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Abstract 

Background 

Deep neural networks (DNNs) show excellent performance in interpreting electrocardiograms (ECGs), 

both for conventional ECG interpretation and for novel applications such as detection of reduced 

ejection fraction and prediction of one-year mortality. Despite these promising developments, 

clinical implementation is severely hampered by the lack of trustworthy techniques to explain the 

decisions of the algorithm to clinicians. Especially, currently employed heatmap-based methods have 

shown to be inaccurate. 

 

Methods 

We present a novel approach that is inherently explainable and uses an unsupervised variational 

auto-encoder (VAE) to learn the underlying factors of variation of the ECG (the FactorECG) in a 

database with 1.1 million ECG recordings. These factors are subsequently used in a pipeline with 

common and interpretable statistical methods. As the ECG factors are explainable by generating and 

visualizing ECGs on both the model- and individual patient-level, the pipeline becomes fully 

explainable. The performance of the pipeline is compared to a state-of-the-art ‘black box’ DNN in 

three tasks: conventional ECG interpretation with 35 diagnostic statements, detection of reduced 

ejection fraction and prediction of one-year mortality. 

 

Findings 

The VAE was able to compress the ECG into 21 generative ECG factors, which are associated with 

physiologically valid underlying anatomical and (patho)physiological processes. When applying the 

novel pipeline to the three tasks, the explainable FactorECG pipeline performed similar to state-of-

the-art ‘black box’ DNNs in conventional ECG interpretation (AUROC 0·94 vs 0·96), detection of 

reduced ejection fraction (AUROC 0·90 vs 0·91) and prediction of one-year mortality (AUROC 0·76 vs 
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0·75).  Contrary to state-of-the-art, our pipeline provided inherent explainability on which 

morphological ECG features were important for prediction or diagnosis. 

 

Interpretation 

Future studies should employ DNNs that are inherently explainable to facilitate clinical 

implementation by gaining confidence in artificial intelligence, and more importantly, making it 

possible to identify biased or inaccurate models. 

 

Funding 

This study was financed by the Netherlands Organisation for Health Research and Development 

(ZonMw, no. 104021004) and the Dutch Heart Foundation (no. 2019B011). 

 
 

Keywords 

Deep neural network, deep learning, explainable, interpretable, artificial intelligence, 

electrocardiogram  
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Research into Context 

Evidence before this study 

A comprehensive literature survey was performed for research articles on interpretable or 

explainable artificial intelligence (AI) for interpretation of raw electrocardiograms (ECGs) using 

PubMed and Google Scholar databases. Articles in English up to November 24, 2021, were included 

and the following key words were used: deep neural network (DNN), deep learning, convolutional 

neural network, artificial intelligence, electrocardiogram, ECG, explainability, explainable, 

interpretability, interpretable, and visualization. Many studies that used DNNs to interpret ECGs with 

high predictive performances were found, some focusing on tasks known to be associated with the 

ECG (e.g., rhythm disorders) and others identifying completely novel use cases for the ECG (e.g. 

reduced ejection fraction). All of these studies employed post-hoc explainability techniques, where 

the decisions of the ‘black box’ DNN were visualized after training, usually using heatmaps (i.e., using 

Grad-CAM, SHAP or LIME). In these studies, only some example ECGs were handpicked, as these 

heatmap-based techniques only work on single ECGs. Three studies also investigated the global 

features of the model by taking a summary measure of the heatmaps, by relating heatmaps to 

known ECG parameters (i.e., QRS duration) or by using prototypes. No studies investigated whether 

the features found using heatmaps were robust or reproducible.  

 

Added value of this study 

Currently employed post-hoc explainability techniques, usually heatmap-based, have limited 

explainable value as they merely indicate the temporal location of a specific feature in the individual 

ECG. Moreover, these techniques have been shown to be unreliable, poorly reproducible and suffer 

from confirmation bias. To address this gap in knowledge, we designed a DNN that is inherently 

explainable (i.e. explainable by design instead of investigating post-hoc). This DNN is used in a 

pipeline that consists of three components: (i) a generative DNN (variational auto-encoder) that 

learned to encode the ECG into its underlying 21 continuous factors of variation (the FactorECG), (ii) 
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a visualization technique to provide insight into these ECG factors, and (iii) a common interpretable 

statistical method to perform diagnosis or prediction using the ECG factors. Model-level 

explainability is obtained by varying the ECG factors while generating and plotting ECGs, which allows 

for visualization of detailed changes in morphology, that are associated with physiologically valid 

underlying anatomical and (patho)physiological processes. Moreover, individual patient-level 

explanations are also possible, as every individual ECG has its representative set of explainable 

