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Abstract 

Mendelian Randomisation (MR) is a powerful tool in epidemiology to estimate the causal 

effect of an exposure on an outcome in the presence of unobserved confounding, by utilising 

genetic variants as instrumental variables (IVs) for the exposure. The effects obtained from 

MR studies are often interpreted as the lifetime effect of the exposure in question. However, 

the causal effects of many exposures are thought to vary throughout an individual’s lifetime 

and there may be periods during which an exposure has more of an effect on a particular 

outcome. Multivariable MR (MVMR) is an extension of MR that allows for multiple, potentially 

highly related, exposures to be included in an MR estimation. MVMR estimates the direct 

effect of each exposure on the outcome conditional on all of the other exposures included in 

the estimation. We explore the use of MVMR to estimate the direct effect of a single 

exposure at different time points in an individual’s lifetime on an outcome. We use 

simulations to illustrate the interpretation of the results from such analyses and the key 

assumptions required. We show that causal effects at different time periods can be 

estimated through MVMR when the association between the genetic variants used as 

instruments and the exposure measured at those time periods varies, however this 

estimation will not necessarily identify exact time periods over which an exposure has the 

most effect on the outcome. We illustrate the method through estimation of the causal 

effects of childhood and adult BMI on smoking behaviour.  
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Introduction 

Mendelian Randomization (MR) uses the special properties of germline genetic variation 

to strengthen causal inference  of modifiable exposures on disease.[1] MR can be 

implemented as a form of instrumental variable (IV) estimation that uses genetic variants to 

estimate causal effects of an exposure on an outcome that is free from bias due to 

unmeasured confounding.[2-4] As genetic variants which do not change during an 

individual’s lifetime are used as instruments the estimated effects are interpreted as the 

lifetime effect of the genetically predicted exposure, or genetic liability for an exposure if that 

exposure is binary.[5]  

Many exposures, such as BMI, may have varying effects on any particular outcome over 

the course of an individual’s lifetime. Higher BMI in childhood is observationally associated 

with many health outcomes later in life. However whether this is due to a direct causal effect 

of childhood BMI on those outcomes or the high correlation between childhood and adult 

BMI, which then has a causal effect on the outcome, is unclear.[6-9] If a time-varying 

exposure only affects a (non time-varying) outcome during a particular period then 

intervening on the exposure during other periods will not have any effect on the outcome. 

Many disease outcomes occur later in life and understanding if the exposures that are 

known to associate with the disease have effects over the whole lifecourse or only short-

term effects is important for lowering the risk for that disease and understanding individual’s 

lifetime trajectories. Observational studies often use a lifecourse approach to determine the 

particular periods in life that affect an outcome[10]. For example, observational studies have 

shown that sunlight (and from this inferred vitamin D level) in childhood, but not adulthood, is 

associated with risk of multiple sclerosis.[11-13]  Therefore, in order to prevent multiple 

sclerosis it is important to focus on time spent outside during childhood, intervening in this 

way during adulthood will not have any effect on the incidence of multiple sclerosis. A 

lifecourse approach can help to unpick crucial periods for the exposure over an individual’s 

lifetime which contribute more than others to the outcome in question. This contrasts with a 

MR approach which will generally provide evidence of a causal effect of the exposure on the 

outcome regardless of when in the lifecourse the exposure is measured.[14] For example, a 

MR study has shown a causal effect of vitamin D levels in the aetiology of multiple 

sclerosis[15] but have not identified which period is important.  

When genetic risk for an exposure varies over time MR estimates can be interpreted as 

the genetically predicted effect of having a higher level of the exposure at the time it is 

measured.[16] If the genetic variants have a (proportionally) constant effect across the entire 

lifetime this will be the genetically predicted lifetime effect of having a unit higher level of the 

exposure across the lifecourse.[17] However, if the genetic variants have differing effects on 

the exposure at different ages, potentially including no effect at some ages, this effect will be 
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the lifetime effect of having a unit higher level of the exposure at the point it is measured.[16] 

This will include the effect of the exposure at other points in the lifecourse on the outcome. 

This may include changes in the level of the exposure of differing magnitudes at different 

points on the lifecourse. That is; the effect estimated will be the effect on the outcome of 

having a genetic liability for the exposure that results in a one unit higher genetically 

predicted level of the exposure at the time the exposure is measured. This allows for the 

effect of the genetic variants on the exposure to vary over time while still enabling estimation 

of the causal effect of an exposure that varies over time but which may only be measured at 

one point in time.  

