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Abstract

We develop a stochastic, multi-strain, compartmental epidemic model to estimate the relative

transmissibility and immune escape of the Omicron variant of concern (VOC) in South Africa. The

model integrates population, non-pharmaceutical interventions, vaccines, and epidemiological data

and it is calibrated in the period May 1st, 2021 – November 23rd, 2021. We explore a parameter

space of relative transmissibility with respect to the Delta variant and immune escape for Omicron

by assuming an initial seeding, from unknown origin, in the first week of October 2021. We identify a

region of the parameter space where combinations of relative transmissibility and immune escape are

compatible with the growth of the epidemic wave. We also find that changes in the generation time

associated with Omicron infections strongly affect the results concerning its relative transmissibility.

The presented results are informed by current knowledge of Omicron and subject to changes.

Omicron; B.1.1.529 lineage; SARS-CoV-2; COVID-19; Epidemic modeling

Introduction

As of December 28th, 2021 the Omicron variant of concern (VOC) [1, 2] has been detected in more than

110 countries and territories around the world [3]. The variant was first designated as lineage B.1.1.529

on November 24th, then named Omicron and classified officially as VOC on November 26th [4]. Some

of the many mutations carried by the VOC have been linked to escape neutralising antibodies. Several

preliminary in vitro experiments confirmed this concerning property of the variant against which even the
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two dose vaccination appears to be less effective [5, 6]. Vaccines, natural acquired immunity, and boosters

however, still offer good protection against severe complications and deaths from the disease [2, 6].

South Africa - in particular the province of Gauteng - was the first country with evidence of Omicron

widespread community transmission [2]. At the beginning of May 2021, the country faced a large third

wave of infections driven by the Delta VOC. However, since the end of August both cases and deaths

have been on a downwards trend [7]. In South Africa only 24% of the population is fully vaccinated as

of late November 2021, thus hinting the suppression of the Delta wave, given the lack of very restrictive

non-pharmaceutical interventions in the period, was primarily due to high levels of natural immunity

across the population. The rapid increase of cases observed in South Africa signalled that the new variant

has a marked growth advantage over the Delta VOC. The rapid diffusion of Omicron, in a background

of receding Delta, might be explained by increased transmissibility, immune escape, or a combination

of both. Early evidence from statistical analysis of possible reinfections, suggests indeed significant

capabilities of escape from naturally acquired immunity [7].

Here, we develop a multi-strain, stochastic, compartmental epidemic model for South Africa to iden-

tify some of the features of the Omicron VOC compatible with epidemiological observations. The model

takes as input data about demographics, age-stratified contact patterns, non-pharmaceutical interven-

tions (NPIs), vaccine rollout, and confirmed COVID-19 deaths and cases (see Materials and Methods for

details). We perform a multi-stage calibration applying an Approximated Bayesian Computation (ABC)

method [8]. For Omicron, we explore a parameter space defined by the combination of the relative trans-

missibility with respect to Delta and immune escape with respect to both naturally acquired immunity

and vaccines. We obtain the joint posterior distribution of these parameters compatible with the obser-

vations for the confirmed cases until December 13th, 2021 (rescaled to account for under-reporting). The

results highlight the non-identifiability of both relative transmissibility and immune escape. Rather, at

this stage it is possible to define a region of credible values where an increase in relative transmissibility

is compensated by a reduction of immune escape and vice-versa. It is important to notice how the

joint posterior distribution is function of the seeding timing and size as well as of the generation time

of Omicron infections. Short generation times (i.e., 3.5 days) with respect to the Delta VOC (i.e., 5.5

days) shift the joint posterior distribution to a region with lower values of transmissibility advantage for

Omicron. The presented results are informed by current knowledge of the variant and subject to changes

as new evidence and data will be available.

Results

We use a stochastic, multi-strains, and compartmental epidemic model at the national level in South

Africa. It features demographics, age-structured contacts patterns, NPIs, vaccines, and epidemiological
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data on confirmed deaths and cases (see more information in the Material and Methods section). In order

to estimate the properties of the Omicron variant we adopt a multi-stage calibration process. Starting

around May 2021, the country experienced a third pandemic wave fuelled by the Delta VOC [7]. This

variant was able to replace the Beta VOC, which was responsible for the second wave. Before the ap-

pearance of Omicron, Delta was responsible for the large majority of cases. Hence, we first fit the model

allowing just for one strain in the period May 1st, 2021 – November 23rd, 2021. To this end, we adopt

the ABC method applied to the weekly confirmed deaths (see Material and Methods). In particular,

we obtain the posterior distributions for transmissibility, delay between deaths and their reporting, ini-

tial conditions, seasonality, infection fatality rates multiplier respect to the estimates from Ref. [9], and

under-reporting in deaths (see Material and Methods for more details). Across the board we estimate

that the surveillance system in South Africa was able to detect 1 out of 16 infections in the period from

May to November , 2021. These numbers are in line with independent estimates done by Institute for

Health Metrics and Evaluation (IHME) which suggests the detection of 1 out of 15 cases [10, 11]. We then

study the impact of Omicron by assuming an initial seeding, from unknown origin, in the first week of

October 2021. Preliminary evidences from phylogenetic analysis suggest the median date of the common

ancestor, of all available Omicron samples, in early October (90% CI: [30 September - 20 October]) [12].