FactorECG values, of which the associations with the outcome are known. When using the 

explainable pipeline for interpretation of diagnostic ECG statements, detection of reduced ejection 

fraction and prediction of one-year mortality, it yielded predictive performances similar to state-of-

the-art ‘black box’ DNNs. Contrary to the state-of-the-art, our pipeline provided inherent 

explainability on which ECG features were important for prediction or diagnosis. For example, ST 

elevation was discovered to be an important predictor for reduced ejection fraction, which is an 

important finding as it could limit the generalizability of the algorithm to the general population. 

 

Implications of all the available evidence 

A longstanding assumption was that the high-dimensional and non-linear ‘black box’ nature of the 

currently applied ECG-based DNNs was inevitable to gain the impressive performances shown by 

these algorithms on conventional and novel use cases. This study, however, shows that inherently 

explainable DNNs should be the future of ECG interpretation, as they allow reliable clinical 

interpretation of these models without performance reduction, while also broadening their 

applicability to detect novel features in many other (rare) diseases. The application of such methods 

will lead to more confidence in DNN-based ECG analysis, which will facilitate the clinical 

implementation of DNNs in routine clinical practice. 
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Introduction 

The use of deep neural networks (DNNs) has led to tremendous improvements in automated 

interpretation of electrocardiograms (ECGs).1 Recent studies have shown that DNNs achieve similar 

performance as cardiologists in tasks such as arrhythmia recognition and triage of ECGs.2,3 Even more 

striking, DNNs have been shown to diagnose disorders that were not yet recognized on the ECG, such 

as reduced ejection fraction and one-year mortality.4,5 Despite these promising developments, clinical 

implementation is severely hampered by the lack of trustworthy techniques to explain the decisions 

of the algorithm to clinicians.6,7 Due to the ‘black box’ nature of most algorithms, and the limitations 

of current post-hoc explainability methods, the association between input and output remains 

unexplainable to humans.8 The lack of interpretability makes it difficult for clinicians to gain enough 

confidence to make clinical decisions based on these algorithms, and more importantly, impossible 

to identify biased or inaccurate models. These issues have already been acknowledged by the new 

European Union’s General Data Protection Regulation, that requires a ‘right to explanation’ for AI 

algorithms.
9
  

 

To improve explainability, several post-hoc explainability methods have been proposed, usually by 

providing heatmaps on top of the ECG. However, a major limitation of these methods is that they 

only provide  the temporal location of ECG features important in making the diagnosis, but do not 

indicate the actual feature (e.g. when the QRS-complex is highlighted the feature could be R-wave 

height, QRS shape or something else).
5,10,11

 This makes heatmaps susceptible to confirmation bias, as 

we assume that the feature we think is important is also the one that was used.
6
 Therefore, instead 

of explaining the ‘black box’ after it was trained, the preferred way for algorithms to produce 

trustworthy explanations is to develop models that are inherently explainable (i.e. explainable by 

design).8 

We hypothesized that an ECG can be explained by a few underlying anatomical and 

(patho)physiological factors of variation. Variational auto-encoders (VAE) are generative networks 

that use the power of DNNs to learn to compress any ECG into a selected number of explanatory and 
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independent factors. Moreover, they can reconstruct the ECG from these factors.12,13 In this study, 

we aimed to use a VAE to identify the underlying factors of variation in the ECG and use them to 

develop a fully end-to-end explainable pipeline for the interpretation of ECGs. Firstly, we investigate 

the learned factors by relating them to known ECG parameters and the most common conventional 

diagnostic ECG statements. Secondly, we train and validate the explainable pipeline for use in the 

novel ECG use cases, detection of reduced ejection fraction and prediction of one-year mortality, and 

perform a comparison with current state-of-the-art ‘black box’ DNNs and conventional ECG 

algorithms. 
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Methods 

Study participants 

The dataset consisted of all patients between 18 and 85 years of age with at least one ECG acquired 

in the University Medical Center Utrecht (UMCU) between July 1991 and August 2020. All data were 

de-identified in accordance with the EU General Data Protection Regulation and written informed 

consent was not required by the UMCU ethical committee. 

 

Data acquisition for training and validation of the VAE model
 

All resting 12-lead ECGs were exported from the MUSE ECG system (MUSE version 8; GE Healthcare, 

Chicago, IL, USA) in raw voltage format and converted to median beats as described before.10 All 

ECGs that were deemed technically inadequate by either the MUSE 12SL algorithm or interpreting 

physician were excluded from the analyses. No labels were used in the training of the unsupervised 

auto-encoder. 

