dr Jaime M Tovar-Corona PhD ¹¹⁶

Sequencing and analysis, and Visualisation:

MacGregor Cox MSci²⁰

Software and analysis tools, and Visualisation:

Dr Khalil Abudahab PhD^{14, 116}, Mirko Menegazzo¹⁴, Ben EW Taylor MEng^{14, 116}, Dr Corin A Yeats PhD¹⁴, Afrida Mukaddas BTech⁵³, Derek W Wright MSc⁵³, Dr Leonardo de Oliveira Martins PhD⁷⁵, Dr Rachel Colquhoun DPhil¹⁰⁴, Verity Hill¹⁰⁴, Dr Ben Jackson PhD¹⁰⁴, Dr JT McCrone PhD¹⁰⁴, Dr Nathan Medd PhD¹⁰⁴, Dr Emily Scher PhD¹⁰⁴ and Jon-Paul Keatley¹¹⁶

Leadership and supervision:

Dr Tanya Curran PhD ³, Dr Sian Morgan FRCPath ¹⁰, Prof Patrick Maxwell PhD ²⁰, Prof Ken Smith PhD ²⁰, Dr Sahar Eldirdiri MBBS, MSc, FRCPath ²¹, Anita Kenyon MSc ²¹, Prof Alison H Holmes MD ^{38, 57}, Dr James R Price PhD ^{38, 57}, Dr Tim Wyatt PhD ⁶⁹, Dr Alison E Mather PhD ⁷⁵, Dr Timofey Skvortsov PhD ⁷⁷ and Prof John A Hartley PhD ⁹⁶

Metadata curation:

Prof Martyn Guest PhD¹¹, Dr Christine Kitchen PhD¹¹, Dr Ian Merrick PhD¹¹, Robert Munn BSc¹¹, Dr Beatrice Bertolusso Degree³³, Dr Jessica Lynch MBCHB³³, Dr Gabrielle Vernet MBBS³³, Stuart Kirk MSc³⁴, Dr Elizabeth Wastnedge MD⁵⁶, Dr Rachael Stanley PhD⁵⁸, Giles Idle⁶⁴, Dr Declan T Bradley PhD^{69, 77}, Nicholas F Killough MSc⁶⁹, Dr Jennifer Poyner MD⁷⁹ and Matilde Mori BSc¹¹⁰

Project administration:

Owen Jones BSc ¹¹, Victoria Wright BSc ¹⁸, Ellena Brooks MA ²⁰, Carol M Churcher BSc ²⁰, Dr Laia Delgado Callico PhD ²⁰, Mireille Fragakis HND ²⁰, Dr Katerina Galai PhD ^{20, 70}, Dr Andrew Jermy PhD ²⁰, Sarah Judges BA ²⁰, Anna Markov BSc ²⁰, Georgina M McManus BSc ²⁰, Kim S Smith ²⁰, Peter M D Thomas-McEwen MSc ²⁰, Dr Elaine Westwick PhD ²⁰, Dr Stephen W Attwood PhD ²³, Dr Frances Bolt PhD ^{38, 57}, Dr Alisha Davies PhD ⁷⁴, Elen De Lacy MPH ⁷⁴, Fatima Downing ⁷⁴, Sue Edwards ⁷⁴, Lizzie Meadows MA ⁷⁵, Sarah Jeremiah MSc ⁹⁷, Dr Nikki Smith PhD ¹⁰⁹ and Luke Foulser ¹¹⁶

Samples and logistics:

Amita Patel BSc ¹², Dr Louise Berry PhD ¹⁵, Dr Tim Boswell PhD ¹⁵, Dr Vicki M Fleming PhD ¹⁵, Dr Hannah C Howson-Wells PhD ¹⁵, Dr Amelia Joseph PhD ¹⁵, Manjinder Khakh ¹⁵, Dr Michelle M Lister PhD ¹⁵, Paul W Bird MSc, MRes ¹⁶, Karlie Fallon ¹⁶, Thomas Helmer ¹⁶, Dr Claire L McMurray PhD ¹⁶, Mina Odedra BSc ¹⁶, Jessica Shaw BSc ¹⁶, Dr Julian W Tang PhD ¹⁶, Nicholas J Willford MSc ¹⁶, Victoria Blakey BSc ¹⁷, Dr Veena Raviprakash MD ¹⁷, Nicola Sheriff BSc ¹⁷, Lesley-Anne Williams BSc ¹⁷, Theresa Feltwell MSc ²⁰, Dr Luke Bedford PhD ²⁶, Dr James S Cargill PhD ²⁷, Warwick Hughes MSc ²⁷, Dr Jonathan Moore MD ²⁸, Susanne Stonehouse BSc ²⁸, Laura Atkinson MSc ²⁹, Jack CD Lee MSc ²⁹, Dr Divya

