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New and more transmissible variants of SARS-CoV-2 have
arisen multiple times over the course of the pandemic. Rapidly
identifying mutations that affect transmission could improve
our understanding of viral biology and highlight new variants
that warrant further study. Here we develop a generic, ana-
lytical epidemiological model to infer the transmission effects
of mutations from genomic surveillance data. Applying our
model to SARS-CoV-2 data across many regions, we find mul-
tiple mutations that substantially affect the transmission rate,
both within and outside the Spike protein. The mutations that
we infer to have the largest effects on transmission are strongly
supported by experimental evidence. Importantly, our model
detects lineages with increased transmission even at low fre-
quencies. As an example, we infer significant transmission ad-
vantages for the Alpha, Delta, and Omicron variants shortly
after their appearances in regional data, when their local fre-
quencies were only around 1-2%. Our model thus facilitates the
rapid identification of variants and mutations that affect trans-
mission from genomic surveillance data.

Introduction

Viruses can acquire mutations that affect how efficiently they
infect new hosts, for example by increasing viral load or es-
caping host immunity ™. The ability to rapidly identify mu-
tations that increase transmission could inform outbreak con-
trol efforts and identify potential immune escape variants>~.
However, estimating how individual mutations affect viral
transmission is a challenging problem.

To address this challenge, we developed a method to infer
the effects of single nucleotide variants (SN'Vs) on viral trans-
mission that systematically integrates genomic data from dif-
ferent outbreak regions. Our analytical approach is based on
a simple epidemiological model, allowing it to be efficiently
applied to large data sets and opening the door to future theo-
retical extensions. Our method is also automatic in the sense
that it relies only on sequence data and does not require, for
example, clustering sequences into discrete “variants.” An
additional advantage of our approach is that relative changes
in viral transmission are statistically explained in terms of
the specific mutations that different viruses bear, highlight-
ing mutations that may be especially biologically important.
For clarity, we refer to non-reference nucleotides (including
deletions or insertions) as SNVs and viral lineages possessing

common sets of SN'Vs as variants. Simulations show that our
approach can reliably estimate transmission effects of SNVs
even from limited data.

We applied our method to more than 7.4 million SARS-
CoV-2 sequences from 149 geographical regions to reveal
the effects of mutations on viral transmission throughout the
pandemic. While the vast majority of SARS-CoV-2 muta-
tions have negligible effects, we readily observe increased
transmission for sets of SNVs in Spike and other hotspots
throughout the genome.

Importantly, our approach is sensitive enough to identify
variants with increased transmission before they reach high
frequencies. This is demonstrated by studying the rise of
the Alpha and Delta variants in Great Britain and Omicron
in South Africa. We reliably infer increased transmission
for these variants soon after their emergence, when their fre-
quency in the region was only around 1-2%. An untargeted
search for sets of mutations that strongly increase viral trans-
mission also reveals multiple collections of SNVs belonging
to well-known variants. Collectively, these data show that
our model can be applied for the surveillance of evolving
pathogens to robustly identify variants with transmission ad-
vantages and to highlight key mutations that may be driving
changes in transmission.

Results

Epidemiological Model

To quantify the effects of mutations on viral transmission,
we developed a generalized Galton-Watson-like stochas-
tic branching process model of disease spread (Methods).
Branching processes have been frequently used to model the
stochastic numbers of infections in a population'®!!. Our
model incorporates superspreading by drawing the number of
secondary infections caused by an infected individual from a
negative binomial distribution with mean R, referred to as
the effective reproduction number, and dispersion parameter
k (refs. 12‘17). Multiple variants with different transmission
rates are included by assigning a variant a an effective repro-
duction number R, = R(1+w,). Under an additive model,
the net increase or decrease in transmission for a variant is the
sum of the individual transmission effects s; for each SNV 4
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that the variant contains. In analogy with population genet-
ics, we refer to the w, and s; as selection coefficients.

We then apply Bayesian inference to estimate the trans-
mission effects of SN'Vs that best explain the observed evo-
lutionary history of an outbreak. To simplify our analysis, we
use a path integral technique from statistical physics, recently
applied in the context of population genetics '8, to efficiently
quantify the probability of the model parameters given the
data (for details, see Supplementary Information). This al-
lows us to derive an analytical estimate for the maximum a
posteriori selection coefficients §, normalized per serial in-
terval, for a given set of viral genomic surveillance data,

5= [YI+Cw] 'Ac. )

Here Az is the change in the SNV frequency vector over
time, 7/ is a rescaled regularization term proportional to the
precision of a Gaussian prior distribution for the selection co-
efficients s; (Methods), and [ is the identity matrix. The
dispersion parameter k£ and number of infected individuals
N, analogous to a population size in population genetics,
are absorbed into the definition of 7/. Ciyg is the covari-
ance matrix of SNV frequencies integrated over time, and ac-
counts for competition between variants as well as the speed
of growth for different viral lineages (Supplementary Infor-
mation). Data from multiple outbreaks can be combined by
summing contributions to the integrated covariance and fre-
quency change from each individual trajectory (Methods).
Our theoretical model could also be extended to incorporate
additional features of disease transmission, such as the travel
of infected individuals between different outbreak regions.

Validation in simulations

To test our ability to reliably infer selection, we analyzed sim-
ulation data using a wide range of parameters. We found that
inference is accurate even without abundant data, especially
when we combine information from outbreaks in different
regions (Fig. 1, Supplementary Fig. 1). Because we model
the evolution of relative frequencies of different variants, ac-
curate inference of selection does not require the knowledge
of difficult-to-estimate parameters such as the current number
of infected individuals or the effective reproduction number
(Methods). Simulations also demonstrated that our model is
robust to variations in effective reproduction numbers in dif-
ferent regions (Supplementary Fig. 2).

Global patterns of selection in SARS-CoV-2

We studied the evolutionary history of SARS-CoV-2 using
genomic data from GISAID !° as of January 26, 2024. We
separated data by region and estimated selection coefficients
jointly over all regions (Methods). After filtering regions
with low or infrequent coverage, our analysis included more
than 7.4 million SARS-CoV-2 sequences from 149 different
regions, containing 1,398 nonsynonymous SNVs observed at
nontrivial frequencies.

Our analysis reveal that, while the majority of SNVs were
nearly neutral, a few dramatically increased viral transmis-
sion (Fig. 2a, Supplementary Table 1). We observe clusters

a
T ————— e T — ——
PR, e —
>
o
C
[}
=]
o
o
w
PPN
- o
T T T T T 1T T T T 1
0 10 20 30 40 50 -2 0 2 4
Time (serial intervals) Inferred selection
b coefficient, § (%)
7.5
— o Beneficial
R 5 Neutral
= @ Deleterious
I . True selection
g coefficient
g 25 _ Mean inferred
fr coefficient

0 | ULl ....I|III|||||

Il
T T T T
5

-10 -75 -5 -25 0 2.

5 75 10

Inferred selection coefficient, § (%)

Fig. 1. Our approach accurately estimates transmission effects of mutations
in simulations. Simulated epidemiological dynamics beginning with a mixed pop-
ulation containing variants with beneficial, neutral, and deleterious mutations. a,
Selection coefficients for individual SNVs, shown as mean values + one theoret-
ical s.d., can be accurately inferred from stochastic dynamics in a typical simu-
lation (Supplementary Information). b, Extensive tests on 1,000 replicate simu-
lations with identical parameters show that inferred selection coefficients are cen-
tered around their true values. Deleterious coefficients are slightly more challenging
to accurately infer due to their low frequencies in data. Simulation parameters. The
initial population is a mixture of two variants with beneficial SNVs (s = 0.03), two
with neutral SNVs (s = 0), and two with deleterious SNVs (s = —0.03). The num-
ber of newly infected individuals per serial interval rises rapidly from 6,000 to around
10,000 and stays nearly constant thereafter. Dispersion parameter k is fixed at 0.1.

of SN'Vs with strong effects on transmission along the SARS-
CoV-2 genome (Fig. 2b). The highest density of SNVs
that increase transmission is in Spike, especially in the S1
subunit (Supplementary Fig. 3). Of the top 20 mutations
that we infer to be most strongly selected, 16 are in Spike
(Supplementary Table 1). However, SNVs with a strong se-
lective advantage are also found in other proteins, especially
in N, NSP4, NSP6, and NSP12.

Mutations inferred to strongly increase transmission

The top 50 mutations inferred to increase SARS-CoV-2 trans-
mission the most are listed in Fig. 2¢ and Supplementary
Table 1. Experimental evidence directly or indirectly sup-
ports 48 of these 50 inferences. For clarity, we will reference
mutations at the amino acid level rather than the underlying
SNVs, which are also given in Supplementary Table 1.

Spike mutations F486P, Q498R, Q954H, N460K, P681R,
R346T, N969K, and N679K comprise 8 of the top 10 muta-
tions, and all have demonstrated functional effects that could
increase transmission?%>3. Similarly, Spike mutations in
the receptor binding motif (RBM) such as F486P, Q498R,
N460K, N450D, T478K, N501Y, L452R, and the so-called
FLip mutations L455F and F456L appear prominently in our
analysis, comprising 9 of the top 25 mutations. Most of
these mutations have been shown to increase resistance to
RBM-specific neutralizing antibodies’’2%>%%2% and the ma-
jority also enhance ACE2 receptor binding *2!-27-31
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Fig. 2. Inferred transmission effects of SARS-CoV-2 mutations. a, The majority of the 1,320 nonsynonymous SNVs included in our study are inferred to have negligible
effects on transmission (that is, § close to zero). However, a few SNVs have strong effects, as evidenced by a large value of §. b, Patterns of selection across the SARS-CoV-2
genome. Beneficial SNVs often cluster together in the genome. Clustering is especially apparent for the S1 subunit of Spike, where many SNVs that are inferred to have
the largest effects on transmission are located. ¢, Top 50 mutations inferred to increase SARS-CoV-2 transmission the most, the major variants in which these mutations
are observed, their phenotypic effects, and selection coefficients (see Supplementary Table 1). The same colors are used to represent each major variant in Figs. 3-4 and
Supplementary Fig. 4. We cluster experimental phenotypic results into five categories: antibody evasion; other immune evasion; increases in replication and/or infectivity;
ACE2 receptor binding and cell entry; and mutations affecting protein structure and/or cleavage.

Of these, N501Y (8§ = 10.1%, ranked 15th) is shared by
almost all major SARS-CoV-2 variants. Q498R, N460K,
and T478K are shared by all Omicron variants. Beyond the
functional effects above, N501Y is known to increase trans-
mission of infection? and to help maintain Spike in an ac-
tive conformation for receptor recognition?!. Eight Spike N-
terminal domain (NTD) mutations/deletions (T19R/I, A142,
A157/F157L, H245N, A264D, and G142D) are also strongly
selected. These lie in the antigenic supersite where mutations
have been shown to decrease the neutralization potency of
NTD-specific monoclonal antibodies?'3*.  Spike mutations
unique to the recently emerged Omicron variants BA.2.86
and JN.1 (N450D, V445H, K356T, E554K, H245N, and
A246D) along with those found in the KP.2 and KP.3 vari-
ants which have become globally dominant in 2024 (R346T,
F456L), rank among the top mutations identified in our anal-
ysis. All these mutations are known to impact either ACE2
receptor binding or antibody neutralization 23437,

Research on viral transmission has naturally focused on
Spike because of its role in viral entry and as a target of
neutralizing antibodies. However, our analysis also reveals
strongly selected mutations outside of Spike. These in-
clude the NSP4 mutation T492I, and Nucleocapsid mutations
R203M/K, A32/R32C, and P13L. NSP4 mutation T4921I (5 =
16.6%, ranked 2nd) was reported to increase viral replica-
tion and infectivity, enhance cleavage of the viral protease
NSP5, and contribute to immune evasion based on experi-
ments and animal models*®. Nucleocapsid mutation R203M
(8 = 11.4%, ranked 13th) is in the linker region of the pro-
tein and enhances viral RNA replication, delivery, and pack-
aging, which may increase transmission’®. Studies suggest
that NSP6 mutations A106 and S106T (ranked 3rd and 38th,
§=16.5and § = 6.6) and F108L (ranked 23rd, § = 7.6) may
increase transmission by interferon antagonism“’. We also
find additional mutations outside of Spike, such as G671S in
the RNA-dependent RNA polymerase NSP12 and A32 in N,
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that are highly selected and may be good targets for further
experimental study. Our model thus highlights non-Spike
mutations that may confer a selective advantage to emerging
variants.