In this paper we explore the use of multivariable Mendelian randomization (MVMR) to 

estimate the causal effect of a single exposure measured at different time points in an 

individual’s lifetime on an outcome measured at a single fixed point in time. MVMR is an 

extension of MR that can be used to estimate the direct effects of multiple, potentially highly 

related, exposures.[18] Structural mean models have previously been proposed for 

estimation of MR models with a time varying exposure.[19, 20] The interpretation of the 

results from estimation of structural mean models will depend on the availability of data for 

the time-varying exposure, particularly how many points of data are available.[19] MVMR 

can be implemented when multiple measures of the exposures at different points in the 

lifecourse are available but can be used to estimate direct effects of the exposure at each of 

those time points. We outline a model for MR with an exposure measured at multiple time 

points and explain how this can be estimated with MVMR. We consider specific examples 

where the assumptions of this model do not hold and present simulation results to 

investigate what happens in these settings. From these results we explain how the results of 

such a MVMR estimation can be interpreted. We illustrate these results with application to 

estimating the effect of child and adulthood BMI on smoking behaviour. The results 

presented here show that it is possible to estimate genetically predicted direct causal effects 

of different time periods of an exposure on an outcome using MVMR, however careful 

interpretation of any results obtained from such an analysis is required.  

 

Methods 

 We consider a model where genetic variants are associated with an unmeasured 

genetic liability for the exposure of interest which in turn affects the observed value of the 

trait. The liability may differ in different periods of an individual’s lifetime, however the 

observed trait is likely to change on a more frequent basis reflecting more short term 

variation or measurement error. Each liability is determined by only the genetic effects and 

therefore earlier liability levels do not have effects on later liability levels, although they are 

correlated through shared genetic influences. The observed exposures are influenced by the 
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underlying genetic liability as well as confounders and other environmental influences. These 

observed exposures have a direct effect on the outcome of interest as well an effect on the 

subsequent value of the exposure in following periods. The genetic variants used as IV’s are 

associated with liability in at least one period of the lifecourse but do not have to have the 

same association with liability in different periods. This allows for the association between a 

genetic variant and an exposure to vary over different ages, illustrated in Fig 1. This also 

implies that there may be correlation between the genetic effects during each period. This 

means that earlier time periods have a total effect on the outcome that is not necessarily 

equal to their direct effect. This model is given in Fig. 1. IV estimation can correct for the bias 

introduced by measurement error in the exposure under the assumption that the instrument 

is not associated with the level of that measurement error.[21] We therefore assume that the 

exposures are measured without error. All of the variables included (other than the individual 

genetic variants) are assumed to be continuous and for simplicity we initially limit the number 

of latent periods to two, however this model could be generalised to any number of periods.  

 

 
Figure 1 – Latent exposure model with two periods of exposure. 

 
�� is the earlier liability,  �� is the later liability,  �� is a set of genetic variants associated with ��, �� is a set of 

genetic variants associated with ��, ��� is a set of genetic variants associated with both �� and ��. ��is a 

measure of the exposure in the early time period �� is a measure the exposure at the second time period, � is 

an outcome observed at one time only, � is a set of unobserved confounders of the exposure at each time 

period and the outcome. �� and �� are potentially measured with error, error in this measurement is 

uncorrelated with the genetic variants.   

  

Estimation with MVMR 

MVMR can be used to estimate the genetically predicted effect of the exposure 

during each period, given the genetically predicted effect of the exposure at all of the other 

time points included in the estimation, i.e. the effect of �� and �� in Fig. 1. MVMR can be 

conducted with either individual level data or summary data and so it is possible to use the 
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methods described here with either type of data. Estimation using individual level data 

requires a dataset that measured the exposure at all time points considered and the 

outcome. Summary data from another non-overlapping dataset is required to enable 

selection of SNPs for use as instruments, conventionally those which are genome-wide 

significant in a GWAS study. Using summary data requires SNP-exposure effects and SNP-

outcome effects taken from separate samples. SNP-exposure associations for the different 

time points can be taken from either the same or different datasets. Analysis using summary 

level data is more likely to be feasible in many cases, given the large datasets required and 

multiple observations at different time points, so we focus here on summary level analysis.  

 MVMR can be implemented in a summary data setting using estimates of the 

association between each SNP and: the outcome, �Γ��; exposure at one time point ��,  �����;  

and the exposure at another time point ��,( ����, by fitting the following model:                                                  

 Γ� 
 β���� � β���� �     

This is a straightforward generalization of the IVW estimation framework for MR.[18, 22] 

MVMR estimation relies on three assumptions for estimating the presence or 

absence of a causal effect of each exposure on the outcome.[18] These assumptions mirror 

the standard assumptions required for IV estimation and are that; 1. each exposure is 

robustly predicted by the genetic variants conditional on the other exposures included in the 

estimation, 2. there is no confounding of the genetic variants and the outcome and 3. the 

genetic variants are not associated with the outcome other than via exposures included in 

the estimation, i.e. there are no horizontal pleiotropic effects of the genetic variants on the 

outcome via other phenotypes. We address the potential for the genetic variants to affect the 

outcome through the exposure phenotype at time points not included in the estimation in our 

simulation results.  