As we do not have information about the number of initial seeds, we sample a flat prior distribution

σ = [10 − 1000] seeds. We define the Omicron transmissibility by setting η = ROmicron
0 /RDelta

0 as the

ratio of the basic reproductive numbers for Omicron and Delta (see Materials and Methods for more

details). The immunity evasion of Omicron is introduced with single factor α which describes the reduc-

tion of vaccine efficacy and protection from reinfection (see Material and Methods for more details). We

explore the η × α× σ parameter space and apply an Approximate Bayesian Computation approach to

select values compatible with the evidence for the number of confirmed cases.

Spreading and immune escape potential. In Figure 1 we plot the joint posterior distribution of

η and α values. We consider two cases: in the first one, Omicron has the same generation time of Delta

(TG = 5.5 days), while in the second one we assume a shorter generation time (TG = 3.5 days) [13].

We start with a flat three-dimensional prior (on η, α, and number of initial seeds). Note how the two-

dimensional plot is a projection of the posterior values of the initial seeds. While large regions of the

parameter space are rejected by the ABC approach, it emerges a plausible region that corresponds to the

non-identifiable nature of both parameters. Generally speaking, the higher the immune escape α, the

smaller η. Intuitively, Omicron’s large value of immune escape can be compensated by changes in the

relative transmissibility with respect to Delta and vice versa. The number of initial seeds plays a role.

For smaller values of seeds the joint posterior distribution peaks for large value of the relative transmis-

sibility and low immune escape (not shown in the figures). As the number of seeds increases large values
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Figure 1: Joint posterior distribution of relative transmissibility (η) and immune escape (α) for two
values of the generation time of Omicron (TG = 5.5 days on the left and TG = 3.5 days on the right).
The plot highlights the regions of the phase-space compatible with current observations. The colors
describe the joint posterior distribution hence the probability that each pair of values is selected in the
calibration. The lighter the color the closer the pair of values is to cases. Dashed white horizontal lines
indicate the case when Omicron has the same transmission rate as Delta.

of η are dropped and the posterior shifts towards a more significant immunity escape. Interestingly, the

generation time plays an important role in the values selected by the calibration process. When TG = 5.5

days, the selected values of η go from ∼ 3 when α ∼ 0% and approach 1 (i.e., same transmissibility of

Delta) for very large values of α. For TG = 3.5 days, the maximum values of relative transmissibility

in absence of immune escape are around 2 and fall below 1 (i.e., lower transmissibility of Delta) when

α > 70%. In the next sections we will consider the case TG = 5.5 days but very similar conclusions can

be drawn in the case of shorter generation time.

Path towards dominance. In Figure 2 we plot the share of cases due to the Omicron VOC consid-

ering the joint posterior distribution for η, α and σ. The plot suggests that Omicron reached dominance

(i.e., more than 50% of cases) in mid-November and replaced Delta by early December. This finding is in

line with current genomics data from the sample collected in the region [14]. To put this into perspective,

estimates about the time to dominance of the Alpha variant across Europe are between 3 to 4 months [15].

Reproduction number estimates. In Figure 3-A we plot the reproductive numbers Rt (estimated

via Epiestim [16]) for the Delta and Omicron VOC assuming the same generation time TG = 5.5 days.

The first observation is that the Delta VOC is subcritical (i.e., Rt ∼ 0.8). This finding is consistent

with the decreasing trends before the emergence of Omicron. The values of the reproductive number

of Omicron are above 1.6 until the last few data points where we see an inflection. By looking at both

variants together we observe how the arrival of Omicron quickly shifted the values of Rt from below one

to values around 1.7 in about two months since the seeding. In Figure 3-B, we plot the ratio between the
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Figure 2: Omicron’s path towards dominance. The plots accounts for all the η, α and initial seeds σ
values selected by the calibration.

Rt of Omicron and the equivalent quantity for Delta. While we note a rather large confidence intervals

the median values are well above 2.2, confirming how the Omicron has a clear growth advantage with

respect to Delta in South Africa.