Estimates of selection for major SARS-CoV-2 variants

We estimated the net increase in viral transmission relative
to the WIV04 reference sequence for well-known SARS-
CoV-2 variants by adding contributions from the individual
variant-defining SNVs (Fig. 3 and Supplementary Fig. 4,
see Methods). Because our model uses global data and infers
the transmission effects of individual SNVs, variants can be
compared to one another directly even if they arose on dif-
ferent genetic backgrounds, or if they appeared in different
regions or at different times. This also allows us to infer sub-
stantially increased transmission for variants such as Gamma
or Mu, which never achieved the level of global dominance
exhibited by variants like Alpha, Delta, Omicron, or XBB
(Supplementary Fig. 4).

Our findings are consistent with past estimates that have
shown a substantial transmission advantage first for Al-
pha and then for Delta relative to other pre-Omicron lin-
eages*!~*3. However, past estimates have varied substantially
depending on the data source and method of inference. In dif-
ferent analyses, Delta has been inferred to have an advantage
of between 34% and 97% relative to other pre-Omicron lin-
eages*#24* Similarly, Alpha has been estimated to increase
transmission by 29% to 90% relative to pre-existing lineages
in different regions>*!"*>*7_ One advantage of our approach
is that it can infer selection coefficients that best explain the
growth or decline of variants across many regions, allowing
for more even comparisons.

Over the period of data that we analyzed, Omicron and
its subvariants display clear, large increases in transmission
over past variants (Fig. 3). The transmission advantage of
BA.1 (@ = 170%), which we estimate to be the least trans-
missible of Omicron subvariants, is roughly twice as large as
the inferred selection coefficient for Delta (0 = 85%). More
recent variants of Omicron, such as XBB (& = 280%) are
inferred to be substantially more transmissible.

In general, we find that the contributions of individual
SNVs to the overall selection coefficient w for a variant are
very heterogeneous. A small fraction of mutations are re-
sponsible for most of the increase in transmission. As an ex-
ample, Supplementary Fig. 5 shows the relative contribution
of each Alpha, Delta, and Omicron (BA.1) SNV to the total
selection coefficient w for the variant. In each case, fewer
than 20% of SNVs are responsible for more than 80% of the
increase in transmission.

Detection of selection at low frequencies

We asked whether strong selection could be inferred for
beneficial SNVs when they are still at low frequencies, be-
fore they dominate the viral population. To explore this,
we considered the rise of the three major variants of con-
cern (VOCs): Alpha and Delta in Great Britain, and Omicron
(BA.1) in South Africa. We computed the inferred selec-
tion coefficient @ for each variant in each region at different
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Fig. 3. Multiple SARS-CoV-2 variants strongly increase transmission rate. Fre-
quencies of major variants and their total inferred selection coefficients, shown as
mean values + one s.d. from bootstrap subsampling of regional data (Methods),
defined relative to the WIV04 reference sequence. Selection coefficients for vari-
ants with multiple SNVs are obtained by summing the effects of all variant-defining
SNVs.

points in time, as the VOCs began increasing in frequency.
Selection coefficients were computed at different times by fil-
tering the sequence data from GISAID to exclude sequences
after a specific cutoff date. Note that this approach is dif-
ferent from previous sections, which used all data through
January 26, 2024 to compute selection coefficients. To focus
on selection for novel SNVs, we removed putative beneficial
SNVs that had been previously observed in other VOCs from
the estimates of w.

We found that the inferred selection coefficients for novel
Alpha SNVs rose rapidly as the variant was emerging
(Fig. 4a). At the time that Public Health England labeled Al-
pha a variant of interest (VOI)*®, the inferred selection coef-
ficient for novel Alpha SNVs was around 15%. When Alpha
was declared a VOC?, this had grown to around 45%. These
statistics would indicate a substantial transmission advantage
for Alpha relative to co-circulating variants. Notably, we in-
ferred novel Alpha SNVs to be strongly beneficial even while
the variant remained at low frequencies in Great Britain.

Similar analyses show that our model rapidly infers in-
creased transmission for novel SNVs in Delta and Omi-
cron. The selection coefficient for novel Delta SNVs in
Great Britain was around 60-70% when it was classified as
a VOC?° (Fig. 4b). No full-length Omicron sequences were
available on GISAID when it was designated as a VOC?!.
However, the first Omicron data from South Africa uploaded
on December 7, 2021, clearly revealed an enormous trans-
mission advantage for Omicron (Fig. 4¢).

In each of these examples, strong selection was detectable
even for variants at low frequencies. To illustrate this point,
we filtered SARS-CoV-2 sequence data by its collection date
in each of these regions and computed the frequency of the
Alpha, Delta, and Omicron variants over time. At the time
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Fig. 4. Our model rapidly infers increased transmission for Alpha, Delta, and Omicron (BA.1) SNVs. Inferred selection coefficients for novel SNVs in Alpha in Great
Britain (a), Delta in Great Britain (b), and Omicron (BA.1) in South Africa (c) over time. Selection coefficients were computed over time according to GISAID data filtered by
collection date or submission date. Selection coefficients given for a particular date include only data collected or submitted on or before that date. Variant frequencies are

computed using sequence data filtered by collection date.

that each variant reached a frequency of 2% in the popu-
lation, their inferred selection coefficients for novel SNVs
were 11%, 16%, and 21% for Alpha, Delta, and Omicron,
respectively. These results show that our model can identify
SNVs associated with higher transmission even when they
are present in a small fraction of all infections in a region.
Robust identification of beneficial SNVs

Identifying variants that increase transmission in real time
could inform public health efforts and highlight important as-
pects of viral biology. However, the inherent stochasticity of
infection and data collection makes accurate inferences dif-
ficult. For example, neutral or modestly deleterious SNVs
may initially appear to be beneficial due to a transient rise in
frequency despite having no selective advantage.

To explore the effects of fluctuations on estimates of selec-
tion, we first quantified the inferred selective advantage for
all variants @ (including both SN'Vs and collections of SNVs
that are strongly linked to one another, see Methods) in each
region, for each day that data was submitted to GISAID. As
in the previous section, data was filtered by submission date,
such that selection coefficients computed for a specific date
used only sequences that were submitted to GISAID on or
before that date. Here, we progressively step through time in
each region, adding sequences according to their submission
date and re-analyzing the data in each region separately.

Although variation in sampling could produce temporary
spikes in inferred selection coefficients, we reasoned that
large w are much more likely to be observed for variants with
real, substantial advantages in transmission. To test this rea-
soning, we used the w to identify variants with especially
large inferred effects on transmission, which we refer to as
high growth (HG) variants (@ > 6 for some threshold value
#). In each region, we began at the first time point that data
was submitted to GISAID and stepped through each subse-
quent upload date. At each step, we classified strongly
linked SNVs with @ > 6 as HG and excluded these SNVs

from future analysis in the same region.

While it is difficult to conclusively determine whether the
classification of a group of SNVs as HG is “correct” or “in-
correct”, we conservatively assumed that (groups of) SNVs in
major variants denoted by Greek characters or the B.1 vari-
ant should be correctly labeled as HG (true positives), and
any other SN'Vs classified as HG constitute false positives.
With this convention, the fraction of true positives increases
steadily along with the threshold #, such that more than 95%
of variants classified as HG are true positives for 6 > 18.5%
(Supplementary Fig. 6). Thus, variants with inferred selec-
tion coefficients @ > 18.5% in any region and at any time are
highly likely to have a substantial transmission advantage.
This threshold could then be used to highlight new variants
of particular interest.

We further studied the cumulative fraction of variant-
defining SNVs that were classified as HG for 10 major
SARS-CoV-2 variants, over time and in 7 broad geograph-
ical regions (Supplementary Fig. 7). Despite our stringent
threshold of # = 18.5%, a large fraction of variant-defining
SNVs are ultimately found in HG groups in one or more re-
gions. HG groups encompassing most SARS-CoV-2 variants
were also independently detected across different regions,
usually within a short period. Importantly, for these vari-
ants, around 10-30% of variant-defining SNVs were classi-
fied as HG before the variants began wide circulation among
humans. This means that not only were some variant-defining
SNVs observed in prior variants, they were also highlighted
in our approach as SNVs that were likely to substantially in-
crease SARS-CoV-2 transmission.

Features of HG SNVs not in major variants

At the threshold value of § = 18.5%, we found 38 groups
of strongly linked SNV that did not belong to major, Greek
letter variants or B.1. Some of these groups of SNVs may
have been identified as HG due to sampling noise. However,
others may have biological effects that affect transmission,
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but not enough to outcompete more transmissible variants.
Thus, we investigated whether SN'Vs in this list could have
plausibly affected transmission.

Of the 38 groups, 12 sets of SNVs included Spike mu-
tations with experimentally demonstrated effects or that lie
in functionally important locations. Mutations A879S and
A626S were experimentally shown to reduce sensitivity to
convalescent sera®>>3, D138Y and W152R/L were shown to
escape neutralization by specific antibodies>*3, and N439K
had reduced sensitivity to sera and antibodies>>°%. N439K
and A520S increase binding to the ACE2 receptor®®>’. In
addition, 794N lies on the fusion peptide and on the surface
of the spike protein %, while Q677P and S680P lie on the fu-
rin cleavage site>>°". In summary, a substantial fraction of
HG Spike SNVs that are not present in major variants could
plausibly affect transmission, even if their effects are more
modest than some SNV in major variants.

Discussion

Quantifying the effects of mutations on viral transmission
is an important but challenging problem. We developed a
flexible, branching process-based epidemiological model that
provides analytical estimates for the transmission effects of
SNVs from genomic surveillance data. Applying our model
to SARS-CoV-2 data, we identified SNVs that substantially
increase viral transmission, including both experimentally-
validated Spike mutations and other, less-studied mutations
that may be promising targets for future investigation. Impor-
tantly, we found that our model is sensitive enough to detect
substantial transmission advantages for SNVs belonging to
major variants even when they comprised only a small frac-
tion of the total number of infections in a region.

Distinct from our method, current approaches to esti-
mate changes in viral transmission often rely on phyloge-
netic analyses or fitting changes in variant frequencies to
logistic or multinomial growth models>447:61-63 = phy]o-
genetic analyses for viruses can be challenging due to a
high degree of sequence similarity, which implies that the
data can be explained equally well by a number of different
trees®*, and they also typically rely on Markov chain Monte
Carlo sampling that becomes intractable for large data sets.
Growth models have been commonly applied to predict rela-
tive growth of SARS-CoV-2 variants, and have been incorpo-
rated into the popular NextStrain tool®. These models can
estimate the difference in transmissibility between one vari-
ant and others circulating in the same region. However, their
estimates may be difficult to compare for variants that arose
in other regions or with different genetic backgrounds, and
they typically do not identify specific mutations responsible
for changes in transmission.