 

Data acquisition for training and validation of the ‘black box’ DNNs and explainable FactorECG 

pipelines 

For training of the algorithms to detect conventional diagnostic ECG statements, we included a 

subset of ECGs that were obtained at all non-cardiology departments, as these ECGs were 

systematically annotated by a physician as part of the regular clinical workflow. We selected the 35 

most common diagnostic statements for training (an overview can be found in the Supplementary 

Methods) and used 20% of the patients for hyperparameter optimization. For validation of the ECG 

interpretation models, an independent dataset comprising 1000 randomly selected ECGs of unique 

patients was annotated by a panel of 5 practicing electrophysiologists or cardiologists for all 

diagnostic statements as described before.3 A reduced set of the 35 diagnostic statements was 

tested, as some abnormalities did not occur in the test dataset. Moreover, the myocardial ischemia 

labels in different locations were combined. 
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To train and validate the algorithms to detect reduced ejection fraction (below 35%) and predict one-

year mortality, we selected patients using the same approaches as Attia et al. and Raghunath et al., 

respectively.4,5 For the reduced ejection fraction model, patients with an ECG-echocardiogram pair 

(acquired within 14 days) were retrieved, the ejection fraction (EF) was dichotomized at 35% and 

patients were split in a 75:25 manner on the patient level. For the one-year mortality model, all 

patients with at least one year of follow-up available for evaluation of all-cause mortality were 

selected and split in a 60:40 manner on the patient level. Detailed information on the data 

acquisition for all three tasks can be found in the Supplementary Methods. 

 

VAE model architecture and training  

The VAE consists of three parts: the encoder, the latent space (with multiple continuous factors, 

referred to as the FactorECG) and the decoder.12 The original 12-lead median beat ECG is entered 

into the encoder, that compresses the ECG to its FactorECG with 32 continuous factors. From those 

same factors, the ECG is reconstructed by the decoder, and the difference between the input and 

reconstructed ECG was used to train the model. The decoder and encoder are a standard 

convolutional neural network and the inverse of that neural network, respectively. A specific type of 

variational autoencoder was used, called the β-VAE, where an additional hyperparameter β is 

included in the loss term to learn disentangled factors, i.e. generative factors of variation that are 

independent of each other.
13

 A schematic overview of the technique can be found in Figure 1, while 

an animation of the approach is included as Supplementary Material. Detailed information on the 

training and architecture of the VAE can be found in the Supplementary Methods. 

 

VAE model explainability 

The VAE model is explainable on both the model- and individual patient level. On the model-level, 

ECG factors are visualized by factor traversals: varying the values of an individual factor while 

reconstructing and plotting the median ECG beat. Every visualization starts with zeros for all factors, 
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which represents the mean ECG in the training dataset. Then, for every individual factor, values 

between -5 and 5 are assigned, while keeping the others at zero, and a new generated ECG is 

obtained. These reconstructions are subsequently visualized in the same graph. This allows for 

detailed visualizations of morphological changes. On the individual patient-level, explainability is 

obtained by combining the distinct FactorECG values of that ECG with knowledge on the predictors 

that were important for a specific task. For example, if an ECG has a high value for a specific ECG 

factor and this factor was associated with the outcome, this would explain why this specific ECG has 

a higher risk of the outcome.  

 

Training of the baseline ‘black box’ models and explainable FactorECG pipeline 

The explainable FactorECG pipeline is compared to current state-of-the-art ‘black box’ DNNs in three 

tasks: conventional ECG interpretation, detection of reduced ejection fraction and prediction of one-

year mortality. Firstly, for all three tasks investigated, a baseline state-of-the-art ‘black box’ DNN with 

a similar architecture as the encoder of the VAE and the median beat ECG as input was trained.10,14 

Secondly, to train the explainable FactorECG pipeline, median beat ECGs were encoded in their 

FactorECG, and the FactorECG values were entered into common interpretable statistical models. For 

the conventional ECG interpretation task, we trained binary logistic regression models for each of the 

35 diagnostic ECG statements on the FactorECGs, as it provided maximum interpretability. For the 

detection of reduced ejection fraction and prediction of one-year mortality, as the aim was maximum 

performance, we trained two extreme gradient boosting decision tree (XGBoost) models.
15

 For this 

model, interpretability was obtained using Shapley Additive exPlanations (SHAP), which can provide 

feature importance measures for every ECG factor on a model- and individual patient-level.16 

Additional information on the baseline model and training procedures for the three tasks are 

available in the Supplementary Methods. 