Discussion

Key questions about the Omicron VOC revolve around its relative transmissibility with respect to Delta,

the potential for immune escape, and its severity. Although large uncertainties are surrounding Omicron,

early statistical analyses suggest the variant is indeed able to reinfect individuals at rates higher than

previous VOCs [7] and vaccines might be less effective against infection [5]. Our results are in line with

these findings and identify a joint posterior distribution for the relative transmissibility with respect

to Delta (η), and immune escape (α) of the Omicron variant. Current data however does not allow

to identify uniquely both parameters, and we find a region where a large spreading advantage might

be compensated by a limited immune escape and vice versa. Interestingly, we found that the assumed

generation time of Omicron has a significant influence on the results. The findings reinforce the very

fast growth of Omicron that is estimated to be the dominant strain in the region since the second week

of November (CI [November 2nd, 2021 – November 17th, 2021]).

It is important to acknowledge the limitations of our approach. The compartmental structure adopted

is relatively simple and does not account explicitly for asymptomatic transmission, and different degrees

of severity (i.e., hospitalizations and ICUs). While our model accounts for the COVID-19 vaccine rollout,

we have access to limited information about the exact number of different vaccines (i.e., AstraZeneca,

J&J, Pfizer, Moderna) administered. For simplicity we assume a two doses regiment across the board.
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Figure 3: Rt for Omicron, Delta VOC, and for both on the left. Ratio of Rt of the two VOC competing
in South Africa. The plots accounts for all the relative transmissibility, immune escape, and initial seeds
values selected by the calibration.

We set several parameters driving the natural history of the disease using estimates from previous SARS-

CoV-2 variants. The large number of mutations and divergence of Omicron could affect some of these

values. We model immune escape from previous infections and vaccines with a single parameter. Finally,

our model does not consider geographical heterogeneity.

Our results confirm that more data is necessary to estimate the key characteristics of the Omicron

VOC. Nevertheless, region of values (capturing its relative transmissibility with respect to Delta and

its potential for immune escape) compatible with current observations confirms the likelihood for the

Omicron variant of igniting new pandemic waves in regions with high attack rates from previous strains

and/or vaccination rates. Data about the severity of Omicron with respect to Delta and the ancestral

SARS-CoV-2 viruses are going to be crucial in assessing the impact of on the health-care system of

countries affected by surges driven by the Omicorn variant [2, 17].

Materials and Methods

Demographic and epidemiological data. We use epidemiological data from the COVID-19 Data

Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University and

from official sources [18, 19]. The number of individuals in different age groups is taken from the United

Nation World Population Prospects [20].

Disease transmission model. The disease progression is modeled via a compartmental model. Sus-

ceptible and healthy individuals (S) interacting with the Infectious (I) enter the Latent stage (L). After

the latent period (ϵ−1), L individuals become infectious. Finally, after the infectious period (µ−1), I

transition to the Recovered (R) compartments. Compatibly with the characteristics of the Delta SARS-
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CoV-2 variant (which was prevalent in South Africa during the period considered before the arrival of

Omicron), we set ϵ−1 = 3 days and µ−1 = 2.5 days [21–23]. We consider individuals divided into 10 age

groups: [0− 9, 10− 19, 20− 24, 25− 29, 30− 39, 40− 49, 50− 59, 60− 69, 70− 79, 80+], and we describe

frequency of contacts between age groups with a country-specific contacts matrix from Ref. [24]. The

transmission rate is β and the force of infection depends on the age-stratified contact matrix.

We compute the daily number of deaths from individuals entering the R compartment using the

age-stratified Infection Fatality Rate (IFR) from Ref. [9]. To account for delays due to reporting and

hospitalization we record deaths computed on the recovered in day t after ∆ days. We also introduce

a seasonal term to account for changes in factors such as humidity and temperature that can influence

transmissibility [25, 26]. This implies a modulation of the effective reproductive number Rt → si(t)Rt,

with si(t) equal to si(t) = 1
2

[(
1− αmin

αmax

)
sin

(
2π
365 (t− tmax,i) +

π
2

)
+ 1 + αmin

αmax

]
, where i refers to the

hemisphere considered, and tmax,i is the day associated to the maximum of the rescaling function. For

the southern hemisphere it is fixed to July 15th. In the simulations, we set αmax = 1 and consider αmin

as a free parameter (see more details below).

We extend this framework with specific compartments to account for vaccinations and the introduc-

tion of the Omicron VOC. First, we model vaccinations as follows. Individuals who received the 1st dose

of vaccine transition to a new compartment V1. Infection probability for V1 individuals is reduced by a

factor 1−V ES1, where V ES1 represents the effectiveness of vaccine against infection. If they get infected

their IFR is also reduced by a factor 1−V EM1. It follows that the overall efficacy of the 1st dose against

death is V E1 = 1 − (1 − V ES1)(1 − V EM1). V1 individuals then receive the second inoculation and

transition to the compartment V2. The 2nd dose has an efficacy V ES2 and VM2 (overall efficacy against

death V E2 = 1− (1−V ES2)(1−V EM2)). We consider all vaccinated individuals are less infectious by a

factor (1− V EI) [27]. We assume that S, L, and R individuals can get the vaccine and since protection

is not immediate, we introduce a delay of ∆V days between administration (of both 1st and 2nd dose)

and actual effect of the vaccine. We consider the number of 1st and 2nd doses administered daily in

South Africa from Ref. [28] and we assume that the vaccine rollout proceeded prioritizing the elderly.