Our approach differs from these due to our focus on ex-
plaining transmission differences between variants by the fit-
ness contributions of individual SNVs. The scalable, analyti-
cal form of our estimator for fitness effects also allows for the
natural integration of data from multiple regions. The predic-
tions of our model are strongly supported by biological and
experimental data. Phenotypic effects have been established

for nearly all (i.e., 48 of the top 50; Supplementary Table 1)
of the SNVs that we infer to be most beneficial for SARS-
CoV-2 transmission. Our approach is based on a branching
process epidemiological model of viral transmission. This is
distinct from “black box™ deep learning methods (including
large language models) that have been proposed to address
related but distinct problems, such as characterizing antigenic
evolution and antibody escape dynamics 667,

The epidemiological model that we have introduced has
limitations. We assumed a fairly short generation time, which
is appropriate for a virus such as SARS-CoV-2. A different
approach would be needed to consider the spread of viruses
where many transmission events are from long-term infec-
tions, such as HIV. We also assume that SN'Vs contribute ad-
ditively to fitness and that selection coefficients are constant
in time. Our model does not delineate intrinsic (e.g., func-
tional) effects of SN'Vs on transmission from selection advan-
tages due to immune escape; though, for many of the SNVs
inferred most strongly to affect transmission, there is inde-
pendent experimental evidence to suggest that each (or both)
of these factors are important (Supplementary Table 1). In
principle, selection for immune escape is likely to be time-
varying, as the buildup of population immunity reduces the
selective advantage of escape mutations over time®®. Sim-
ulations show that if selection is time-varying, the constant
selection coefficients that we infer reflect averages of time-
varying selection over the time that the variant was observed
(Supplementary Fig. 8). Epistasis could also lead to over- or
under-estimation of selection coefficients for specific SNVs,
but total contributions to transmission from multiple SNVs
are typically estimated accurately (Supplementary Fig. 9).
We have also assumed that serial intervals are constant in
time, but variants may differ in the typical time between in-
fections® which could influence relative growth rates. Dif-
ferences in antigenicity could also generate fitness differ-
ences that are intransitive and which depend on immune his-
tory. A model that explicitly incorporates antigenicity would
be needed to account for this effect. Finally, we note that no
model based solely on dynamics, including ours, could dis-
tinguish the independent effects of different SN'Vs that exclu-
sively appear together on the same genetic background.

Our ability to rapidly identify new, high growth variants is
naturally limited by the public availability of sequence data.
Time lags between when sequencing is performed and when
sequences are uploaded, in particular, can lead to delays. As
shown in Fig. 4, filtering sequences by collection date rather
than submission date typically leads to much faster detection
of variant growth. The disparity is especially large for Omi-
cron: sequence data collected by mid-October 2021 already
shows a substantial transmission advantage for this variant.
In Great Britain, early Alpha sequences were significantly
more likely to have short delays between collection and sub-
mission, causing Alpha sequences to be over-represented in
early data and closing the gap between selection estimates.
Even in this unusual case, however, earlier reporting substan-
tially reduces noise. Thus, reducing the time between when
sequencing is performed and when sequence data is publicly
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shared could facilitate the detection of new variants with in-
creased transmission and help prepare for growing outbreaks.

Our focus on quantifying the effects of individual muta-
tions on viral transmission also mitigates some data limita-
tions. Even in cases where sequence data for a novel vari-
ant is limited, emerging variants could be identified for fur-
ther attention based on the presence of previously-observed
mutations. For example, Alpha, Delta, and Omicron (BA.1)
would have had estimated selection coefficients of w = 18%,
17%, and 66%, respectively (relative to the WIV04 reference
sequence), immediately prior to their first observations in se-
quence data. More generally, as shown in Supplementary
Fig. 7, for multiple major variants there is evidence that some
of their variant-defining SN'Vs substantially increase trans-
mission prior to the wide circulation of those variants among
humans.

20.

Irwin, J. A distribution arising in the study of infectious diseases. Biometrika
41, 266-268 (1954).

Griffiths, D. Maximum likelihood estimation for the beta-binomial distribution
and an application to the household distribution of the total number of cases
of a disease. Biometrics 29, 637—648 (1973).

Lipsitch, M. et al. Transmission dynamics and control of severe acute respira-
tory syndrome. Science 300, 1966—1970 (2003).

Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading
and the effect of individual variation on disease emergence. Nature 438, 355—
359 (2005).

Althouse, B. M. et al. Superspreading events in the transmission dynamics of
SARS-CoV-2: Opportunities for interventions and control. PLOS Biology 18,
1-13 (2020).

Endo, A., Abbott, S., Kucharski, A. J., Funk, S. et al. Estimating the overdisper-
sion in COVID-19 transmission using outbreak sizes outside China. Wellcome
Open Research 5, 67 (2020).

Sohail, M. S,, Louie, R. H. Y., McKay, M. R. & Barton, J. P. MPL resolves ge-
netic linkage in fitness inference from complex evolutionary histories. Nature
Biotechnology 39, 472—-479 (2021).

Elbe, S. & Buckland-Merrett, G. Data, disease and diplomacy: GISAID’s inno-
vative contribution to global health. Global Challenges 1, 33—-46 (2017).

Qu, P. et al. Enhanced neutralization resistance of SARS-CoV-2 omicron sub-
variants bg. 1, bg. 1.1, BA.4.6, bf. 7, and BA.2.75. 2. Cell host & microbe 31,
9-17 (2023).

While our study has focused on SARS-CoV-2, the epi- 21. Cui, Z. et al. Structural and functional characterizations of infectivity and im-
y > p y
. . . mune evasion of SARS-CoV-2 Omicron. Cell 185, 860-871.e13 (2022).
demlologlcal model that we have deve.loped 18 very general. 22. Hong, Q. et al. Molecular basis of receptor binding and antibody neutralization
The same methodology could be applied to study the trans- of Omicron. Nature 604, 546-552 (2022).
sl . : : 23. Ramirez, S. et al. Overcoming culture restriction for SARS-CoV-2 in human
mission of other pathogeqs such as influenza. Combmeq with cells facilitates the screening of compounds inhibiting viral replication. Antimi-
thorough genomic surveillance data, our model provides a crobial Agents and Chemotherapy 65 (2021).
: : seos ool 24. Qu, P. et al. Evasion of neutralizing antibody responses by the SARS-CoV-2
powerful method for rapidly identifying more transmissible BA2.75 variant. Cell host & microbe 30, 15181526 (2022).
viral lineages and quantifying the contributions of individual 25. Saito, A. et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta
: : faad P681R mutation. Nature 602, 300-306 (2021).
mutations to changes 1n transmission. 26. Wang, Q. et al. Key mutations in the spike protein of SARS-CoV-2 affecting
neutralization resistance and viral internalization. Journal of Medical Virology
ACKNOWLEDGEMENTS 95, 28407 (2023).
~ We gratefully acknowledge all data contributors, i.e., the Authors and their Orig- 27. Greaney, A. J. et al. Mapping mutations to the SARS-CoV-2 RBD that escape
inating laboratories responsible for obtaining the specimens, and their Submitting binding by different classes of antibodies. Nature Communications 12, 4196
laboratories for generating the genetic sequence and metadata and sharing via the (2021).
GISAID Initiative, on which this research is based. The work of B.L., E.F., and 28. Tuekprakhon, A. et al. Antibody escape of SARS-CoV-2 Omicron BA.4 and
J.P.B. reported in this publication was supported by the National Institute of Gen- BA.5 from vaccine and BA.1 serum. Cell 185, 2422-2433.e13 (2022).
eral Medical Sciences of the National Institutes of Health under Award Number 29. Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutral-
R35GM138233. The work of A.A.Q., M.S.S., and M.R.M. was supported by the izing antibodies. Nature 602, 657-663 (2022).
Research Grants Council of the Hong Kong Special Administrative Region, China 30. Cao,Y.etal. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron
undler Project No. T11-705/21—N; A.A.Q.la.nd M.S.S. were glso supported undelr infection. Nature (2022)(2022).
Project No. 16204121. M.R.M. is the recipient of an Australian Research Council 31. Dejnirattisai, W. et al. Antibody evasion by the P.1 strain of SARS-CoV-2. Cell
Future Fellowship (Project No. FT200100928) funded by the Australian Govern- 184, 2939-2954.9 (2021).
ment. 32. Liu, Y. et al. The N501Y spike substitution enhances SARS-CoV-2 infection
AUTHOR CONTRIBUTIONS and transmission. Nature 602, 294—-299 (2021).
All authors contributed to methods development, data analysis, interpreta- 33. McCallum, M. ef al. N-terminal domain anfigenic mapping reveals a site of
. " pment, ysis, Interp vulnerability for SARS-CoV-2. Cell 184, 2332-2347.616 (2021).
tion of results, and writing the paper. B.L. and J.P.B. led theoretical analyses. . ) - )
M.S.S. and B.L. led simulations. AA.Q. led validation of SARS-CoV-2 inference 34. Tamura, T. et al. Virological characteristics of the SARS-CoV-2 BA.2.86 vari-
re.su.lts‘. J.P.B..cénceptualized thé préje.ct: J.P.B. and M.R.M. supervised the overall ant. Cell Host & Microbe 32, 170180 (292.4)' .
roiect 35. Zhou, D. et al. The SARS-CoV-2 neutralizing antibody response to SD1 and
project. its evasion by BA.2.86. Nature Communications 15, 2734 (2024).
36. Ragonnet-Cronin, M. et al. Generation of SARS-CoV-2 escape mutations by
monoclonal antibody therapy. Nature Communications 14, 3334 (2023).
References 37. Focosi, D., Spezia, P. G., Gueli, F. & Maggi, F. The era of the flips: How spike
mutations 1455f and {4561 (and a475v) are shaping SARS-CoV-2 evolution.
1. Petrova, V. N. & Russell, C. A. The evolution of seasonal influenza viruses. Viruses 16 (2024).
Nature Reviews Microbiology 16, 47—60 (2018). 38. Lin, X. et al. The NSP4 T492| mutation increases SARS-CoV-2 infectivity by
2. Revill, P. A. et al. The evolution and clinical impact of hepatitis B virus genome altering non-structural protein cleavage. Cell Host and Microbe 31, 1170~
diversity. Nature Reviews Gastroenterology and Hepatology 17, 618-634 1184.e7 (2023).
(2020). 39. Syed, A. M. et al. Rapid assessment of SARS-CoV-2 evolved variants using
3. Starr, T. N. et al. Deep mutational scanning of SARS-CoV-2 receptor binding virus-like particles. Science 374, 1626-1632 (2021).
domain reveals constraints on folding and ACE2 binding. Cell 182, 1295-1310 40. Xia, H. et al. Evasion of type | interferon by SARS-CoV-2. Cell Reports 33,
(2020). 108234 (2020).
4. Li, Q. et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity 41. Campbell, F. et al. Increased transmissibility and global spread of SARS-CoV-
and antigenicity. Cell 182, 1284—1294 (2020). 2 variants of concern as at June 2021. Eurosurveillance 26, 2100509 (2021).
5. Volz, E. et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in 42. Alizon, S. et al. Rapid spread of the SARS-CoV-2 Delta variant in some French
England. Nature 593, 266—269 (2021). regions, June 2021. Eurosurveillance 26, 2100573 (2021).
6. Wibmer, C. K. et al. SARS-CoV-2 501Y.V2 escapes neutralization by South 43. Zhao, S., Ran, J. & Han, L. Exploring the interaction between E484K and
African COVID-19 donor plasma. Nature Medicine 27, 622625 (2021). N501Y substitutions of SARS-CoV-2 in shaping the transmission advantage
7. Korber, B. et al. Tracking changes in SARS-CoV-2 Spike: Evidence that of COVID-19 in Brazil: A modeling study. The American Journal of Tropical
D614G increases infectivity of the COVID-19 virus. Cell 182, 812-827 (2020). Medicine and Hygiene 105, 1247-1254 (2021). i .
8. Diehl, W. E. et al. Ebola virus glycoprotein with increased infectivity dominated 44. Allen, H. et al. Household transmission of COVID-19 cases associated with
the 2013-2016 epidemic. Cell 167, 1088—1098.e6 (2016). SARS-CoV-2 delta variant (B.1.617.2): National case-control study. The
9. Imai, M. et al. Experimental adaptation of an influenza H5 HA confers respira- Lancet Regional Health - Europe 12, 100252 (2021). ) .
tory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 45. Chen, C. et al. Quantification of the spread of SARS-CoV-2 variant B.1.1.7 in
486, 420—428 (2012). Switzerland. Epidemics 37, 100480 (2021).
10. Allen, L. J. An introduction to stochastic processes with applications to biology 46. Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2
(CRC press, Boca Raton, FL, 2010), 2nd edn. lineage B. 1.1.7 in England. Science 372, eabg3055 (2021).
11. Grubaugh, N. D. et al. Genomic epidemiology reveals multiple introductions 47. Washington, N. L. et al. Emergence and rapid transmission of SARS-CoV-2

of Zika virus into the United States. Nature 546, 401-405 (2017).