 

Statistical analysis 
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All data are presented as mean ± SD or median with interquartile range, where appropriate. All 

individual ECG factors were related to the conventional ECG features computed by the MUSE 

algorithm (i.e., ventricular rate, PR, QRS and Bazett corrected QT duration, and R and T axis) using 

hexagon plots and Pearson correlation coefficients. Discriminatory performance of the models is 

assessed in the test sets using the c-statistic or area under the receiver operating curve (AUROC) and 

the area under the precision-recall curve (AUPRC). As all models are weighted for class imbalance, a 

probability cut-off of 50% was used. Overall, 95% confidence intervals are obtained using 2000 

bootstrap samples. The Transparent Reporting of a Multivariable Prediction Model for Individual 

Prognosis or Diagnosis Statement for the reporting of diagnostic models was followed.17  

 

Role of the funding source 

The funder of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report. The first and corresponding authors had full access to all the 

data in the study and had final responsibility for the decision to submit for publication. 
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Results 

Development of the VAE and explainability of the FactorECG 

The dataset for training of the VAE consisted of 1,144,331 12-lead median beat ECGs of 251,473 

unique patients. The VAE was able to reconstruct the median beat ECGs excellently with a mean 

Pearson correlation coefficient of 0·90 (p < 0·001) between the original and reconstructed ECG. 

Reconstructions were most accurate for sinus rhythm, sinus bradycardia, early repolarization, and 

pericarditis ECGs (mean r=0·91–0·92), and least accurate for the rarer ECGs with ST elevation 

suspected of myocardial infarction and ventricular tachycardia (mean r=0·62–0·70). An overview of 

mean correlation coefficients per diagnostic ECG statements can be found in Supplementary Table 1. 

By analyzing the factor traversals (Supplementary Figure 2), only 21 of the 32 factors were found to 

be necessary to reconstruct the ECG, and the other 11 were not used by the model to encode 

significant data. Model-level explainability, using factor traversals, is shown for a subset of the 21 

factors in Figure 2. An online tool to visualize the generated ECGs interactively is available via 

https://decoder.ecgx.ai. To further investigate and gain interpretability in the ECG factors, Pearson 

correlation coefficients were computed between conventional ECG parameters and ECG factors 

values (Figure 3). Ventricular rate is mostly correlated to factor 10 (r=0·96, p<0·001), while QRS 

duration is mostly correlated to factor 25 (r=-0·47, p<0·001). PR and QT interval are mostly correlated 

to factors 8 (r=0·62, p<0·001) and 30 (r=-0·52, p<0·001), respectively.  

 

Performance and explainability for conventional ECG interpretation 

The dataset for training the algorithms to perform conventional ECG interpretation consisted of 

369,216 ECGs of 152,831 patients, while for validation the expert-annotated dataset was used, 

containing 965 ECGs (of 965 patients) of adequate quality. 343 (36%) of the ECGs had more than one 

diagnostic statement and sinus rhythm was the most prevalent (72%), while third degree AV block 

was the least prevalent (0.1%, Table 1). The mean AUROC of the explainable FactorECG pipeline was 

0·94 [95% CI 0·92–0·96], compared to 0·73 [95% CI 0·65–0·81] for the rule-based MUSE algorithm 
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and 0·96 [95% 0·94–0·98] for the ‘black box’ DNN. The explainable pipeline performed similarly for 

most diagnostic statements but was outperformed for diagnosis of left ventricular hypertrophy and 

low QRS voltage by the ‘black box’ DNN (Table 1). The conventional MUSE algorithm, that is currently 

used in clinical practice, performed worst for all diagnostic statements (Table 1). To understand 

which ECG factors were important for the pipeline to detect each ECG statement, we used the 

logistic regression’s coefficients as feature importance scores (Figure 4). The negative (blue) and 

positive (red) scores from Figure 4 can be related to the generated ECGs in the factor traversals after 

negative (blue) and positive (red) perturbations in Figure 2 and Supplementary Figure 2.  