28

Shah PhD²⁹, Natasha Ohemeng-Kumi MSc^{32, 112}, John Ramble MSc^{32, 112}, Jasveen Sehmi MSc ^{32, 112}, Dr Rebecca Williams BMBS ³³, Wendy Chatterton MSc ³⁴, Monika Pusok MSc ³⁴, William Everson MSc ³⁷, Anibolina Castigador IBMS HCPC ⁴⁴, Emily Macnaughton FRCPath ⁴⁴, Dr Kate El Bouzidi MRCP ⁴⁵, Dr Temi Lampejo FRCPath ⁴⁵, Dr Malur Sudhanva FRCPath ⁴⁵, Cassie Breen BSc ⁴⁷, Dr Graciela Sluga MD, MSc ⁴⁸, Dr Shazaad SY Ahmad MSc ^{49, 70}, Dr Ryan P George PhD ⁴⁹, Dr Nicholas W Machin MSc ^{49,70}, Debbie Binns BSc ⁵⁰, Victoria James BSc ⁵⁰, Dr Rachel Blacow MBCHB ⁵⁵, Dr Lindsay Coupland PhD ⁵⁸, Dr Louise Smith PhD ⁵⁹, Dr Edward Barton MD ⁶⁰, Debra Padgett BSc ⁶⁰, Garren Scott BSc ⁶⁰, Dr Aidan Cross MBCHB⁶¹, Dr Mariyam Mirfenderesky FRCPath⁶¹, Jane Greenaway MSc⁶², Kevin Cole⁶⁴, Phillip Clarke ⁶⁷, Nichola Duckworth ⁶⁷, Sarah Walsh ⁶⁷, Kelly Bicknell ⁶⁸, Robert Impey MSc 68, Dr Sarah Wyllie PhD 68, Richard Hopes 70, Dr Chloe Bishop PhD 72, Dr Vicki Chalker PhD ⁷², Dr Ian Harrison PhD ⁷², Laura Gifford MSc ⁷⁴, Dr Zoltan Molnar PhD ⁷⁷, Dr Cressida Auckland FRCPath ⁷⁹, Dr Cariad Evans PhD ^{85, 109}, Dr Kate Johnson PhD ^{85, 109}, Dr David G Partridge FRCP, FRCPath ^{85, 109}, Dr Mohammad Raza PhD ^{85, 109}, Paul Baker MD ⁸⁶, Prof Stephen Bonner PhD ⁸⁶, Sarah Essex ⁸⁶, Leanne J Murray ⁸⁶, Andrew I Lawton MSc ⁸⁷, Dr Shirelle Burton-Fanning MD⁸⁹, Dr Brendan Al Payne MD⁸⁹, Dr Sheila Waugh MD⁸⁹, Andrea N Gomes MSc ⁹¹, Maimuna Kimuli MSc ⁹¹, Darren R Murray MSc ⁹¹, Paula Ashfield MSc ⁹², Dr Donald Dobie MBCHB ⁹², Dr Fiona Ashford PhD ⁹³, Dr Angus Best PhD ⁹³, Dr Liam Crawford PhD ⁹³, Dr Nicola Cumley PhD ⁹³, Dr Megan Mayhew PhD ⁹³, Dr Oliver Megram PhD ⁹³, Dr Jeremy Mirza PhD ⁹³, Dr Emma Moles-Garcia PhD ⁹³, Dr Benita Percival PhD ⁹³, Megan Driscoll BSc ⁹⁶, Leah Ensell BSc ⁹⁶, Dr Helen L Lowe PhD ⁹⁶, Laurentiu Maftei BSc ⁹⁶, Matteo Mondani MSc ⁹⁶, Nicola J Chaloner BSc ⁹⁹, Benjamin J Cogger BSc ⁹⁹, Lisa J Easton MSc ⁹⁹, Hannah Huckson BSc ⁹⁹, Jonathan Lewis MSc, PgD, FIBMS ⁹⁹, Sarah Lowdon BSc ⁹⁹, Cassandra S Malone MSc ⁹⁹, Florence Munemo BSc ⁹⁹, Manasa Mutingwende MSc ⁹⁹, Roberto Nicodemi BSc ⁹⁹, Olga Podplomyk FD ⁹⁹, Thomas Somassa BSc ⁹⁹, Dr Andrew Beggs PhD ¹⁰⁰, Dr Alex Richter PhD ¹⁰⁰, Claire Cormie ¹⁰², Joana Dias MSc ¹⁰², Sally Forrest BSc¹⁰², Dr Ellen E Higginson PhD¹⁰², Mailis Maes MPhil¹⁰², Jamie Young BSc¹⁰², Dr Rose K Davidson PhD¹⁰³, Kathryn A Jackson MSc¹⁰⁷, Dr Alexander J Keeley MRCP¹⁰⁹, Prof Jonathan Ball PhD¹¹³, Timothy Byaruhanga MSc¹¹³, Dr Joseph G Chappell PhD¹¹³, Jayasree Dey MSc ¹¹³, Jack D Hill MSc ¹¹³, Emily J Park MSc ¹¹³, Arezou Fanaie MSc ¹¹⁴, Rachel A Hilson MSc ¹¹⁴, Geraldine Yaze MSc ¹¹⁴ and Stephanie Lo ¹¹⁶