For multiple exposures to be included in a MVMR the genetic variants must have 

different effects on each exposure included in the estimation and these effects must not be a 

linear function of the others.[18] In the model described in Fig. 1, this means the exposure at 

each time period included in the estimation is associated with a different liability. Whether 

the genetic variants have differing effects can be tested with a conditional F-statistic.[23, 24] 

As well as having an F-statistic at each time point greater than 10 to indicate that the genetic 

variants are strongly associated with that exposure, it is necessary for the conditional F-

statistics to be greater than 10, indicating that the genetic variants are robustly associated 

with exposure at  each time period conditional on their association with exposure at the other 

time period. A large conditional F-statistic indicates that there is enough variation in the 

genetic effect on the exposure at each time period to identify differences between them.  
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A heterogeneity Q-statistic can be used to test for violations of the third IV 

assumption in the MVMR estimation.[18, 23] One potential reason for excessive 

heterogeneity is that some of the SNPs may be associated with the outcome through 

pathways that are not included in the MVMR estimation, i.e. there is horizontal pleiotropy. 

This pleiotropy will bias the results obtained from inverse variance weighted MVMR 

estimation.[25, 26] If pleiotropy is suspected, alternative estimation methods can be used to 

estimate MVMR causal effects under different assumptions of the form the pleiotropy 

takes.[23, 26, 27]  

All IV estimation requires additional assumptions for interpretation of the point 

estimates obtained as causal effects. Firstly, all of the MR and MVMR methods implemented 

here assume that the causal effects of the exposure(s) on the outcome are linear and, for 

MVMR, that there are no interactions between the effects of the exposures. Secondly,  a 

‘point-identifying’ assumption is required. Common point identifying assumptions for 

univariable IV estimation include homogeneity and monotonicity. The exact definition of this 

point identifying assumption will determine the precise causal effect estimated, however, it is 

not currently well-understood how these assumptions relate to estimation with multiple 

exposures as in MVMR.  

 

Simulations 

Inclusion of exposures associated with different latent periods.  

In the model described in Fig. 1 the genetic variants are associated with the latent 

variable but not the measured exposure directly. Any measured exposures associated with a 

common latent period will be associated with the genetic variants in the same way. This 

means it will not be possible to separately estimate the effects of an exposure at multiple 

time points which are associated with the same liability. Whether the genetic variants are 

sufficiently differently associated with each measured time point for the exposure for 

estimation of the model can be measured with a conditional F-statistic[23, 24], in the same 

way as MVMR with different exposures.  

We illustrate the point above with a simulation. We have included an exposure 

measured at two time points, both measures of the exposure have a direct causal effect on 

the outcome and the exposure at the earlier time point also has a small direct effect on the 

exposure at the later time point. Following the latent exposure model described in Fig. 1 we 

consider two different structures for the relationship between the genetic variants, the latent 

exposure and the observed value of the exposure. In the first setting each observed 

exposure is associated with a different underlying latent period and the genetic variants have 

different (but correlated) effects on the two latent periods. In the second setting both the 

observed exposures are associated with the same underlying latent period. This means that 
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the genetic variants have the same effect on the exposure at each time point. These models 

are illustrated in Fig. 2.  

 
 
Figure 2 – Models with different relationships between the genetic variants and the 
exposure at each time point.  
(a) 

 

(b) 

 
�� is the liability  in the first time period, �� is the liability in the second period. �� is a set of genetic 

variants associated with ��, �� is a set of genetic variants associated with �� and ��� is a set of genetic 

variants associated with both �� and ��. �� and �� are observed values of the exposure, where �� is 

observed at a later point in an individual’s life than ��. � is an outcome. ��, �� and � are confounded by a 

set of unobserved confounders �. In (a) ��and �� are associated with different liabilities. In (b) �� and �� 

are associated with the same liability. �� and �� are measured with error, though this measurement error 

is uncorrelated with the genetic variants.  The direct causal effect of �� on �� and �, and �� on � are 

given on the digram.  

 

In each simulation we included 150 SNPs, 2 measures of the continuous exposures 

and a single continuous outcome. Unobserved confounding was modelled as two continuous 

variables that affected the earlier exposure measurement and the outcome or the later 

exposure measurement and the outcome and were excluded from the estimation. These 

confounders were highly correlated (rho = 0.8). The data simulated were used to generate 

summary associations between the SNPs and each exposure and the outcome using 

separate samples, drawn from the same population, for the exposure and the outcome. The 

true association between the SNPs and each latent period was normally distributed around 0 
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with variance 0.1/�  where � is the number of SNPs. Effects of the SNPs on each latent 

period were correlated with � = 0.25. SNPs associated with the exposure of interest for the 

MR estimation, or either exposure for the MVMR, with p-values < 5 � 10�� in the exposure 

sample where included in the estimation. Effect estimates were obtained through inverse 

variance weighting MVMR (IVW–MVMR).[22] The simulations had a sample size of 150,000 

and 2000 repetitions.   