B. 1.1. 7 in the United States. Cell 184, 2587—2594 (2021).


https://doi.org/10.1101/2021.12.31.21268591
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.12.31.21268591; this version posted September 30, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC 4.0 International license .

48. Chand, M. et al. Investigation of novel SARS-CoV-2 variant, variant of concern
202012/01. Tech. Rep. (2020). URL https://assets.publishing.
service.gov.uk/government /uploads/system/uploads/
attachment_data/file/959438/Technical_Briefing_VOC_
SH_NJL2_SH2.pdf.

49. Chand, P. M. et al. Investigation of novel SARS-CoV-2 variant, variant
of concern 202012/01, technical briefing 2. Tech. Rep. (2020). URL
https://assets.publishing.service.gov.uk/government/
uploads/system/uploads/attachment_data/file/959361/
Technical Briefing VOC202012-2_Briefing 2.pdf.

50. Cell, P.G., Team, P.O. S,, Cell, P. E. & Team, P. C. T. D. SARS-CoV-2 variants
of concern and variants under investigation in England, Technical Briefing
10. Tech. Rep. (2021). URL https://assets.publishing.service.
gov.uk/government/uploads/system/uploads/attachment_
data/file/984274/Variants_of_Concern_VOC_Technical_
Briefing_10_England.pdf.

51. World Health Organization, Tracking SARS-CoV-2  variants
(2022). URL https://www.who.int/activities/
tracking-{SARS-CoV-2}-variants.

52. Li, Q. et al. The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity
and Antigenicity. Cell 182, 1284—1294.e9 (2020).

53. Wang, Q. et al. Key mutations in the spike protein of SARS-CoV-2 affecting
neutralization resistance and viral internalization. Journal of Medical Virology
95, e28407 (2023).

54. Dejnirattisai, W. et al. Antibody evasion by the P.1 strain of SARS-CoV-2. Cell
184, 2939-2954.e9 (2021).

55. Haslwanter, D. et al. A Combination of Receptor-Binding Domain and N-
Terminal Domain Neutralizing Antibodies Limits the Generation of SARS-CoV-
2 Spike Neutralization-Escape Mutants. mBio 12, e02473-21 (2021).

56. Thomson, E. C. et al. Circulating SARS-CoV-2 spike N439K variants maintain
fitness while evading antibody-mediated immunity. Cell 184, 1171-1187.e20
(2021).

57. Buratto, D. et al. Rapid assessment of binding affinity of SARS-CoV-2 spike
protein to the human angiotensin-converting enzyme 2 receptor and to neu-
tralizing biomolecules based on computer simulations. Frontiers in Immunol-
ogy 12, 730099 (2021).

58. Wang, D. et al. Immunoinformatic Analysis of T- and B-Cell Epitopes for
SARS-CoV-2 Vaccine Design. Vaccines 8, 355 (2020).

59. Hodcroft, E. B. et al. Emergence in late 2020 of multiple lineages of SARS-
CoV-2 spike protein variants affecting amino acid position 677. medRxiv
(2021). URL https://www.medrxiv.org/content/early/2021/
02/21/2021.02.12.21251658.

60. Cheng, M. H. et al. Superantigenic character of an insert unique to SARS-
CoV-2 spike supported by skewed TCR repertoire in patients with hyperinflam-
mation. Proceedings of the National Academy of Sciences 117, 25254—25262
(2020).

61. Pybus, O. G. & Rambaut, A. Evolutionary analysis of the dynamics of viral
infectious disease. Nature Reviews Genetics 10, 540-550 (2009).

62. Obermeyer, F. et al. Analysis of 6.4 million SARS-CoV-2 genomes identifies
mutations associated with fitness. Science 376, 1327-1332 (2022).

63. Abousamra, E., Figgins, M. & Bedford, T. Fitness models provide accurate
short-term forecasts of SARS-CoV-2 variant frequency. Medrxiv (2023).

64. Morel, B. et al. Phylogenetic analysis of SARS-CoV-2 data is difficult. Molec-
ular biology and evolution 38, 1777-1791 (2021).

65. Hadfield, J. et al. Nextstrain: real-time tracking of pathogen evolution. Bioin-
formatics 34, 4121-4123 (2018).

66. Han, W. et al. Predicting the antigenic evolution of SARS-CoV-2 with deep
learning. Nature Communications 14, 3478 (2023).

67. Beguir, K. et al. Early computational detection of potential high-risk SARS-
CoV-2 variants. Computers in biology and medicine 155, 106618 (2023).

68. Barrat-Charlaix, P, Huddleston, J., Bedford, T. & Neher, R. A. Limited pre-
dictability of amino acid substitutions in seasonal influenza viruses. Molecular
Biology and Evolution 38, 2767-2777 (2021).

69. Backer, J. A. et al. Shorter serial intervals in SARS-CoV-2 cases with Omi-
cron BA. 1 variant compared with Delta variant, the Netherlands, 13 to 26
December 2021. Eurosurveillance 27, 2200042 (2022).


https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/959438/Technical_Briefing_VOC_SH_NJL2_SH2.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/959438/Technical_Briefing_VOC_SH_NJL2_SH2.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/959438/Technical_Briefing_VOC_SH_NJL2_SH2.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/959438/Technical_Briefing_VOC_SH_NJL2_SH2.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/959361/Technical_Briefing_VOC202012-2_Briefing_2.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/959361/Technical_Briefing_VOC202012-2_Briefing_2.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/959361/Technical_Briefing_VOC202012-2_Briefing_2.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/984274/Variants_of_Concern_VOC_Technical_Briefing_10_England.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/984274/Variants_of_Concern_VOC_Technical_Briefing_10_England.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/984274/Variants_of_Concern_VOC_Technical_Briefing_10_England.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/984274/Variants_of_Concern_VOC_Technical_Briefing_10_England.pdf
https://www.who.int/activities/tracking-{SARS-CoV-2}-variants
https://www.who.int/activities/tracking-{SARS-CoV-2}-variants
https://www.medrxiv.org/content/early/2021/02/21/2021.02.12.21251658
https://www.medrxiv.org/content/early/2021/02/21/2021.02.12.21251658
https://doi.org/10.1101/2021.12.31.21268591
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.12.31.21268591; this version posted September 30, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC 4.0 International license .

Methods

Epidemiological model

We use a discrete time branching process to model the spread
of infection. Individuals can be infected by any one of M
viral variants, which are represented by genetic sequences
g ={91,92,...,91.} of length L. For simplicity, we will
first assume that alleles at each site ¢ in the genetic sequence
for variant a are either equal to the “wild-type” or reference
(g9 = 0) or mutants (g" = 1). Later we will relax this assump-
tion to consider genetic sequences with 5 possible states at
each site (4 nucleotides or a gap). We call n,(t,,) the num-
ber of individuals infected by variant a at time ¢,,. To ac-
count for super-spreading, the number of newly infected in-
dividuals at time ¢,,41 follows a negative binomial distribu-
tion”"3, P (na(tm+1)|na(tm), k, Ra) = Pn g (1,p), where
r=ngk, p=k/(k+R,), and R, = R(1+4w,). Here r and
p are the negative binomial distribution parameters, k is the
dispersion, R is the effective reproductive number of the ref-
erence variant, and w, encodes the variant dependence of the
infectivity. The parameters n, k, and R can be time-varying.
For instance, a time-varying R represents change in the num-
ber of susceptible and recovered individuals as well as the
effects of public health interventions or changes in behavior
that modify viral transmission.

Defining the frequency of variant a as y, = na/ >, .
the probability that the frequency vector is y(tm4+1) =
{y1(tm+1),y2(Em+1),-- -} given the initial frequency vector

y(to), is
H P(y

Derivation of the estimator

Because (2) is difficult to work with directly, we follow the
approach of ref.”®. We introduce a “diffusion approximation”
where we assume that the total number of infected individu-
als is large and the effects of mutations on transmission are
small. Similar approximations have been widely used in pop-
ulation genetics”’~"°. Under these assumptions, the probabil-
ity distribution for the variant frequencies satisfies a Fokker-
Planck equation with terms derived from the first and second
moments of the frequency changes Y (tym+1) — Ya (tm) under
the negative binomial distributions above.

However, the genotype space is high-dimensional (dimen-
sion 2%, with either a mutant or wild-type allele at each site)

P((y(tm))m 11y(to)) (tm+1)|Y(tm)) . ()

P((m(t ) h—il®(to), s ”) ~ (H \/diﬁ <2thm)
T
)i

-1
where S<(m(tm)£:0 _ ZZO |:$(t'm,+i)tm-’l3(tml) B

and undersampled, making inference of selection for geno-
types extremely challenging. To simplify the inference prob-
lem, we assume that selection is additive, so the total selec-
tion coefficient w, for a variant a is the sum of selection co-
efficients s; for mutant alleles at each site 4:

L
E a
Wq = g; Si -
=1

We can then derive a Fokker-Planck expression for the dy-
namics of mutant allele frequencies

M
Ti= Zgélya-
a=1

At the allele level, the Fokker-Planck equation has a drift
vector given by

di(z) = z;(1—z4)8; + Z xz’j_xiﬂfj)sjv 3

and a diffusion matrix

ca= ()< 1,

k R xi(l—z;) i=]

where z;; is the frequency of infected individuals that have
mutant alleles at both site ¢ and site ;5 at time ¢. In de-
riving (3) we have assumed that the selection coefficients
satisfy s; < 1 such that w, < 1. Despite this techni-
cal assumption, our simulations demonstrate that selection
can be accurately inferred even when selection is strong
(Supplementary Fig. 10).

The drift vector describes the expected change in allele fre-
quencies over time. Eq. (3) consists of two terms. The first
describes the expected change in the frequency of allele ¢ due
to selection at that site. The second term accounts for link-
age, that is, it quantifies how the genetic background alters
the expected frequency change of an allele.