Sequencing and analysis:

Safiah Afifi BSc ¹⁰, Robert Beer BSc ¹⁰, Joshua Maksimovic FD ¹⁰, Kathryn McCluggage Masters ¹⁰, Karla Spellman FD ¹⁰, Catherine Bresner BSc ¹¹, William Fuller BSc ¹¹, Dr Angela Marchbank BSc ¹¹, Trudy Workman HNC ¹¹, Dr Ekaterina Shelest PhD ^{13, 81}, Dr Johnny Debebe PhD ¹⁸, Dr Fei Sang PhD ¹⁸, Dr Sarah Francois PhD ²³, Bernardo Gutierrez MSc ²³, Dr Tetyana I Vasylyeva DPhil ²³, Dr Flavia Flaviani PhD ³¹, Dr Manon Ragonnet-Cronin PhD ³⁹, Dr Katherine L Smollett PhD ⁴², Alice Broos BSc ⁵³, Daniel Mair BSc ⁵³, Jenna Nichols BSc ⁵³, Dr Kyriaki Nomikou PhD ⁵³, Dr Lily Tong PhD ⁵³, Ioulia Tsatsani MSc ⁵³, Prof Sarah O'Brien PhD ⁵⁴, Prof Steven Rushton PhD ⁵⁴, Dr Roy Sanderson PhD ⁵⁴, Dr Jon Perkins MBCHB ⁵⁵, Seb Cotton MSc ⁵⁶, Abbie Gallagher BSc ⁵⁶, Dr Elias Allara MD, PhD ^{70, 102}, Clare Pearson MSc ^{70, 102}, Dr David Bibby PhD ⁷², Dr Gavin Dabrera PhD ⁷², Dr Nicholas Ellaby PhD ⁷², Dr Eileen Gallagher PhD ⁷², Dr Jonathan Hubb PhD ⁷², Dr Angie Lackenby PhD ⁷², Dr David Lee PhD ⁷², Nikos Manesis ⁷², Dr Tamyo Mbisa PhD ⁷², Dr Steven Platt PhD ⁷², Katherine A Twohig ⁷², Dr Mari Morgan PhD ⁷⁴, Alp Aydin MSci ⁷⁵, David J Baker BEng ⁷⁵, Dr Ebenezer Foster-Nyarko PhD ⁷⁵, Dr Sophie J Prosolek PhD ⁷⁵, Steven Rudder ⁷⁵, Chris Baxter BSc ⁷⁷, Sílvia F Carvalho MSc ⁷⁷, Dr Deborah Lavin PhD ⁷⁷, Dr Arun Mariappan PhD