Results for the model with either one or two underlying latent periods are given in 

Table 1. These results show that the univariable estimates give an estimate of the total effect 

of being on a trajectory that is associated with having a unit higher level of the exposure at 

the time point associated with the measured exposure. This is larger than either the direct or 

total effect of the exposure at either time point on the outcome (given in Fig. 2), due to the 

correlation between the genetic effects on the exposure at each time period. For example, 

for the first simulation given in Table 1 the direct effect of �� on � is 0.20, the total effect is 

0.23 and the genetically predicted total effect is 0.34, due to an additional effect of the 

genetic variants on �� which then has an effect on �.  

When the measured exposures are associated with different latent periods, MVMR 

consistently estimates the genetically predicted causal effect of being on a trajectory 

associated with a unit higher level of that exposure, given the level of the exposure at the 

other time period. However, when the measured exposures are associated with the same 

latent period there is no difference in the genetic effects on the measured exposures and 

therefore weak instrument bias is introduced into the MVMR estimation.[23] This is 

highlighted through low conditional F-statistics. In this setting there is random variation in the 

direction of the bias for each exposure in each repetition of the simulation. Therefore the 

mean point estimate is close to the true value of the causal effect. However, the high mean 

level of absolute bias shows the bias from conditionally weak instruments. This highlights 

how the MVMR estimates are not only biased by weak instruments but that the bias could 

act in either direction, with different repetitions within the same simulation being biased in 

opposite directions.   

We also explored the effect of only selecting genetic variants which had differing 

effects at each time point on the results obtained for each of the models described here, as 

has previously been applied elsewhere.[28] This analysis shows that although this causes 

apparent conditional instrument strength to increase the causal effect estimates are 

potentially biased due to genetic variants which differ in the effects on each exposure more 

than others by chance by being selected for the analysis. These estimation results also have 

lower power than those using all SNPs due to the reduction in the number of genetic variants 

included. We therefore recommend that this approach is avoided and do not consider it 
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further. Results from this estimation and a full description of the analysis are given in the 

Supplementary material.  

 

Estimation in the presence of a causal effect from the outcome to the later time point 

We now consider a model where the outcome has an effect on the exposure 

measured at the later time point. The exposure at the later time period is therefore a collider 

of the earlier exposure and the outcome. This is illustrated in Fig 3 and in all other aspects 

the model is the same as that described in Fig 2(a). Morris et al (2021) showed that 

estimation of this scenario with MR gives consistent estimates when there is a single 

underlying latent period.[16] Here we consider MVMR estimation of a model with two 

underlying latent periods.  

 

Figure 3 – Model with a causal effect from the outcome to the later time point. 

 
�� is the liability  in the first time period, �� is the liability  in the second period. �� is a set of genetic variants 

associated with ��, �� is a set of genetic variants associated with �� and ��� is a set of genetic variants 

associated with both �� and ��. �� is a set of genetic variants associated with the outcome.  �� and �� are 

observed values of the exposure, where �� is observed at a later point in an individual’s life than ��. � is an 

outcome. ��, �� and � are confounded by a set of unobserved confounders �. �� and �� are measured with 

error, this measurement error is uncorrelated with the genetic variants.  The direct causal effect of �� on �� and 

�, and � on �� are given on the digram.  

 

Simulations were set up in the same way as described for Table 1 with the addition of 

50 SNPs included that were associated with the outcome �. This model was estimated 

assuming that �� and �� are the true exposures and � is the true outcome. As all genetic 

variants associated with the exposure at either time period, selected based on a p-value for 

the SNP – exposure association of <5x10-8, reflecting genome-wide significance, were 

included in the MVMR estimation some SNP strongly associated with � were selected as 

instruments for the later time period.  Results from this simulation are given in Table 2.  

These simulation results show that although the genetic variants strongly predict the 

exposure at each time period conditional on the other, MVMR estimation gives biased 

estimates of the direct causal effect of the exposure at both time periods on �. This bias is 
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due to conditioning on a variable that depends on both the exposure and the outcome (a 

collider) in the estimation, introducing collider bias.[29-32] Because the genetically predicted 

value of �� depends on genetic variants associated with �, �� becomes the collider in the 

MVMR estimation. Conditioning on a collider distorts the estimated association between the 

other exposure and the outcome and so means that the estimates obtained in the MVMR are 

no longer reliable estimates of the direct effect of the earlier exposure on the outcome. 