The introduction of a SARS-CoV-2 variant is modeled as follows. We add specific L and I com-

partments to account for individuals who are infected with Omicron. We assume that its transmission

rate is ψβ. For example, ψ = 0.5 indicates that the transmission rate of Omicron is half that of Delta,

ψ = 1.0 the same of Delta, and ψ = 2.0 twice that of Delta. In the results presented in Fig. 1 we

considered two scenarios with different generation time TG = 5.5 days, and TG = 3.5 days. The basic

reproductive number in our model is R0 = ρ(C)βµ , where ρ(C) is the leading eigenvalue of the contacts

matrix. We explore values of the relative transmissibility η = ROmicron
0 /RDelta

0 between 0.25 and 3.0 in

both scenarios.

In the week November 30th, 2021 – October 7th, 2021 we introduce σ seeds of the Omicron variant
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in the infected compartments (half in I and half in L compartment), and we distribute them in different

age groups proportionally to their size. When we introduce the first Omicron infection we also move R

individuals to a new compartment R̂. We use a parameter α to describe the ability of Omicron VOC

to escape natural and vaccine acquired immunity. We assume that individuals in V1, V2, and R̂ com-

partments see their protection provided by immunity reduced by a factor (1− α). We assume also that

initial protection of R̂ is equal to that of V2 individuals.

Modeling of mitigation policies. We quantify the time varying variation in contacts due to mitiga-

tion policies by using Google mobility reports [29]. The Google mobility report provides the percentage

change rl(t) on day t of total visitors to specific locations l with respect to a pre-pandemic baseline. We

turn this quantity into a rescaling factor for contacts such as ω(t) = (1 + rl(t)/100)
2, by considering

that the number of potential contacts per location scales as the square of the the number of visitors.

The factor ω(t) is then multiplied to the overall contacts matrix C. As rl(t) we use the average of the

fields workplaces percent change from baseline, retail and recreation percent change from

baseline and transit stations percent change from baseline.

Model Calibration. We use an Approximate Bayesian Computation (ABC) approach [8, 30]. A prior

distribution P (θ) is defined for the parameters θ. At each step of the calibration procedure, a set of

parameters θ̂ is sampled from P (θ) an an instance of the model is generated using θ̂. Then an output

quantity E′ from the model is compared to the corresponding real quantity E using a distance metric

s(E,E′). If s(E,E′) is smaller than a predefined tolerance δ, then the sets θ̂ is accepted, otherwise is

rejected. The procedure continues until N sets are accepted. The empirical distribution of the sampled

θ̂ is an approximation of the real posterior distribution of the parameters. Model estimates are then

obtained generating an ensemble of trajectories sampled from the approximate posterior. Here we use

the weighted mean absolute percentage error (wMAPE) as distance metric and weekly deaths as output

quantity, and we set δ = 0.25. The parameters θ and the related prior distribution are:

• the transmissibility β; we explore uniformly values such that the reproductive number on the first

day of simulation is between 1.0 and 2.5;

• the seasonality factor αmin ∼ U(0.5, 1.0) (0.5 implies strong seasonality while 1.0 no seasonality);

• the delay in deaths ∆ ∼ U(10, 30) (discrete values);

• the initial number of infected individuals; we explore uniformly values between 1 and 10 times

the number of reported cases in the week before the start of the simulation. We then assign

these individuals to the infected compartments (L, I) proportionally to the time spent there by

individuals (ϵ−1 for L and µ−1 for I);
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• the initial number of recovered; we explore uniformly values between 2 and 20 times the total

number of reported cases up to the start of the simulation;

• the percentage of deaths that are reported ∼ U(25%, 100%);

• a multiplier of the IFR ∼ U(0.5, 2.0)

The model is calibrated over the period May 1st, 2021 – November 23rd, 2021.

We use the ABC approach also to identify the posterior of Omicron parameters: relative transmissi-

bility respect to Delta η = ROmicron
0 /RDelta

0 , immune escape potential α, and number of initial seeds σ.

We consider values of η between 0.25 and 3.0, values of α between 0% and 100%, and 10, 50, 100, 500, 1000

initial Omicron seeds introduced in first week of October 2021. We repeat the simulations over this grid

of (η, α, σ) values during the period November 26th, 2021 – December 13th, 2021 and we compare the

simulated incidence to the reported daily incidence in South Africa using the wMAPE. For each triplet

(η, α, σ), we perform 1500 stochastic realizations and we compute the posterior distribution considering

the top 5% runs.
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