29

⁷⁷, Dr Clara Radulescu PhD ⁷⁷, Dr Aditi Singh PhD ⁷⁷, Miao Tang MD ⁷⁷, Helen Morcrette BSc ⁷⁹, Nadua Bayzid BSc ⁹⁶, Marius Cotic MSc ⁹⁶, Dr Carlos E Balcazar PhD ¹⁰⁴, Dr Michael D Gallagher PhD ¹⁰⁴, Dr Daniel Maloney PhD ¹⁰⁴, Thomas D Stanton BSc ¹⁰⁴, Dr Kathleen A Williamson PhD ¹⁰⁴, Dr Robin Manley PhD ¹⁰⁵, Michelle L Michelsen BSc ¹⁰⁵, Dr Christine M Sambles PhD ¹⁰⁵, Dr David J Studholme PhD ¹⁰⁵, Joanna Warwick-Dugdale BSc ¹⁰⁵, Richard Eccles MSc ¹⁰⁷, Matthew Gemmell MSc ¹⁰⁷, Dr Richard Gregory PhD ¹⁰⁷, Dr Margaret Hughes PhD ¹⁰⁷, Charlotte Nelson MSc ¹⁰⁷, Dr Lucille Rainbow PhD ¹⁰⁷, Dr Edith E Vamos PhD ¹⁰⁷, Hermione J Webster BSc ¹⁰⁷, Dr Mark Whitehead PhD ¹⁰⁷, Claudia Wierzbicki BSc ¹⁰⁷, Dr Adrienn Angyal PhD ¹⁰⁹, Dr Luke R Green PhD ¹⁰⁹, Dr Max Whiteley PhD ¹⁰⁹, Emma Betteridge BSc ¹¹⁶, Dr Iraad F Bronner PhD ¹¹⁶, Ben W Farr BSc ¹¹⁶, Scott Goodwin MSc ¹¹⁶, Dr Stefanie V Lensing PhD ¹¹⁶, Shane A McCarthy ^{116, 102}, Dr Michael A Quail PhD ¹¹⁶, Diana Rajan MSc ¹¹⁶, Dr Nicholas M Redshaw PhD ¹¹⁶, Carol Scott ¹¹⁶, Lesley Shirley MSc ¹¹⁶ and Scott AJ Thurston BSc ¹¹⁶

Software and analysis tools:

Dr Will Rowe PhD⁴³, Amy Gaskin MSc⁷⁴, Dr Thanh Le-Viet PhD⁷⁵, James Bonfield BSc¹¹⁶, Jennifier Liddle¹¹⁶ and Andrew Whitwham BSc¹¹⁶

1 Barking, Havering and Redbridge University Hospitals NHS Trust, 2 Barts Health NHS Trust, 3 Belfast Health & Social Care Trust, 4 Betsi Cadwaladr University Health Board, 5 Big Data Institute, Nuffield Department of Medicine, University of Oxford, 6 Blackpool Teaching Hospitals NHS Foundation Trust, 7 Bournemouth University, 8 Cambridge Stem Cell Institute, University of Cambridge, 9 Cambridge University Hospitals NHS Foundation Trust, 10 Cardiff and Vale University Health Board, 11 Cardiff University, 12 Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, 13 Centre for Enzyme Innovation, University of Portsmouth, 14 Centre for Genomic Pathogen Surveillance, University of Oxford, **15** Clinical Microbiology Department, Queens Medical Centre, Nottingham University Hospitals NHS Trust, 16 Clinical Microbiology, University Hospitals of Leicester NHS Trust, 17 County Durham and Darlington NHS Foundation Trust, 18 Deep Seq, School of Life Sciences, Queens Medical Centre, University of Nottingham, 19 Department of Infectious Diseases and Microbiology, Cambridge University Hospitals NHS Foundation Trust, 20 Department of Medicine, University of Cambridge, 21 Department of Microbiology, Kettering General Hospital, 22 Department of Microbiology, South West London Pathology, 23 Department of Zoology, University of Oxford, 24 Division of Virology, Department of Pathology, University of Cambridge, 25 East Kent Hospitals University NHS Foundation Trust, 26 East Suffolk and North Essex NHS Foundation Trust, 27 East Sussex Healthcare NHS Trust, 28 Gateshead Health NHS Foundation Trust, 29 Great Ormond Street Hospital for Children NHS Foundation Trust, 30 Great Ormond Street Institute of Child Health (GOS ICH), University College London (UCL), 31 Guy's and St. Thomas' Biomedical Research Centre, 32 Guy's and St. Thomas' NHS Foundation Trust, 33 Hampshire Hospitals NHS Foundation Trust, 34 Health Services Laboratories, 35 Heartlands Hospital, Birmingham, 36 Hub for Biotechnology in the Built Environment, Northumbria University, 37 Hull University Teaching Hospitals NHS Trust, 38 Imperial College Healthcare NHS Trust, 39 Imperial College London, 40 Infection Care Group, St George's University Hospitals NHS Foundation Trust, 41 Institute for Infection and Immunity, St George's University of London, 42 Institute of Biodiversity, Animal Health & Comparative Medicine, 43 Institute of Microbiology and Infection, University of Birmingham, 44 Isle of Wight NHS Trust, 45 King's College Hospital NHS Foundation Trust, 46 King's College London, 47 Liverpool Clinical Laboratories, 48 Maidstone and Tunbridge Wells NHS Trust, 49 Manchester University NHS Foundation Trust, 50 Microbiology Department, Buckinghamshire Healthcare NHS Trust, 51 Microbiology, Royal Oldham Hospital, 52 MRC Biostatistics Unit, University of Cambridge, 53 MRC-