Sanderson et al. (2019) showed that MVMR conditioning on a collider does not introduce 

collider bias when only genetic variants associated with the exposures are included in the 

estimation.[18] The different result here occurs because we have allowed for genetic 

variants associated with Y to be included as instruments, which was not the case in 

Sanderson et al. (2019) and reflects a situation where the primary phenotype has been mis-

specified.[2] This collider bias can be avoided if the genetic variants used in the estimation 

are restricted to those which affect the exposure at either time point directly without acting 

via the outcome, however identifying these variants is not always easy. Importantly, the 

introduction of collider bias in this estimation biases the effect estimates at each time point 

included in the estimation, including the earlier time point which is not dependent on �.  

 
Additional excluded latent time period.  

We finally consider a model where the exposure has three underlying latent periods 

associated with it but where the model estimated only includes the exposure at times 

associated with two of those latent periods. The true structure of the data is illustrated in Fig. 

4 however the model estimated is assumed to be the same as that given in Fig 2(a).  
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Figure 4 – Model with three latent time periods 

 
�� is the latent value of the exposure in the first time period, �� is the latent value of the exposure in the second 

period, �� is the latent value of the exposure in the third period,  �� is a set of genetic variants associated with 

��, �� and ��, �� is another set of genetic variants associated with ��, �� and �� and �� is a set of genetic 

variants associated with ��. �� and �� are observed values of the exposure, where �� is observed at a later 

point in an individual’s life than ��. �� is a third value of the exposure that is not observed in our simulation. � is 

an outcome. ��, ��, �� and � are confounded by a set of unobserved confounders �. ��, �� and �� are 

measured with error, this measurement error is uncorrelated with the genetic variants. The direct causal effect 

of �� on �� and �, �� on �� and �, and �� on � are given on the digram. 

 

We set the simulations up in the same way as described for Table 1 with the addition 

of a third latent time period associated with a measured value of the exposure. This third 

measured exposure is assumed to be dependent on �� and subject to overlapping 

confounding to both �� and �� with �. We considered two models for the effect of � on ��. In 

the first there is no correlation between the association between � and �� and the 

association between � and the other liabilities. In the second correlation between the 

association between � and �� and � and �� and �� was added with higher correlation 

between � � �� and � � �� (� 
 0.25) and a lower level of correlation between � � �� and 

� � �� (� 
 0.1). These correlations arise from the overlap in the genetic effects on each 

liability. In both cases the outcome is assumed to occur at or after the time at which �� is 

measured and all exposures have a direct causal effect on the outcome. The results from 

this simulation are given in Table 3.  

The liability in the first and second periods are correlated due to the overlap in the 

genetic effects on each liability. When the association between the genetic variants and the 

excluded time period are correlated with the associations for the included periods the effect 

estimated will include some of the effect that acts via the omitted time periods. The 

estimated effect of �� therefore differs from the direct effect by a larger amount that the 

estimated effect of ��, however each is a consistent estimate of the effect of being on a 

trajectory associated with a unit higher exposure at that time point. This is due to the 
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particular structure of the data in our simulation, with a larger correlation between the genetic 

effects on �� and �� than between the genetic effects on �� and �� and would not be 

expected to apply in all cases. When the genetic effects on �� are uncorrelated with the 

included latent periods the effect of being on a unit higher trajectory at that time point is the 

same as the direct effect. However, in this case the genetically predicted direct effect of �� 

on � is larger than the direct effect (0.2) because this effect includes the effect that acts via 

the measured value associated with the excluded latent period, ��. 

 

Application 
 
We consider an illustrative application where we estimate the effect of childhood and adult 

body mass index (BMI) on smoking behaviour, measured as smoking initiation, smoking 

cessation and cigarettes per day. 

 

Data 

Data on child and adulthood BMI were taken from the UK biobank (UKB) study. [33, 

34] Between 2006 and 2010, the UK Biobank study enrolled 500,000 individuals aged 

between 40 and 69 at baseline across 22 assessment centres in the UK. Data were 

collected on clinical examinations, assays of biological samples, detailed information 

regarding self-reported health characteristics and genome-wide genotyping. In total 

12,370,749 genetic variants in up to 463,005 individuals were available for analysis, as 

described previously.[35] For BMI we derived a measure of childhood body size using recall 

questionnaire data asking UKB participants if they were ‘thinner’, ‘plumper’ or ‘about 

average’ when they were aged 10 years old compared to the average. Adult body size was 

derived using clinically measured BMI data (mean age 56.5 years), which we categorized 

into a 3-category variable using the same proportion as the early life measure for 

comparative purposes. Genetic variants robustly associated with childhood and adult body 

size (based on P<5x10-8 and r2<0.001 using a reference panel from the 1000 genomes 

project phase 3 [36]) were identified from a previously undertaken Genome Wide 

Association Study (GWAS) in UKB. This GWAS has been described in-detail elsewhere as 

well as validation studies of the resulting genetic instruments.[37-39]   

Each of the smoking behaviour outcomes GWAS data was extracted from Lui et al 

(2019) using summary statistics produced excluding UKB.[40] The mean age of smoking 

initiation across individuals with available data (excluding UK Biobank) was 17.5 years, with 

the mean for each study included in the GWAS ranging from 16.0 to 21.0 years.  