 

Performance and explainability for detection of reduced ejection fraction  

For the algorithms to detect reduced ejection fraction, 39,603 matched ECG-echocardiogram pairs of 

22,676 patients were available, of which 25% (5669 unique patients, first pair per patient used) was 

used for validation. 713 patients (13%) in the validation set had an ejection fraction below 35%. The 

explainable FactorECG pipeline achieved an AUROC of 0·90 (95% CI 0·89–0·91), in comparison to 0·91 

(95% CI 0·90–0·93 for the ‘black box’ DNN. The most important model-level ECG factors for detecting 

reduced ejection fraction were high values in factors 5, 10 and 8 and low values in factors 25, 26, 1 

and 30 (Supplementary Figure 3a). These correspond to negative T waves, higher ventricular rate, ST 

elevation, increased P-wave area and PR-interval, right bundle branch block, and left bundle branch 

block, respectively. Figure 5 shows a model- and individual patient-level explanation for the 

detection of reduced ejection fraction using the novel pipeline, in comparison to the post-hoc 

explainability methods used up until now.  

 

Performance and explainability for prognosis of one-year mortality 

For the models to predict one-year mortality, follow-up was available for 909,958 ECGs of 177,448 

patients, of which 40% (70,979 unique patients, ECG sampled randomly per patient) was used for 

validation. 5334 patients (7.5%) in the validation set deceased within one year. The explainable 
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FactorECG pipeline achieved an AUROC of 0·76 (95% CI 0·76–0·77), compared to 0·75 (95% CI 0·74–

0·76) for the ‘black box’ DNN. In contrast, an XGBoost model that included only age and sex had an 

AUROC of 0·65 (95% CI 0·64–0·66). The most important global ECG factors for prediction of one-year 

mortality were high values for factors 10, 5, 12 and 11, and low values for factors 1, 30, 9 and 27 

(Supplementary Figure 3b). These correspond to an increased risk of one-year mortality with higher 

ventricular rate, inferolateral negative T-waves, ST-elevation, prolonged QT interval and anterior 

negative T-waves. 
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Discussion 

In this study, we demonstrate a novel pipeline that provides inherently explainable interpretation of 

ECGs, which consists of three major components: (i) a generative deep learning model that learned 

to summarize the underlying factors of variation of an ECG in 21 factors (the FactorECG), (ii) a 

visualization technique to provide insight into ECG morphology that these factors encode, and (iii) a 

common interpretable statistical method to perform diagnosis or prediction using the ECG factors 

(Figure 1). We investigated the FactorECG using visualizations and associations with conventional 

ECG parameters and diagnostic ECG statements to show that it encodes valid and relevant generative 

factors of ECG morphology. Moreover, when applying the novel explainable technique for 

conventional ECG interpretation and recently emerged use cases for the ECG, not only did it perform 

similarly to the ‘black box’ algorithms for these use cases, but it could also explain which 

morphological ECG features were important for prediction or diagnosis. This indicates that inherently 

explainable deep learning methods should be used to gain confidence in AI for clinical decision 

making, and more importantly, make it possible to identify biased or inaccurate models. 

A longstanding assumption was that the high-dimensional and non-linear ‘black box’ nature of the 

currently applied DNNs was inevitable to gain the impressive performances shown by these 

algorithms.
5,13,22

 The major finding of the current study is that an inherently explainable DNN 

performs on par with the ‘black box’ algorithms in both conventional and novel tasks (Table 1), while 

also allowing for detection of biases or learning new features. Moreover, a main advantages of the 

current approach over previous attempts to open the ‘black box’ of DNNs using post-hoc 

explainability methods (i.e. heatmaps) is that the model is inherently explainable: we can reliably 

specify the morphology of the ECG feature, instead of only pointing at the location on the ECG’s time 

axis.3,5,10,18 Furthermore, our approach allows for both model-level (i.e. for the complete model by 

using factor traversals) and individual patient-level explanations (i.e. we know the values of the 

FactorECG for each patient's ECG individually), while heatmap methods (such as Grad-CAM) are only 

usable for individual patient-level explanations.19 Moreover, recent studies have shown that saliency-
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based methods can be very unreliable in providing consequent annotation and can also show 

reassuring saliency maps when a model is completely untrained, stressing the need for better 

approaches to explain output of DNNs.8,20  

We hypothesized that an ECG can be explained by a few underlying explanatory factors of variation 

and showed that it is possible to encode the median beat ECG morphology in 21 continuous factors, 

from which the ECG can be reconstructed with high precision. An online tool for clinicians to 

interactively visualize the factors can be found via https://decoder.ecgx.ai. When relating the ECG 

factor traversals (Figure 2 and Supplementary Figure 2) to diagnostic ECG statements and 

conventional ECG parameters (Figures 3 and 4), we were able to relate them to the underlying 

anatomical and (patho)physiological factors. For example, factor 10 has a clear linear relationship 