The Fokker-Planck equation can then be used to derive a
path integral, which gives the probability of an entire evolu-
tionary history or “path” (i.e., frequencies of genetic variants
over time, x(t,). _;). In Supplementary Information,
we derive the path integral expression following a similar
approach to the one described in ref.’®. The path integral is

L/2 L

[ di(tm) ) exo (—2S((@(tm)E—0)), )
2
=1
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Here n = Ziwzl ng 1s the total number of individuals in-
fected by all variants and At,, = t,,4+1 — t;,- The path in-
tegral in (4) has a form that is similar to the one obtained in
ref.”®. The path integral quantifies the probability density for
paths of mutant allele frequencies in the evolutionary history
of the pathogen. We can then use Bayesian inference to find
the maximum a posteriori estimate for the selection coeffi-
cients given the frequencies, the infected population size, the
parameters R and k. The posterior probability of the selec-
tion coefficients is

T-1
.§:

k+R)

where the parameters k, R, and n are implicitly functions
of t.
There are two interesting limiting forms of the estimator.
First, we define the new matrix C' whose entries are

= wij(tm) —ziltm)zi(tm) i #£]

In the limit that & — oo, the negative binomial distribution
for new infections becomes a Poisson distribution with rate
A = R. In this special case, the model is equivalent to the
Wright-Fisher model from population genetics. The estima-
tor reduces to

T-1 ) “Lrr
3= |~yI+ Z nRC lz nR(x(tmi1) —x(tm))
m=0 m=0

The opposite limit £ — O corresponds to a distribution for
new infections with extremely heavy tails, i.e., one where
super-spreading is dominant. In this case the drift in (3),
which quantifies expected frequency changes due to selec-
tion, is unchanged. However, the diffusion matrix, which en-
codes linkage as well as the changes in frequency that are due
to the stochastic nature of infection transmission, diverges. In
this case, diffusion dominates the process entirely.

Simplifying the estimator and robustness to incom-
plete knowledge of time-varying parameters

While our model has the ability to account for the time de-
pendence of parameters appearing in (6), such as the infected
population size n, the dispersion &, and the mean reproduc-
tive number R, these can be challenging to reliably estimate
from data. However, we generally do not require full knowl-
edge of these time-dependent parameters to accurately esti-
mate selection.

In fact, due to finite sampling noise, estimates of selec-
tion produced by assuming constant (and incorrect) parame-

-1
k2 R2 =1 kR
Y %Ath(tm) [ "
m=0

P (sl(@(tm)n)f=0) o P ((@(tn)) i [@(to) 5:m)

X PPrior(s) )
&)

where P ((@(tm))L_|x(to),s,n) is the probability
of a path given by (4) and the Ppio(s) is a Gaussian
prior probability for the selection coefficients with zero
mean and covariance matrix ¢2I. Here, I is the identity
matrix and o is the variance of the prior. We call the
precision v = 1/02. In Supplementary Information we
show that the selection coefficients that maximize (5) are

o @(tms) —o{tn)) | ®)
m=0

ters are more accurate than estimates that use the true time-
varying parameters (Supplementary Fig. 11). The naive es-
timator in (6) implies that time points or regions with larger
R, n, or k should be weighted more heavily in the estimate.
However, frequency information is always inaccurate due to
noise from finite sampling, so weighing some time points or
regions significantly more than others based upon the param-
eters alone means that undue weight is given to the uncertain
information available from these times and regions.

For this reason, we assume parameters that are spatially
and temporally constant in all of the following analysis as
discussed below. This allows the estimator to be simplified
substantially. If we assume constant parameters and scale the
regularization v by nkR/(k+ R) in the numerator in (6), the
parameter dependence in the numerator and the denominator
is identical and cancels out (due to the additional factor of
(k+ R)/ER in the definition of the covariance matrix). With
the same definition of the matrix C' as above, and additionally
defining Gy = Zﬁ;lo At C and v = ynkR/(k+ R), the
simplified estimator is given by

5= [y T+Cin] ™" [2(tr) —2(to)] - @)

This form of the estimator is similar to the estimator for se-
lection coefficients in the Wright-Fisher model ’®, except that
it omits contributions from the mutation term, because the
mutation rate for SARS-CoV-2 is small. Practically, (8) has
significant advantages over (6). The most important is that
the difficult-to-estimate parameters k and n are no longer re-
quired. In addition, R does not need to be estimated. For
methods of inferring these parameters as well as discussions
about the difficulty of inferring them, see refs. 5039,

Extension to multiple regions and multiple SNVs at
each site

The model can easily account for outbreaks in multiple re-
gions or outbreaks at different times. If the probability of the
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evolutionary path in each region is independent, which is the
case if there is no travel between regions, then the probability
of all of the evolutionary paths in all of the regions is simply
the product of the probabilities of the paths in each region,
given by (4). Bayesian inference can be applied in the same
way as before, resulting in the estimator

—1

Q Q
5= 'Y/I—" Z r,int Zwr(tT,Tr) —zr(tro)| 5 9)
r=1 r=1

where () is the number of regions, ¢, is the time in region
7, tr 1, is the final time in region r, ¢, ¢ is the initial time
in region r, x, is the frequency in region r, and C’mm is the
scaled integrated covariance matrix in region r given by inte-
grating (7) over time. The estimator can further be extended
to allow for multiple different nucleotides at each site by sim-
ply letting each different nucleotide have its own entry in the
frequency vector x;. If there are J mutations at each site this
results in a frequency vector of length L.J, and a covariance
matrix of size LJ x LJ. By convention, reference sequence
alleles have selection coefficients of zero, so the mutant allele
selection coefficients at each site are normalized by subtract-
ing the inferred coefficient for the reference allele.

Branching process simulations

We implemented the superspreading branching process for
the number of infected individuals in Python. We used a neg-
ative binomial distribution for the number of secondary infec-
tions caused by a group of individuals infected with the same
pathogen variant. To test how finite sampling affects model
estimates, we sampled ns genomes per time point to use for
analysis. We computed the single and double mutant frequen-
cies, x; and x;;, respectively, from the sampled sequences
and estimated the selection coefficients from these using (1),
possibly extended to account for multiple outbreaks or multi-
ple alleles at each locus as described above. For the analysis
of how finite sampling affects estimates, shown in Supple-
mentary Fig. 11, we use the full version of the estimator
given by (6). For all other simulations, we assume that the
parameters n, k, and R are not known for inference and so
we use the simplified estimator in (9) for inferring selection.

Regions and time-series for SARS-CoV-2 analysis
We used sequence alignments and metadata downloaded
from GISAID (ref.”?) on January 26, 2024, which includes
more than 7.4 million sequences. One potential caution in
interpreting this data is that not all sequences in the database
will have been generated from unbiased surveillance efforts.
Ideally, we would like to divide this data into the small-
est separate areas that have outbreaks that are largely inde-
pendent of those in the surrounding regions, so as to avoid
biases due to travel between regions or unequal sampling in
different locations. However, this needs to be balanced with
the limitations of the data, since regions with poor sampling
could contribute more noise than signal. We therefore di-
vided data into the smallest regions available in the meta-
data that are still large enough such that infections resulting

from travel outside of the region are likely to be far less fre-
quent than transmission within the region. This results in the
inclusion of mostly separate countries in Europe, states in
North America, and a combination of countries and states in
South America and Asia — dependent upon the size of the lo-
cation. Two exceptions to this are that we separate northern
and southern California due to the geographical separation of
population centers, and we separate Northern Ireland from
the rest of the United Kingdom due to its geographical isola-
tion.

To minimize the effects of sampling noise, we chose re-
gions and time-series within these regions based on the fol-
lowing criteria:

1. In any period of 5 days within the time-series there are
at least 20 total samples.

2. The number of days in the time-series is greater than
20.

3. The number of new infections per day is at least 100.

The last criterion ensures that there are enough infected in-
dividuals that transmission is not driven overwhelmingly by
stochasticity. We assessed the number of newly infected in-
dividuals by using the estimates provided by the Institute of
Health Metrics and Evaluations®!. Since the dates provided
in their estimates correspond to dates when individuals were
infected, and dates in the GISAID sequence data correspond
to dates when individuals were sequenced, we shifted the
dates in the IHME data 5 days forward to roughly compen-
sate for delays between infection and sequencing. We then
eliminated days on which the estimated number of new in-
fections was smaller than 100.

Our results are robust to reasonable variation in these pa-
rameters. Comparing the number of locations used and the
sample sizes shown in Supplementary Fig. 12 in the data
to those used in the simulations shown in Supplementary
Fig. 1, we expect our inference to accurately distinguish ben-
eficial, deleterious, and neutral SN'Vs from one another.

Data processing

We perform a number of preprocessing steps to ensure data
quality. We first eliminated incomplete sequences with gaps
or ambiguous nucleotides at more than 1% of the genome.
We then removed sites from our analysis where gaps are ob-
served at > 95% frequency, since these sites may represent
very rare insertions or sequencing errors. We also removed
sites in noncoding regions of the SARS-CoV-2 genome and
ones where all observed SNVs are synonymous. We imputed
gaps that are not associated with known variants and ambigu-
ous nucleotides with the nucleotide at the same site that oc-
curs most frequently in other sequences from the same re-
gion.

For the remaining sites, in each region we excluded rare
SNVs whose frequency is not larger than 1% for at least 5
consecutive days. These sites, if included, are almost always
inferred to have extremely small selection coefficients. Fur-
thermore, since their frequencies are so small, their covari-
ance with other sites is also small and is therefore unlikely
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to have a large effect on inference. We verified that different
reasonable values for these cutoffs result in essentially iden-
tical selection coefficients (Supplementary Fig. 13).

Calculating frequency changes and covariances

To increase robustness to finite sampling in time, we inte-
grated terms in (6) and other time-dependent equations over
time by assuming that frequencies are piecewise linear, rather

Ti(tm )2 (tm) + i

(tm+1)2) (tms1)

than summing contributions from each time point’®. This re-
sults in diagonal terms of the integrated covariance given by

x?(tm)

T—1
(3 =2 (tm+1)) (@i (tm) + i (tmt1))

and off-diagonal elements

Zi (tm) 5 (Emg1) i (Ema1)xj (Em)

EA [l'ij(tnL)+1'ij(tm+1)
fm 2 B 3
m=0

For obtaining reliable estimates of the changes in SNV fre-
quencies (the term z(t7) — x(to) in (8)), it is important to
have enough sequences to avoid large errors due to finite sam-
pling. On the other hand, if a large number of days are used at
the end or the start of the time-series to calculate the frequen-
cies, then the frequency changes are likely underestimates.
To balance these competing issues, we calculated x(t7) as
the frequencies in the window of the final 15 days and x(t¢)
as the frequencies in the window of the first 15 days for each
time-series and region with poor sampling. This smoothing
is necessary especially in regions where sampling is sparse,
where the number of genomes sampled on a particular day
may be as small as 1 or 2. If there are at least 200 sampled
sequences in a period of less than 15 days at the start or the
end of the time-series, then the window size was taken as
the smallest number of days in which there was a total of at
least 200 sequences. We confirmed that our results are ro-
bust to reasonable changes of this window size of 15 days
(Supplementary Fig. 13).

We also normalized time in units of serial intervals or
“generations” by dividing the integrated covariance matrix
by 5, following results that the serial interval for SARS-CoV-
2 is roughly 5 days®>~**. This allows us to convert from units
of time in days to generations, as in (8).

Calculating selection coefficients

After the above preprocessing there remain 1,320 SNVs ob-
served at a frequency above 1% for at least 5 consecutive
days in at least one region and observed at least 5 times. We
assume constant values for R, n, and k in all regions, and
use (9) to estimate selection. When R, n, and k are constant,
these terms can be effectively absorbed into the regulariza-
tion /.