For each outcome considered we estimated the genetically predicted total effect of 

early life and later life exposure separately through a two-sample MR using the SNPs 
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associated with the exposure at the relevant time period. We then estimated the genetically 

predicted direct effects of the exposure at each time point through a MVMR estimation 

including both early and later life body size in the same estimation, including all SNPs 

associated with the exposure at either time.  

 

Results 

Our MR estimates showed a strong total effect of body size in childhood and 

adulthood on all of the smoking outcomes (total effect of a category increase in childhood 

body size on number of cigarettes per day = 0.13, 95% CI=0.07 to 0.18, P=2.11x10-6, for 

adult body size: 0.25, 95% CI=0.20 to 0.30, P=3.54x10-26). However, in the MVMR no effect 

of early life body size on number of cigarettes per day was observed and the effect of later 

life remained largely unchanged implying that the total and direct effects of later life body 

size are similar (direct effect of a category increase childhood body size on number of 

cigarettes per day = -0.05, 95% CI=-0.11 to 0.01, P=0.174, for adult body size; 0.27, 95% 

CI=0.22 to 0.35, P=7.15x10-20). Similar results were observed for the other smoking 

behaviour measures with positive total effects of higher category of childhood body size on 

smoking initiation and cessation observed in the MR estimation and no direct effect of 

childhood body size observed in the MVMR estimation. These results suggest that there is 

no direct effect of childhood body size on smoking behaviour in later life. The observed effect 

in the MR estimates of childhood body size on smoking are due to a combination of the 

effect of SNPs associated with childhood body size also having an effect on adult body size 

and an indirect effect of childhood body size on smoking behaviour through its effect on adult 

body size. Steiger filtering[41] between adult body size and the outcome removed very few 

(� 5) SNPs for any of the smoking behaviours and did not change the results obtained, 

results given in Supplementary Table 2.  

We have not explored the potential for biases that often arise in MR and MVMR 

studies in the results presented here, such as biases due to pleiotropy or collider bias.[25, 

31, 42] These results should therefore be taken as an illustration of the application and 

interpretation of the methods discussed.   

 
Discussion 
 
When multiple measures of an exposure at different time points are available, MVMR can be 

used to estimate the causal effect of changing the liability of the exposure at different time 

points on the outcome. The interpretation of the estimate is the direct effect of having a 

liability associated with a unit higher level of the exposure at that time point, for a given 

liability for the exposure at the other time points included in the estimation. That is, the effect 

of having a liability associated with a unit higher level of �� while keeping the liability for �� 
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constant. If measures of the exposure at different time periods are available, it is possible to 

identify whether the exposure effects persist over time or key periods exist in the lifecourse.  

An important restriction for estimation of these models is that the association 

between the genetic variants used as instruments and the exposure must vary over the 

periods included in the estimation. Although genetic variants do not vary over an individual’s 

lifetime, variation could arise from different genetic variants having different levels of 

importance in the development of the exposure at different ages. If the genetic variants 

associated with liability at a particular time are also associated with liability for a period 

excluded from the estimation, the estimated effect obtained will include that part of the effect 

of the excluded period. In our simulations we have assumed that each liability only affects 

the exposure at one time period but that genetic variants can affect multiple liabilities. 

However, the results obtained would be the same if we had allowed each genetic variant to 

influence one liability only but for the liabilities to affect the exposure at multiple time periods 

and each exposure to be influenced by multiple liabilities.  

The effects of any time periods excluded from the estimation but associated with 

genetic variants included in the estimation will form part of the effect estimated.  Therefore, if 

MVMR is used to identify important periods in the lifecourse, then other potentially important 

periods also need to be included in the estimation.  Previous work using this estimation 

approach has shown that early life BMI does not have a direct effect on type 2 diabetes and 

coronary heart disease.[37] Therefore if an individual with a high BMI in early life reduces 

their excess weight in later life their risk for type 2 diabetes and coronary heart disease will 

not be increased via this pathway. In contrast, our application shows an effect of adult BMI 

(mean age: 56.5) on smoking initiation (mean age: 17.5 years), once childhood BMI has 

been controlled for. Typical age of smoking initiation precedes adulthood however, the effect 

estimated is the effect of being on a trajectory associated with a higher level of BMI in 

adulthood, rather than the effect at that time point. The large effect of BMI at the age 

measured in our sample on risk of smoking is therefore unlikely to be causal at the point of 

time that the exposure and outcome were measured. If higher liability for BMI in adulthood is 

associated with higher liability for BMI in adolescence the effect estimated may represent the 

effect of higher liability for BMI in adolescence on smoking initiation even though BMI is 

measured at a later time point . This model is illustrated in Fig. 5. Data on BMI at different 

ages between childhood and adulthood would potentially enable estimation of the effect of 

BMI on smoking behaviour at a range of different times and so identify the period between 

childhood and adulthood that was most important. Implementation of this approach with 

MVMR would however rely on those periods being differentially associated with the genetic 

variants used as instruments.  
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Figure 5 – Estimated relationship between adiposity and smoking behaviour 

  
Figure shows (a) the estimated relationship between adiposity and smoking behaviour and (b) a potential 

underlying model that would give this result.  