with ventricular frequency and therefore shows high values for sinus tachycardia and low values for 

sinus bradycardia. Moreover, the factor traversals (Figure 2) show the changes in the ECG associated 

to the ventricular frequency, such as the length of the QT interval and appearance of the T-wave of 

the previous beat. Factors 6, 23 and 27 account for the P-wave size and are related to diagnoses that 

involve the P-wave, such as junctional bradycardia and atrial fibrillation, while PR interval (or location 

of the P-wave) is encoded in factor 8. Factors 25, 26 and 30 encode ventricular conduction delays, 

such as right and left bundle branch block, while ventricular repolarization is mainly encoded in 

factors 1, 5, 9, 13 and 30. ST elevation is most prominent in factors 1 and 5, which are subsequently 

important for predicting diagnoses such as acute pericarditis and early repolarization. Next to these 

more common ECG variations, rare abnormalities are also represented, as for example Wolff-

Parkinson-White pattern (with pre-excitation and short PR interval) is encoded using a combination 

of factors 8 and 12. 

For the reduced ejection fraction model we found that the performance of the explainable FactorECG 

pipeline is equivalent to both the black box DNN in our dataset and in the original publication by 

Attia et al.4 Most important ECG indicators for reduced EF were consistent with previous findings 

that indicated similar features to be predictive of heart failure: inferolateral negative T-waves, 
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increased ventricular rate, P-wave area, prolonged PR interval, RBBB, LBBB, but also inferolateral ST 

elevation.21 The importance of this latter feature illustrates that the DNN also picks up reduced 

ejection fraction due to acute ischemia. This could severely hamper the generalizability of such 

models for screening purposes in the general population as these patients are only present in large 

hospitals and is one of the reasons why explainable models are imperative.8,22 Hence, it may even be 

an explanation for the reduced performance in the previously published study where the ejection 

fraction model was externally validated in a population-based cohort.23 

Although the model for one-year mortality performs worse than in the original paper by Raghunath 

et al., it does perform similarly to the ‘black box’ DNN on our dataset.5 The difference in performance 

is likely caused by differences in the population, as the predictive value of just age and sex is also 

lower than in the original paper. We observed that the predictors for one-year mortality are 

increasing age, higher ventricular frequency, negative T-waves and ST-depression and elevation and 

prolonged QT interval, which are all known risk factors for mortality.24,25  

There are several limitations to acknowledge. Firstly, the algorithm is trained on a very large dataset 

with over 1 million ECGs, but we could not account for imbalance in ECG abnormalities due to the 

unsupervised nature of training. Therefore, less common ECG abnormalities might not be accurately 

encoded, as also demonstrated by the lower performance on for example ischemia classes and lower 

correlation coefficients of the reconstructed ECGs (Supplementary Table 1). Future studies could 

experiment with balancing the dataset based on labelled abnormalities and the effect it may have on 

encoding rare ECG abnormalities. Secondly, the reduced performance of the explainable model in 

diagnosing low QRS voltage and left ventricular hypertrophy is most likely due to the inability of the 

VAE to always reconstruct the amplitude of the R-wave correctly (Supplementary Table 1). Further 

research in the field of generative models for ECGs is needed to address this limitation and to 

improve the reconstruction quality. 

Future studies should focus on evaluating the use of inherently explainable deep learning methods 

on other ECG tasks, as the dimensionality reduction of our algorithm to 21 factors broadens the 
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usability of DNNs greatly to much smaller labeled datasets than before. Another important 

perspective is using the approach on full 10-second rhythm ECGs, to take additional ECG information 

into account. Rhythm disorders that are not visible in the median ECG beat, such as second-degree 

AV block and premature ventricular and atrial complexes, could add interesting information to the 

model. 

In conclusion, we leveraged a large dataset of over 1 million ECGs to train a generative DNN that 

learned 21 valid underlying anatomical and (patho)physiological explanatory factors of variation in 

median beat 12-lead ECG data. We showed that our pipeline is not only able to interpret ECGs with 

highly accurate performance on par with ‘black box’ DNNs but can also explain which ECG 

morphologies were important. These findings demonstrate that inherently explainable ECG models 

should be the future of ECG interpretation, as they allow reliable clinical interpretation of these 

models without performance reduction, while also broadening their applicability to many other 

(rare) diseases. 
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Data availability 

The training datasets used in this study are not openly available due to privacy concerns. The expert-

annotated test set is available upon request to the corresponding author.  