We normalize selection coefficients such that the nu-
cleotide for the WIVO4reference sequence at each site has
a selection coefficient of 0. To do this, we subtract the selec-
tion coefficient for the reference nucleotide from the inferred
coefficient for each other allele at that site after all selection
coefficients have been computed.

We used these estimates for the selection coefficients for

6

nonsynonymous SNVs to estimate the corresponding selec-
tion coefficients for amino acid substitutions (Table 1). If
there were multiple SN'Vs in a codon that result in the same
amino acid variant, but are not strongly linked to one another,
then the selection coefficient for the amino acid was calcu-
lated as the largest (in absolute value) of the SN'Vs. If there
were multiple SNVs in the same codon that yield the same
amino acid and these SN'Vs are strongly linked to one an-
other, then the selection coefficient for the mutant amino acid
was calculated as the sum of the selection coefficients for the
SNVs. Our reasoning behind this choice is that selection co-
efficients that are extremely close to zero are mostly for alter-
native nucleotides that are observed very infrequently in the
data, and so the inferred coefficients for these nucleotides are
unlikely to reflect the typical effects of a given mutation.

We calculated selection coefficients for major variants by
summing the individual nucleotide SN'Vs that define the vari-
ant, which follows from our assumption of additive fitness.
The SNVs for major named variants such as Alpha and
Delta were identified according to the mutations provided by
https://covariants.org. Results of this analysis are shown in
Figs. 2-3, Supplementary Figs. 3-5 and 14-15, and Supple-
mentary Table 1. Supplementary Figs. 14-15 quantify un-
certainty in the inferred selection coefficients, based on both
theoretical uncertainty in the selection coefficient estimator
and finite sampling noise. For a detailed discussion, see Sup-
plementary Information.

Computational complexity

Here we briefly discuss the computational complexity of our
method. The steps in our data processing are:

1. Clean the data (eliminate sequences with large num-
bers of Ns or gaps, etc.).

2. Separate the data by time and region.

3. Identify SNVs observed above the minimum frequency
threshold.

4. Compute SNV covariance matrices/changes in SNV
frequencies in each region and integrate them over
time.


https://covariants.org
https://doi.org/10.1101/2021.12.31.21268591
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.12.31.21268591; this version posted September 30, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC 4.0 International license .

5. Infer the selection coefficients, which involves invert-
ing the total integrated SNV covariance matrix.

Let L be the length of the SARS-CoV-2 sequence (roughly
3 x 10% bps) and let M be the total number of sequences
(roughly 107 including data taken up until January 26th,
2024). Then, steps 1 and 2 involve computations that scale
as O(M). Step 3 is O(M L). This step also introduces a new
parameter relevant for the scaling of the problem, which is the
fraction of SNVs that are observed at high enough frequen-
cies to be included in our analysis. Let us call this fraction p,
which is roughly 0.35 with our current settings. Naively, step
4 then involves a computation that scales like O(M (pL)?).
However, the calculation of the covariance can easily be par-
allelized across regions. In each individual region, the frac-
tion of SNVs that are observed at high enough frequencies
to be included is a different parameter ¢ and the number of
sequences in the region is a parameter M,.. The largest ¢ that
we find in the regions analyzed is around 0.05. For N, sep-
arate regions (149 in our analysis), step 4 then involves N,
parallel computations that scale like O(M,-(¢L)?). Due to
the matrix inversion, step 5 requires O((pL)3) computations
to complete.

Choice of regularization

In principle, the regularization strength +/ is related to the
width of the prior distribution for SNV selection coefficients.
The regularization strength also plays a role in reducing noise
in selection coefficient estimates due to finite sampling of vi-
ral sequences. This is especially important for SNVs that are
observed only briefly in data, as they will have small inte-
grated variances in the “denominator” of (6). Larger values
of the regularization more strongly suppress noise, but they
also shrink inferred selection coefficients towards zero.

We use a regularization strength of 4/ = 40. For much
smaller values of 7/, selection coefficient estimates are un-
stable due to sampling noise. However, inferred selection
coefficients stabilize and become insensitive to the precise
value of +/ for 4/ 2 10 (Supplementary Fig. 13). Larger
values of 4" will result in selection coefficients with smaller
absolute values, but for large enough +/ the rank ordering of
inferred selection coefficients is highly reliable. In summary,
the coefficients that appear to be the most beneficial or dele-
terious remain this way regardless of reasonable choices for
+', though their precise values scales with the regularization
strength.

Identification of HG SNVs

To estimate how quickly we can detect a transmission advan-
tage for a new SNV or variant, and to explore the sensitiv-
ity of this detection, we inferred selection coefficients for all
variants @ (including SN'Vs and collections of SN'Vs that are
strongly linked to one another), for every day in every region
separately. To determine sets of strongly linked SNVs, we
considered the following statistics. If the number of genomes
with a SNV at site i is called h; and the number of genomes
with SNVs at both site ¢ and site j is h;;, then we say that

two sites ¢ and j are strongly linked if h;;/h; and h;;/h; are
both greater than 80%.

To form sets of strongly linked SNVs, we combined all
pairs of strongly linked SNVs that share SNVs in common.
For example, if SNV ¢ is strongly linked with SNV 7, and
SNV j is strongly linked with SNV £, then {i,j,k} forms
one set of strongly linked SNVs. With the frequency cutoff
that we have used for the definition of strongly linked SNV's
(80%), the great majority of SNVs in each set of strongly
linked SNVs are strongly linked to all other SN'Vs in the same
set. We computed selection coefficients for sets of strongly
linked SNVs by summing the contributions from individual
SNVs.

Data was trimmed by submission date such that the selec-
tion coefficients for a specific day are calculated using only
sequences that were submitted to GISAID on or before that
day. We then progressively step through time in each re-
gion, adding newly submitted sequences and reanalyzing the
data again. At each time point in every region, groups of
strongly linked SNVs are recalculated using the method de-
scribed above and selection coefficients for the collections
are computed again. To compare the HG SNVs with well-
studied major SARS-CoV-2 variants, which are widely un-
derstood to have a significant transmission advantage relative
to ancestral SARS-CoV-2, we performed this analysis using
data from the beginning of the pandemic through June 2022.

As described in the main text, we suspect that collections
of SNVs with large inferred selection coefficients are much
more likely to exhibit real advantages in transmission. There-
fore, we used a classification scheme where variants with se-
lection coefficients w > 6 for some cutoff § are classified as
“high growth (HG)” variants. At each time step, we removed
any SNVs that were classified as HG from all future analy-
ses in that region. In this way, any SNV can only contribute
to the detection of a single variant in a region (e.g., for a
mutation that belongs to both Alpha and Omicron, if the mu-
tation was labeled as HG during the rise of Alpha in a given
region, then that mutation will not be considered when ana-
lyzing later Omicron sequences in the same region).

After a mutation is detected in a region, we also remove all
other nucleotide mutations at that site from future analysis in
the region. The reason for this is the following. The choice
of a normal prior distribution on the selection coefficients en-
forces that the sum of the selection coefficients for a specific
site is zero. We then re-normalize the selection coefficients
so that the selection coefficient for the WIV04 reference nu-
cleotide is set to zero. This is done by subtracting its value
from the selection coefficients for all other nucleotides at that
site, as described above. In the ordinary situation where only
two different nucleotides are observed at a site, this normal-
ization procedure results in the apparent inflation of selection
coefficients for unobserved nucleotides at the same site. If
one of these other nucleotides is later observed at a low fre-
quency, this could result in an incorrect detection. For this
reason, we remove all nucleotides at the same site from con-
sideration in a region after any single nucleotide has been
detected.


https://doi.org/10.1101/2021.12.31.21268591
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.12.31.21268591; this version posted September 30, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC 4.0 International license .

We performed inference for the detection of HG variants
across each region individually, as the same new variant is
unlikely to first appear at identical times in multiple regions.
This limits the strength of statistical information to infer se-
lection because information is not aggregated across regions.
For this reason, we used a lower regularization of 4" = 10 for
regional analysis to prevent the strong suppression of inferred
selection coefficients. Tuning the threshold of detection 6 al-
lows one to adjust the tradeoff between noise, which may lead
to false positives, and detection speed. Results of this analy-
sis are presented in Supplementary Figs. 6-7. The analysis
shown in Fig. 4 uses an analogous approach where selection
coefficients were computed over time for Alpha, Delta, and
Omicron (BA.1) SNVs in specific regions, but without the
additional step of classifying SNVs as HG.

To succinctly visualize HG SNVs linked with major vari-
ants (Supplementary Fig. 7), we grouped the regions into
7 broad categories, allowing for clearer trend analysis. For
each major variant within these broad regions, we identi-
fied HG groups with associated mutations and plotted the
cumulative fraction of variant-defining mutations over time.
Data regarding variant-defining mutations was sourced from
https://covariants.org.

Data and code

Sets of processed data, computer code, and scripts that we
have used in our analysis are available in the GitHub repos-
itory located at https://github.com/bartonlab/paper-SARS-
CoV-2-inference. This repository also contains Jupyter note-
books that can be run to reproduce the results presented here,
using sequence data and metadata from GISAID. A full list
of originating and submitting laboratories for the sequences
used in our analysis can be found at https://www.gisaid.org
using the EPI-SET-ID: EPI_SET_240815xt.
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Supplementary Fig. 1. Accuracy of inference for different parameters. How the AUROC scores for both beneficial SNVs (in red) and deleterious SNVs (in blue) depends
upon the different model parameters. a, Inference accuracy for different values of newly-infected population size. The parameters used are 10 simulations each with 50
sampled genomes per generation for 25 generations. b, Inference accuracy for different numbers of generations (serial intervals). Data is from a single simulation with 25
samples per generation and a newly-infected population size of 10,000. ¢, Inference accuracy for different numbers of independent outbreaks (simulations). The parameters
used are 50 samples per generation for 10 generations and a newly-infected population size of 10,000. d, Inference accuracy for different values of samples per generations.
Data is from a single simulation with 50 generations with a newly-infected population size of 10,000. The initial population is a mixture of two variants with beneficial SNVs
(s = 0.03), two with neutral SNVs (s = 0), and two with deleterious SNVs (s = —0.03). Dispersion parameter k is fixed at 0.1. This is the same initial population composition
as described in Fig. 1. All AUROC scores are calculated by averaging over 1,000 replicate simulations.
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Supplementary Fig. 2. Inference is robust to variation of reproduction number, R, across regions. Our approach provides a systematic way to combine data from
outbreaks in multiple regions. Simulations show that the estimator in (9) has good performance whether the selection coefficients are inferred based on data from, a, a single
region or, b, five regions. Simulation parameters. The initial population in each region is a mixture of a neutral variant with no mutations and a variant with a beneficial SNV
(s = 0.05). The same beneficial SNV appears in all 5 regions. Each region has a different profile of the time-varying reproduction number, R (rightmost panel). In the first
simulation, the number of newly infected individuals per serial interval rises rapidly from 6,000 to around 10,000 and stays nearly constant thereafter. While in the second
simulation it has a different profile for each region, all the while staying between 100 and 100,000. Dispersion parameter k is fixed at 0.1 for both simulation scenarios.
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Supplementary Fig. 3. Inferred selection coefficients for Spike mutations mapped on the crystal structure. The majority of the inferred strongly selected mutations
are in the S1 subunit of Spike. For sites with multiple mutations, the mutation with the largest magnitude of inferred selection coefficient was used for mapping. Structure of
the Spike protein was obtained from http://rcsb.org/ (PDB ID: 7WG?) (ref.%®).
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Supplementary Fig. 4. Multiple SARS-CoV-2 variants strongly increase transmission rate. Frequencies of major variants and their total inferred selection coefficients,
shown as mean values + one s.d. from bootstrap subsampling of regional data (Methods), defined relative to the WIV04 reference sequence. Selection coefficients for
variants with multiple SNVs are obtained by summing the effects of all variant-defining SNVs. Because our method uses global data and accounts for competition between