 

A key assumption for the implementation of this method is that the association between 

genetic variants and the exposure of interest varies over the lifecourse. This may not be the 

case for all exposures, however it has been shown for body mass index (BMI) previously. 

For example; Hardy et al (2010) show that the association between two genetic variants in 

FTO and near MC4R vary in their association with BMI/body size over different ages using 

data for individuals aged 2 – 53.[43] Richardson et al (2020) conducted a genome-wide 

association study of self-reported body size at age 10 and adulthood BMI in UK Biobank and 

showed that the estimated association for many genetic variants differed between these two 

ages.[37] Twin studies have also shown that the genetic influence on BMI changes over 

different ages.[44] However other research has shown that the genetic influences on BMI 

are consistent across adulthood.[45] This would prevent the estimation of causal effects of 

different periods within adulthood using MVMR analysis. The assumption that genetic effects 

differ for each period should be considered for every application and can be tested with a 

conditional F-statistic.[18, 23]  

An assumption that all of the data is from the same underlying population is important 

to all summary-data MR analysis.[46, 47] This is likely to be particularly important when 

considering the same exposure at different ages as changes in the distribution of the 

exposure or the relationship between the exposure and the outcome between different 

cohorts could potentially bias the results obtained. The choice of datasets should be 

carefully considered if the same data cannot be used for each time point, for example; the 

distribution of childhood BMI levels has changed notably over the last 50 years and therefore 

it would not be correct to assume that BMI measured in a group of adults and children now 

would represent measures from the same population.  

An important assumption of all MR analyses is the assumption of no horizontal 

pleiotropy, i.e. that the exclusion restriction holds. This can be assessed in MVMR through 

examination of the Q-statistic for heterogeneity and the application of pleiotropy robust 
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methods.[18, 26, 27] However there may be heterogeneity in the SNP effects even in the 

absence of pleiotropy if the SNPs are associated with different trajectories for the exposure 

and the causal effect of the exposure varies over time. In this case those SNPs that have a 

larger association with the exposure in the time period with the largest causal effect will 

estimate a larger causal effect of the exposure on the outcome. This will inflate the 

heterogeneity Q-statistic even in the absence of conventional pleiotropic effects.  

Finally, we have throughout this work considered only a single measurement of the 

outcome. For many exposures and outcomes it may be possible that the outcome could also 

vary over time with the relationship between the exposure and outcome varying at different 

time points, and potentially also effects of earlier values of the exposure on later values of 

the outcome. This sort of relationship, with multiple different outcomes, cannot be estimated 

with standard MVMR methods. This is therefore left as an area of future research.  
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Tables 
 
Table 1 – Simulation results under different relationships between the genetic variants and 
the exposure at each time point.  

  MR MVMR 
Exposures associated with different latent 
periods 

  

�� Genetically predicted lifetime 
effect 0.344 0.200 

 Effect estimate 0.340 0.196 
 Est. Std. Error 0.029 0.011 
 Simulation Std. Error 0.011 0.011 
 Absolute bias 0.010 0.009 
 F-statistic 96.313  
 Conditional F-statistic  55.758 

�� Genetically predicted lifetime 
effect 0.376 0.300 

 Effect estimate 0.371 0.297 
 Est. Std. Error 0.015 0.009 
 Simulation Std. Error 0.008 0.009 
 Absolute bias 0.008 0.008 
 F-statistic 129.308  
 Conditional F-statistic  78.006 

Exposures associated with the same latent 
period 

  

�� Genetically predicted lifetime 
effect 0.530 0.200 

 Effect estimate 0.519 0.207 
  Est. Std. Error 0.011 0.080 
 Simulation Std. Error 0.011 0.080 
 Absolute bias 0.013 0.063 
 F-statistic 96.313  
 Conditional F-statistic  1.059 

�� Genetically predicted lifetime 
effect 0.480 0.300 

 Effect estimate 0.474 0.288 
 Est. Std. Error 0.009 0.073 
 Simulation Std. Error 0.009 0.072 
 Absolute bias 0.009 0.058 

 F-statistic 115.758  
 Conditional F-statistic  1.062 
N= 150,000, reps = 2000,  	� 
 0.2, 	� 
 0.3. Effect of X1 on X2 = 0.1. True genetically predicted effects for each 

estimation are given in the table. Absolute bias is the mean value of the absolute bias of the effect estimate 

across the simulations. For each of Effect estimate, Est. Std Error, F-statistic and Conditional F-statistic mean 

values across each iteration of the simulation are reported. Simulation Std. Error is the estimated standard error 

in the effect estimate across the repetitions in the simulation.  
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Table 2 – Simulation results for multiple time points with a causal effect from the outcome to 
the later time point. 