 

Code availability 

The decoder for the FactorECG is publicly available at https://decoder.ecgx.ai. The code for training 

and evaluating the β-VAE and the black box DNN is available upon request to the corresponding 

author. 
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Figures 

 

Figure 1. Illustration of the full pipeline: a variational auto-encoder, the FactorECG and 

reconstructions.  

The variational auto-encoder (VAE) consists of three parts: the encoder, the FactorECG space and the 

decoder. An input 12-lead median beat ECG is entered into the decoder, that compresses the ECG to 
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its FactorECG with 32 continuous factors. From those same factors, the ECG is reconstructed and the 

difference between the input and reconstructed ECG is used to train the model. The ECG factors are 

subsequently used in two ways: for development of interpretable classifiers for ECG diagnostic 

statements, reduced ejection fraction and one-year mortality, and for visualization purposes. ECG 

factors can provide both individual patient- and model-level visualizations. Individual visualizations 

are depicted here, where three median beat ECGs and their reconstructions are represented in the 

FactorECG. Notably, as dimension 10 encodes ventricular frequency, we see high values for the sinus 

tachycardia ECG. Moreover, as dimension 26 inversely encodes left bundle branch conduction delay, 

we see low values for the left bundle branch block ECG. The normal ECG has value around zero for all 

factors, as the VAE is forced to learn factors with zero mean. ECG: electrocardiogram, LVEF: left 

ventricular ejection fraction, LBBB: left bundle branch block. 
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Figure 2. Factor traversals of a subset of the ECG factors for leads I, II, V1, V3, V6 

Factor traversals of a subset of the 21 ECG factors that hold significant information for correctly 

reconstructing ECGs. Each row corresponds to the factor traversal for one ECG factor and the 

columns to a subset of the 12 leads. The factor traversal for one row is obtained by starting with a 

‘mean’ FactorECG where all factors are zero and adding offsets for that factor in a range of -5 to 5. 

The generated ECGs are then plotted where red represents high values for that factor and blue low 

values. 
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Figure 3. Relationship of the ECG factors with conventional ECG parameters 
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a. Hexagon plots where datapoints of ECG factor-ECG parameter pairs over all samples in the VAE 

dataset are binned into hexagon grids to relate values of factors 8, 25, 30, and 10 to the PR interval, 

QRS duration, QT interval and ventricular rate, respectively. b. Pearson correlation coefficients 

between ECG measures of ventricular rate, PR interval, QRS duration, QT interval, Bazett corrected 

QT interval, R-axis, and T-axis and ECG factor values over all samples in the VAE dataset. 
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Figure 4. Importance score for each of the 32 factors in predicting 35 diagnostic ECG statements 

Importance scores of each of the 32 factors in the logistic regression for all 35 diagnostic ECG 

statements are shown to relate which dimensions are important for diagnosis. High importance 

values indicate that a high value for the dimension is diagnostic for that abnormality, and vice versa. 

The negative (red) and positive (blue) scores can be related to the reconstructions after negative 

(red) and positive (blue) perturbations in Figure 2. Notably, factor 10 encodes ventricular frequency 

(as observed in Figures 2 and 3) and therefore has a high value in sinus tachycardia (red) and a low 

value in sinus bradycardia (blue). NICD: nonspecific intraventricular conduction delay. 
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Figure 5.  Comparison of architecture and model- and individual patient-level explainability using 

the novel inherently explainable approach as compared to post-hoc heatmap-based explainability 

for detection of reduced ejection fraction.  The conventional ‘black box’ DNN contains only a single 
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encoder to interpret the ECG. Afterwards, Guided Grad-CAM is applied to show what segments of 

the ECG were important for prediction on the patient-level. Model-level explainability is not possible. 

The novel explainable DNN (FactorECG) adds a generative part to the architecture, which allows for 

precise visualizations of the morphological ECG features. By combining factor SHAP importance 

scores and factor traversals, we obtain model-level explainability. Individual patient-level 

explainability is achieved using individual SHAP importance scores.
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Tables 

 
Diagnostic statement Prevalence MUSE 12 SL Explainable DNN Black box DNN 

 n (%) AUROC [95% CI] AUPRC AUROC [95% CI] AUPRC AUROC [95% CI] AUPRC 

Sinus rhythm 697 (72) 0·90 [0·88 - 0·92] 0·96 0·94 [0·92 - 0·96] 0·96 0·96 [0·95 - 0·97] 0·98 

Sinus bradycardia 30 (3.1) 0·70 [0·61 - 0·78] 0·09 0·95 [0·92 - 0·98] 0·39 0·94 [0·87 - 0·97] 0·37 