variants, we infer large transmission advantages even for variants such as Gamma, Beta, Lambda, and Epsilon, which never achieved the same level of global dominance as
variants such as Alpha and Delta.
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Supplementary Fig. 5. For major variants, a minority of SNVs provide most of the total increase in transmission. Fraction of the total increase in transmission for
Alpha, Delta, and Omicron (BA.1) provided by each variant-defining mutation. For each variant, a few strongly beneficial mutations provide most of the total increase in
transmission. Most other mutations are inferred to be nearly neutral. For some variants, a small number of mutations are inferred to be substantially deleterious.
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Supplementary Fig. 6. Variants with large inferred selection coefficients are overwhelmingly likely to belong to major variants, even when selection is estimated
as data becomes available. Fraction of variants classified as concerning with SNVs that belong to major SARS-CoV-2 variants, plotted as a function of the selection
coefficient threshold 6 used for classification. We consider (groups of) SNVs classified as concerning to be true positives if they belong to major variants and false positives
otherwise. With this definition, this fraction is equivalent to the precision for classification.
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Supplementary Fig. 7. Cumulative fraction of SARS-CoV-2 variant-defining mutations identified as HG across regions. Results are shown for 10 major variants
across 7 broad geographical regions. The vertical dashed line indicates the earliest sample date for each variant. Data of variant-defining mutations and their earliest sample
dates were obtained from https://covariants.org.
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Supplementary Fig. 8. Average value inferred for time-varying selection coefficients. We simulated five scenarios of time-varying selection coefficients: a, step varying,
b, linearly increasing, c, linearly decreasing, d, constant over time and, e, step varying where the SNV appears in the population after the true selection coefficient has
changed. In each case, the inferred selection coefficient is close to the average of the time-varying selection coefficient over the time when the SNV was present in the
population. Simulation parameters. The initial population in the first four simulation scenarios is a mixture of a neutral variant with no mutations and a variant with a beneficial
SNV with a time-varying selection coefficient (center panels). In the fifth simulation scenario, the initial population consists entirely of the neutral variant with the beneficial
mutant appearing after 15 serial intervals. The number of newly infected individuals per serial interval rises rapidly from 6,000 to around 10,000 and stays nearly constant
thereafter. Dispersion parameter k is fixed at 0.1 for all simulation scenarios.
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Supplementary Fig. 9. Accurate inference of variant fitness in the presence of epistasis. a, Both SNV selection coefficients and variant selection coefficients are
inferred accurately in the absence of epistasis. Inferred selection coefficients over 1,000 runs are shown in box plots, with true values for the parameters shown with solid
bars in red. The lower and upper edge of the box plot correspond to the 25th to 75th percentiles, the bar inside the box plot corresponds to the median while the top and
bottom whiskers show the maximum and minimum value within 1.5 times the interquartile range. In scenarios with positive epistasis (b) or negative epistasis (c), our method
attributes the effect of epistasis to selection coefficients. Thus, while the inferred SNV selection coefficients may be under- or over-estimated, the inferred variant selection
coefficients are recovered. Simulation parameters. We simulate a two-locus system where the initial population consists of a mixture of all four variants, i.e., a neutral variant
with no mutations, a variant with two beneficial SNVs (s; = 0.04, s3 = 0.02), and both single SNV variants. The initial frequencies in the population of the neutral, the two
single mutant variants, and the double mutant variants are set to 67%, 10%, 10%, and 13%. We simulate three scenarios with the epistasis term taking on values s12 = {0,
0.04, -0.04}. Here the selection coefficient for the double mutant is s; + s2 + s12. The number of newly infected individuals per serial interval rises rapidly from 6,000 to
around 10,000 and stays nearly constant thereafter. Dispersion parameter k is fixed at 0.1 for all simulation scenarios.
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Supplementary Fig. 10. Ability to estimate large variant selection coefficients, w,. While the estimate (9) is derived assuming selection coefficients are small,
simulations show that combining data from multiple regions allows for accurate estimation of both large SNV selection coefficients, s, and variant selection coefficients, w,.
a, A scenario with a variant containing a single strongly beneficial SNV (s = 0.2) and, b, a scenario with a variant containing 10 mildly beneficial SNVs (s = 0.02). The
true variant selection coefficient w, has the same magnitude in both simulation scenarios (w, = 0.2). ¢, Simulating a scenario where 12 beneficial SNVs (s = 0.1) appear
and fixate successively (top right panel), such that w, ranges from 0.1 to 1.2, both the SNV (left panel) and variant selection coefficient (bottom right panel) were estimated
accurately. Results are obtained by combining data from 10 regions. Histograms are obtained from 1,000 replicate simulations. Simulation parameters. In the simulation
scenarios considered in a and b, the initial population in each region consists of a mixture of a neutral variant with no mutations along with a variant with a single strongly
beneficial SNV (s = 0.2), or a variant with 10 beneficial SNVs (s = 0.02) respectively. In the simulation in ¢, each region’s initial population consists of a mixture of a neutral
variant with no mutations along with a variant with beneficial mutations. In this latter variant, 12 beneficial mutations (s = 0.1) appear and fixate in succession such that the
variant selection coefficient varies from w, = 0.1 to w, = 1.2. The same variant appears in 10 independent regions in all simulation scenarios. The number of newly infected
individuals per serial interval is nearly constant around 10,000. Dispersion parameter k is fixed at 0.1.
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Number of new
) - : Inference AUROC AUROC
'Srgﬁglt'%r;:xeaq Sampling Parameter (n) Beneficial Deleterious
Time-Varying 0.832 0.779
Finite
Constant 0.937 0.881
Time-Varying 0.999 0.992
Perfect
Constant 0.973 0.940
Time-Varying 0.873 0.821
Finite
Constant 0.944 0.882
Time-Varying 1.0 0.999
Perfect
Constant 0.986 0.950
Time-Varying 0.798 0.736
Finite
Constant 0.873 0.824
Time-Varying 0.981 0.935
Perfect
Constant 0.905 0.863