  MR MVMR 
    

�� Genetically 
predicted lifetime 

effect 
0.200 0.200 

 Effect estimate 0.196 0.078 
 Est. Std. Error 0.016 0.070 
 Simulation Std. 

Error 0.016 0.022 

 Absolute bias 0.013 0.122 
 F-statistic 96.338  
 Conditional F-

statistic  59.846 

�� Genetically 
predicted lifetime 

effect 
0.076 0.000 

 Effect Estimate 0.223 0.189 
 Est. Std. Error 0.056 0.055 
 Simulation Std. 

Error 0.018 0.021 

 Absolute bias 0.223 0.189 
 F-statistic 101.719  
 Conditional F-

statistic  70.823 

N= 150,000 reps = 2000,  	� 
 0.2. Effect of � on �� = 0.5. Absolute bias is the mean value of the absolute bias 

of the effect estimate across the simulations. For each of Effect estimate, Est. Std Error, F-statistic and 

Conditional F-statistic mean values across each iteration of the simulation are reported. Simulation Std. Error is 

the estimated standard error in the effect estimate across the repetitions in the simulation. 
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Table 3 – Simulation results with a relevant latent period excluded. 
  MR MVMR 

Correlated genetic effects    
�� Genetically 

predicted lifetime 
effect 

0.399 0.226 

 Effect estimate 0.387 0.210 
 Est. Std. Error 0.038 0.017 
 Simulation Std. Error 0.018 0.018 
 Absolute bias 0.015 0.017 
 F-statistic 96.457  
 Conditional F-

statistic  55.834 

�� Genetically 
predicted lifetime 

effect 
0.479 0.371 

 Effect estimate 0.446 0.366 
 Est. Std. Error 0.019 0.015 
 Simulation Std. Error 0.014 0.015 
 Absolute bias 0.033 0.010 
 F-statistic 129.482  
 Conditional F-

statistic  78.068 

Independent genetic effects   
�� Genetically 

predicted lifetime 
effect 

0.345 0.199 

 Effect Estimate 0.348 0.195 
 Est. Std. Error 0.036 0.023 
 Simulation Std. Error 0.022 0.024 
 Absolute bias 0.011 0.011 
 F-statistic 96.457  
 Conditional F-

statistic  55.834 

�� Genetically 
predicted lifetime 

effect 
0.396 0.320 

 Effect estimate 0.391 0.317 
 Est. Std. Error 0.022 0.020 
 Simulation Std. Error 0.018 0.020 
 Absolute bias 0.009 0.017 

 F-statistic 129.482  
 Conditional F-

statistic  78.068 

N= 150,000 reps = 2000,  	� 
 0.2, 	� 
 0.3. Total effect of �� on � = 0.232, total effect of �� on � = 0.320. 

Absolute bias is the mean value of the absolute bias of the effect estimate across the simulations. For each of 

Effect estimate, Est. Std Error, F-statistic and Conditional F-statistic mean values across each iteration of the 

simulation are reported. Simulation Std. Error is the estimated standard error in the effect estimate across the 

repetitions in the simulation. 
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Table 4 – Univariable and multivariable estimates for effect of child and adulthood BMI on 
smoking behaviour 

   MR – total effect MVMR – direct effect 

Exposure 
nSNP

s OR 95% C.I. P-value OR 95% C.I. P-value 
Smoking Initiation      

age_10 265 1.22 [1.12  1.32] 2.35E-06 0.97 [0.86  1.09] 0.614 

adult 467 1.36 [1.26  1.47] 1.77E-16 1.40 [1.27  1.55] 3.62E-11 

Smoking Cessation      

age_10 267 1.12 [1.02  1.24] 7.18E-03 0.95 [0.83  1.09] 0.420 

adult 469 1.25 [1.15  1.35] 2.69E-07 1.31 [1.16  1.47] 2.83E-06 

 
nSNP

s � 95% C.I. P-value � 95% C.I. P-value 

Cigarettes per day      

age_10 266 0.12 [0.06  0.18] 4.71E-06 -0.05 [-0.11  0.01] 0.174 

adult 467 0.24 [0.20  0.27] 7.05E-28 0.27 [0.21  0.33] 7.15E-20 
nSNPs; number of SNPs associated with the exposure, OR; MR estimated odds ratio for binary 
outcomes, �; MR effect estimate for continuous outcome, 95% CI; 95% Confidence Interval for MR 
estimate, P-value; P-value for MR estimate.  
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