University of Glasgow Centre for Virus Research, 54 Newcastle University, 55 NHS Greater Glasgow and Clyde, 56 NHS Lothian, 57 NIHR Health Protection Research Unit in HCAI and AMR, Imperial College London, 58 Norfolk and Norwich University Hospitals NHS Foundation Trust, 59 Norfolk County Council, 60 North Cumbria Integrated Care NHS Foundation Trust, 61 North Middlesex University Hospital NHS Trust, 62 North Tees and Hartlepool NHS Foundation Trust, 63 North West London Pathology, 64 Northumbria Healthcare NHS Foundation Trust, 65 Northumbria University, 66 NU-OMICS, Northumbria University, 67 Path Links, Northern Lincolnshire and Goole NHS Foundation Trust, 68 Portsmouth Hospitals University NHS Trust, 69 Public Health Agency, Northern Ireland, 70 Public Health England, 71 Public Health England, Cambridge, 72 Public Health England, Colindale, 73 Public Health Scotland, 74 Public Health Wales, 75 Quadram Institute Bioscience, 76 Queen Elizabeth Hospital, Birmingham, 77 Queen's University Belfast, 78 Royal Brompton and Harefield Hospitals, 79 Royal Devon and Exeter NHS Foundation Trust, 80 Royal Free London NHS Foundation Trust, 81 School of Biological Sciences, University of Portsmouth, 82 School of Health Sciences, University of Southampton, 83 School of Medicine, University of Southampton, 84 School of Pharmacy & Biomedical Sciences, University of Portsmouth, 85 Sheffield Teaching Hospitals NHS Foundation Trust, 86 South Tees Hospitals NHS Foundation Trust, 87 Southwest Pathology Services, 88 Swansea University, 89 The Newcastle upon Tyne Hospitals NHS Foundation Trust, 90 The Queen Elizabeth Hospital King's Lynn NHS Foundation Trust, 91 The Royal Marsden NHS Foundation Trust, 92 The Royal Wolverhampton NHS Trust, 93 Turnkey Laboratory, University of Birmingham, 94 University College London Division of Infection and Immunity, 95 University College London Hospital Advanced Pathogen Diagnostics Unit, 96 University College London Hospitals NHS Foundation Trust, 97 University Hospital Southampton NHS Foundation Trust, 98 University Hospitals Dorset NHS Foundation Trust, 99 University Hospitals Sussex NHS Foundation Trust, 100 University of Birmingham. 101 University of Brighton, 102 University of Cambridge, 103 University of East Anglia, 104 University of Edinburgh, 105 University of Exeter, 106 University of Kent, 107 University of Liverpool, 108 University of Oxford, 109 University of Sheffield, 110 University of Southampton, 111 University of St Andrews, 112 Viapath, Guy's and St Thomas' NHS Foundation Trust, and King's College Hospital NHS Foundation Trust, 113 Virology, School of Life Sciences, Queens Medical Centre, University of Nottingham, 114 Watford General Hospital, 115 Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, 116 Wellcome Sanger Institute, 117 West of Scotland Specialist Virology Centre, NHS Greater Glasgow and Clyde, 118 Whittington Health NHS Trust