Sinus tachycardia 91 (9.4) 0·95 [0·92 - 0·97] 0·75 0·99 [0·98 - 0·99] 0·81 0·99 [0·99 – 1·00] 0·94 

Atrial fibrillation 90 (9.3) 0·88 [0·84 - 0·93] 0·73 0·99 [0·98 - 0·99] 0·78 0·98 [0·97 - 0·99] 0·86 

Atrial flutter 2 (0.2) 0·74 [0·49 - 1] 0·04 0·98 [0·96 - 0·99] 0·04 1·00 [0·99 – 1·00] 0·67 

Supraventricular tachycardia 18 (1.9) 0·58 [0·5 - 0·67] 0·15 0·97 [0·95 - 0·98] 0·33 0·98 [0·96 - 0·99] 0·34 

Junctional bradycardia 4 (0.4) 0·75 [0·5 - 1] 0·13 0·99 [0·96 – 1·00] 0·46 1·00 [0·99 – 1·00] 0·56 

Ventricular tachycardia 2 (0.2) 0·50 [0·5 - 0·5] 0 0·99 [0·98 – 1·00] 0·21 1·00 [0·99 – 1·00] 0·23 

Pacemaker rhythm 27 (2.8) 0·92 [0·85 - 0·98] 0·74 0·97 [0·94 - 0·98] 0·46 0·97 [0·93 - 0·99] 0·68 

First degree AV block 57 (5.9) 0·86 [0·8 - 0·92] 0·66 0·98 [0·97 - 0·99] 0·68 0·96 [0·94 - 0·98] 0·71 

Third degree AV block 1 (0.1) 0·5 [0·5 - 0·5] 0 1·00 [1·00 – 1·00] 0·31 1·00 [0·99 – 1·00] 0·14 

RBBB 59 (6.1) 0·95 [0·91 - 0·98] 0·66 0·98 [0·97 - 0·99] 0·69 0·99 [0·98 – 1·00] 0·83 

LBBB 22 (2.3) 0·88 [0·79 - 0·97] 0·64 1·00 [0·99 – 1·00] 0·82 1·00 [1·00 – 1·00] 0·95 

LAFB 71 (2.4) 0·64 [0·59 - 0·69] 0·29 0·84 [0·79 - 0·88] 0·28 0·97 [0·96 - 0·98] 0·62 

NICD 14 (1.5) 0·63 [0·53 - 0·76] 0·09 0·94 [0·92 - 0·96] 0·12 0·88 [0·73 - 0·97] 0·3 

Myocardial infarction 66 (6.8) 0·6 [0·55 - 0·65] 0·19 0·77 [0·72 - 0·82] 0·16 0·77 [0·71 - 0·82] 0·19 

Left ventricular hypertrophy 44 (4.6) 0·79 [0·71 - 0·86] 0·32 0·82 [0·77 - 0·87] 0·15 0·97 [0·95 - 0·98] 0·63 

Low QRS voltage 40 (4.2) 0·76 [0·68 - 0·83] 0·36 0·8 [0·74 - 0·86] 0·18 0·96 [0·94 - 0·98] 0·63 

Prolonged QT interval 22 (2.3) 0·69 [0·6 - 0·8] 0·14 0·95 [0·91 - 0·97] 0·43 0·93 [0·89 - 0·95] 0·2 

Early repolarisation 23 (2.4) 0·52 [0·5 - 0·57] 0·04 0·96 [0·93 - 0·98] 0·45 0·98 [0·97 - 0·99] 0·61 

Acute pericarditis 7 (0.7) 0·57 [0·5 - 0·71] 0·15 0·99 [0·99 – 1·00] 0·49 0·99 [0·96 – 1·00] 0·61 

 

Table 1. | Diagnostic performance values for the conventional ECG interpretation task in the expert-annotated test set 

The AUROC and AUPRC scores per diagnostic statement in the ECG interpretation task for the rule-based MUSE algorithm, explainable DNN model, and 

‘black-box’ DNN are shown. A reduced set of the 35 diagnostic statements was tested, as some abnormalities did not occur in the test dataset. Moreover, 
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the myocardial ischemia labels in different locations were combined. AUROC: area under the receiver operating curve, AUPRC: area under the precision-

recall curve, AV: atrioventricular, CI: confidence interval, DNN: Deep Neural Network, LAFB: left anterior fascicular block, LBBB: left bundle branch block, 

NICD: non-specific intraventricular conduction delay, RBBB: right bundle branch block. 
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