Supplementary Fig. 11. Effects of finite sampling on inference using constant and time-varying parameters. The ability of the model to distinguish beneficial and
deleterious SNVs, as measured by the AUROC score, depending on whether the sampling is perfect or finite and whether constant parameters or the true time-varying
parameters are used for the number of new infections per serial interval n in the inference. If parameters are considered to be constant, then these parameters are not
required for inference using (8). Both simulations use constant values of k = 0.01 and R = 1. The results are similar but less dramatic if the correct time-varying values are
used for k or R as well. Results are shown for different trajectories of numbers of infections and are consistent regardless of the trajectory. In the upper panel, the number
of new infections per serial interval, n, starts at 5,000 and rises linearly to 100, 000. In the middle panel, n starts at 10, 000, rises quadratically to a maximum of 200, 000,
and then falls back to the original number. In the final panel, » rises from an initial size of 1,000 to a final size of 65,000. All simulations are run for 50 serial intervals.
Rows that yield better inference are marked by bold text. If sampling is finite, then it is better to use constant parameters; if sampling is perfect, then it is better to use the real
time-varying parameters. The initial population of individuals are infected with a mixture of two variants with beneficial SNVs (s = 0.03), two with neutral SNVs (s = 0), and
two with deleterious SNVs (s = —0.03), as in Fig. 1. Simulations are run for 50 simulations with 25 samples in each serial interval, and AUROC scores are averaged over
1,000 replicate simulations.
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Supplementary Fig. 12. Sampling Distributions. The number of genomes per day in the regions that are used for inference.
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Supplementary Fig. 13. Inferred selection coefficients are robust to different values of the regularization +’, different frequency cutoffs, and different numbers
of days used to calculate the frequency changes. a-b, Comparison of inferred coefficients when the number of days at the beginning and end of the time-series are
used in order to calculate the frequency changes. Inferred coefficients are largely robust to these changes c-d, Comparison of inferred coefficients for different frequency
cutoffs. Including more or less sites does not alter the order of inferred coefficients. e-i, Comparison of inferred coefficients for different values of the regularization. Altering
the regularization value has little effect upon the distribution of inferred selection coefficients, and selection coefficients for different values of the regularization are highly
correlated.
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Supplementary Fig. 14. Selection coefficient estimates and uncertainty. Plots of all inferred selection coefficients with absolute values greater than 1%. a, Selection
coefficients with uncertainty estimates from bootstrapping the sequences in each region. 20 sequences were sampled per time point per region, with replacement. Error bars
represent standard deviations of the inferred coefficients computed over 100 bootstrap samples. b, Selection coefficients with uncertainty estimates from subsampling the
regions used. For each run, we inferred selection coefficients using a random subsample of 80% of the total number of regions. Error bars represent standard deviations of
the inferred coefficients computed over 100 samples.
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Supplementary Fig. 15. Example correlations between s for strongly linked subsets of mutations defining major variants. As discussed in Supplementary Infor-
mation, the covariance of the inferred parameters is given by the matrix in (S5). The correlation matrix of the inferred parameters is easily calculated from this covariance.
SNV labels are in the format of xxx-yyy-z-n, where xxx is the protein, yyy is the codon in the protein, z is the index of the nucleotide in the codon, and n is the nucleotide. a,
¢, e, The correlation matrix for SNVs that are strongly linked to one another in Alpha, Delta, and Omicron, respectively. The diagonal elements, all equal to 1 in a correlation
matrix, are set to zero for visualization purposes. b, d, f, Correlation matrices from a, ¢, and e, normalized by the maximum possible correlation for a group of linked SNVs, as
discussed in Supplementary Information, with the same number of SNVs. The (%, j)th element of these matrices represents the percent of linkage between the selection
coefficients for SNVs ¢ and j.
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Rank | Protein | Mutation(s) | Mutation | Selection ‘ Location | Associated variant(s) Phenotypic effect
(nt) (aa) (%)
1 S T23018C/ |F486P [16.9+0.8 |[RBM XBB.1.5, EG.5.1, BA.2.86, JN.1 Reduces recognition by neutralizing antibodies %6
T23019C
2 NSP4 | C10029T | T4921 16.6 0.9 Delta, Lambda, Mu, BA.1 (and subvariants) Increased viral replication capacity and infectivity, cleavage
efficiency of the viral protease, and antibody evasion o7
3 NSP6 |T11288-90 | A106 16.5+0.8 Alpha, Beta, Gamma, Eta, Iota, Lambda, BA.1 | *Increased transmission by interferon antagonism9
(and subvariants)
4 s A23055G  |Q498R [16.2+1.7 [RBM | BA.1 (and subvariants) Increased ACE2 binding and resistance to nAbs ™
5 s A24424T  |Q954H [14.04+1.0 [HRI BA.1 (and subvariants) Increased infectivity in vitro '™
6 S T22942A  [N460K |[13.8+0.9 |RBM XBB, XBB.1.5, EG.5.1, HK.3, BA.2.86, JN.1 Enhanced neutralization resistance, enhanced spike process-
ing and cell-cell fusion, improves ACE2 binding 101
7 S C23604G |P681R [13.6+0.9 |[FCS Delta, Kappa, BA.2.86, IN.1 Enhanced cleavage, fusogenicity, and pathogenicity 0
8 |S G22599C |R346T [13.5+0.5 |[RBD |XBB, XBB.1.5, EG.5.1, HK.3 Evasion of antibody recognition
9 S T24469A |N969K |[13.2+ 0.6 |HRI BA.1 (and subvariants) Improved structural stability %
10 S T23599A |N679K |[12.6+0.6 | FCS BA.1 (and subvariants) *Increased proteolytic activation g
11 S G22927C  |L455F [12.3+0.4 |[RBM HK.3 (L455S in IN.1) Enhancelg4 resistance to immune sera >, increased ACE2
binding
12 |S C23525T |H655Y |11.74+0.9 |FCS Gamma, BA.1 (and subvariants) Increased viral replication, spike protein cleavage, and trans-
mission in vivo %’
13 [N G28881T |R203M [11.44+1.2 Delta, Kappa Enhanced replication, RNA delivery and packaging °
14 |S G22599A |R346K |10.3+0.5 |RBD Mu, BA.1, XBB, XBB.1.5, EG.5.1, HK.3 Reduced neutralization
15 S A23063T N501Y |[10.1+1.1 |[RBM Alpha, Beta, Gamma, Mu, BA.1 (and subvariants) |Increased infection, transmission, ACE2 binding, and resis-
tance to nAbs >
16 |S C21618G |T19R 9.24+0.7 |NTD Delta *Increased resistance to NTD-specific nAbs 08,105
17 |NSP12 |G15451A |G671S |9.1£0.6 Delta, XBB, XBB.1.5, EG.5.1, HK.3
18 N T22928C F456L 8.9+0.9 |RBM HK.3 Enhanced resistance to immune sera - , increased ACE2
binding '™
19 S C21618T T191 8.74+1.3 [NTD BA.2 (and subvariants) *Increased resistance to NTD-specific nAbs T8, 109
20 |S A22910G |N450D |8.3+0.6 |RBM BA.2.86, IN.1 Increased ACE2 binding """
21 S C22995G |T478K [8.24+0.8 [RBM |BA.1 (and subvariants) T478K enhances ACE2 binding """, and enhances neutraliza-
tion resistance ''?
22 S C22916A |L452M |8.24+0.6 |RBM BA.2 subvariants; L452W in BA.2.86 and JN.1, | Increased RBD expression (stability) T3 “increased resistance
L452R in BA.4, BA.S to nAbs 41! and increased cell entry 16
23 |NSP6 |T11296G |F108L |7.6+1.0 *Increased transmission by interferon antagonism 0
24 |S A21986-88 | A142 7.6£1.0 |[NTD BA.1 (G142D in BA.2 and subvariants) *Increased resistance to NTD-specific nAbs 7
25 |S C22033A  |FI57L |7.4+£0.3 |[NTD BA.2.75 (F157S in BA.2.86 and JN.1) In epitope recognized by neutralizing antibodies B
26 |S A22893G |K444R |7.3+£0.5 |RBM Increased resistance to immune sera *>, evasion of antibody
recognition %
27 |N G28881A |R203K |7.2+1.0 Alpha, Gamma, Lambda, BA.1 (and subvariants) | Enhanced replication, RNA delivery and packaging 100
28 |S T22031- A157 7.24+0.5 |NTD Delta In epitope recognized by neutralizing antibodies T
29 S G22577C G339H |7.24+0.7 |RBD XBB.1.5, BA.2.75, EG.5.1, HK.3, BA.2.86, IN.1 | G339D Interferes with T-cell response 1o
30 [S T23018G |F486V [7.2+£0.5 [RBM |BA4,BAS Increased ACE2 binding and resistance to nAbs "1
31 S T22917A L452Q |7.14£0.4 |RBM Lambda, BA.2.12.1 Increased RBD expression (stability) Ik , increased resistance
to nAbs ''*!!> and increased cell entry ''¢
32 S T22896A V445H |7.0£0.7 |RBM BA.2.86, IN.1 Enhanced resistance to immune sera , increased ACE2
binding '™
33 s A22629C |K356T [7.0£0.4 [RBD [BA.2.86,IN.I Neutralization of immune sera ™
34 [s C23854A |N764K [6.9+1.5 BA.1 (and subvariants) Improved structural stability 7127
35 [N A28367-69 | A32 6.9+1.4 BA.1 (and subvariants)
36 S C23604A |P68IH [6.7+0.9 |FCS Alpha, Mu, BA.1 (and subvariants, BA.2.66 and | Enhanced cleavage 125 and increased resistance to interferon-
JN.1 have P681R) induced immunity 126, leading to increased replication and/or
transmission
37 |S G22898A | G446S 6.6 0.9 |RBM XBB, XBB.1.5, EG.5.1, HK.3, BA.2.86, JN.1 enhanced resistance to neutralizing antibodies ot
38 |NSP6 |TI11288A |S106T |6.6+0.6 *Increased transmission by interferon antagonism 0
39 [N C28311T |PI3L 6.5+1.4 Lambda, BA.1 (and subvariants) Escape from a HLA-B*27:05 CD8T Tcell epitope 27
40 |S G23948T |D796Y |6.4+1.0 BA.1 (and subvariants) Improved structural stability % and antibody evasion '
41 N C28367T |R32C 6.4+1.7 Alters frustration state of virus and may affect stability, func-
tion, and pathogenicity '*
42 [s C22674T [S371F [6.2+£0.6 [RBD  |BA.2 (and subvariants) Increased resistance to nAbs ">
43 IS T22917G |L452R |6.1+£0.6 |RBM Delta, Kappa, Epsilon, BA.4, BA.5 Increased RBD expression (stability) T3 increased resistance
to nAbs ''*, and increased cell entry '°
44 IS A22893C |K444T |6.1+£0.7 |RBM BQ.1 Increased resistance to immune sera >, evasion of antibody
recognition %
45 |S G23222A |E554K [6.1£+0.5 |[RBM BA.2.86, JN.1 Escape from monoclonal antibodies BT
46 |S C22295A |H245N [6.0+1.4 |[NTD |BA.2.86,IN.1 Significantly increases ACE2 binding "0
47 |S G22775A |D405N |5.5+1.3 |RBD BA.2 (and subvariants) Escapes many neutralizing antibodies 132
48 S C22353A A264D [5.3+1.6 |NTD BA.2.86, JN.1 Increases ACE2 binding 1o
49 [s G21987A |G142D [5.3+0.5 [NTD  [BA.2 (and subvariants), BA.4, BA.5 Increased resistance to NTD-specific nAbs ™!
50 [S G24368T |D936Y [5.2+1.3 Increased infectivity 1'*

Supplementary Table 1. Table of most highly selected amino acid substitutions across the SARS-CoV-2 genome. Error bars were found by taking random sub-samples
of 80% of the original regions and re-estimating the selection coefficients. Error bars are the standard deviation of the inferred coefficient for each site over 100 replicates.
* represents the cases where phenotypic effect of an amino acid variant has not been reported explicitly in the literature. Instead, it is either based on the function of the
encompassing gene, for a mutation to a different amino acid or deletion at the same position. # all three mutations appear together; RBM = receptor binding motif; RBD =
receptor binding domain; NTD= N-terminal domain; FCS = S1/S2 furin cleavage site; HR1 = heptad repeat 1; nAbs = neutralizing antibodies.

31
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Supplementary Information

1. Summary

Here we discuss two main topics. First, we give a detailed introduction of our epidemiological model as well as a derivation of
the estimator (1) and an important simplification of it. Second, we describe simulations of an outbreak and show that selection
coefficients can be accurately recovered from simulation data even with relatively poor sampling.

2. Epidemiological model

2.1. Introduction

In epidemiology, the spread of infection can be modeled as a branching process where each infected individual (also referred to
as a case) infects n additional individuals'33. The distribution of 7 is often taken to be Poisson, but differences in the number
of contacts with susceptible individuals, disease course within an individual, and other factors mean that the Poisson rate \ is
not generally the same for all cases '**. Below, we first follow ref.'3* to explore families of distributions for the number of new
cases per infected individual. Next, we extend these models to consider multiple variants of the pathogen that differ in their
spreading efficiency. We seek to characterize how the distribution of pathogen variant frequencies is expected to change over
time, and how such data can be used to estimate the relative spreading efficiency of different variants.

2.2. Distributions for the number of infected individuals
As noted above, the basic distribution of the number of new cases n caused by one case in a susceptible population is Poisson,
Ae=A

Pp(n|\) = o

Typically we might take the Poisson rate A to be R, the effective reproduction number, which is the expected number of cases
directly caused by one case. In that case, the average number of cases following the Poisson distribution is

(1) po(niry = »_ nPp(n|R) = R.
n=0

To account for variability in transmission dynamics, the basic Poisson distribution with a single rate R can be replaced with a
continuous mixture of Poisson distributions, where the rate parameter A follows a gamma distribution,

pe 1.—BA
Pr(A =—\""e"
POl ) = At
with shape parameter « and rate parameter /3. The average value of A is
e

N e = 5

2
(05}
< b Pr(Ala,B) &

In this context, it is natural to take o = k and 8 = k/R. With these choices, the gamma distribution reads

and its variance is

1 k g k—1_—kX/R

The parameter k is a dispersion parameter that determines how long-tailed the distribution is. The mean value of ) is always R,
but when £ is smaller its variance increases. In the limit that £ — oo, we recover the pure Poisson distribution with rate A = R.
When k = 1, the distribution of the number of cases n is geometric,

/O TIA Po(Ak = 1,R) Po(nlA) = Py(nlp) = (1— )" p,

where p = 1/(1+ R). For arbitrary values of k > 0, the number of cases follows a negative binomial distribution,
k n
I'(k+n) k R
P k,R)= .
N (nlk B) = s (k+R) <I<:+R)

The standard parameters of the negative binomial distribution are r and p, which are set to k and k/(k + R) in our parameteri-
zation above.
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2.3. Dynamics for variant frequencies

Let us assume that there exist multiple variants of a pathogen, which are distinguished by an index a. The number of cases
infected with variant a is n,. We assume that different variants have slightly different transmission probabilities, so that
R, = R(1+w,), with |wg| < 1. The term wy, is analogous to a selection coefficient in population genetics.

2.3.1. Dynamics of multiple cases infected by a single variant

First, let us assume that n individuals, each labeled by an index ¢, are all infected by the same variant of a pathogen. How many
cases will be generated from these individuals? The number of new cases for all individuals is

n
!/ /
n = E ny;,
=1

where the numbers of cases n/, generated by individual ¢ follows a negative binomial distribution. Because all individuals are
infected by the same variant, the negative binomial parameter p = k/(k + R) is the same for each of them. Then, assuming that
all of the infection events are independent, it can be shown that the probability distribution for the total number of new cases n’
also follows a negative binomial distribution with the same value of p, and with » = nk (that is, the new r parameter value is
the sum of the individual r parameter values). Thus, the distribution of n/ is

F(nk+n/) k nk R n'
Pxp4(n[k, R,n) = /1T (nk) (k+R) <k+R> .

2.3.2. Dynamics for multiple cases infected by multiple variants
Let us extend the previous example to consider m variants of a pathogen. At the starting point, the number of individuals

infected by a given variant a is n,, with a € {1,...,m}. The fraction of cases infected by variant a is
Nq
Ya = =m .
2 b—1"

Now, we would like to know how the fraction of individuals infected by each variant is expected to change with each round of
infections. In other words, for variant a, we would like to compute

(o) = <ZZ£1”2> =2 (HPNBH%W’R(H%),%)) ST

n/ \b=1 ce=1"c

where the outer sum is over all vectors n’ with entries {n’l,n’Q7 ...}, and with n;) > ( for all b. Here, we have assumed that the
ny’s are independent across b.

To proceed, it is convenient to write the negative binomial distributions as mixtures of Poisson distributions (as indicated
above), giving

/

W)= (}] /0 " dh P Ok, RO wy) Pp<nsz>> E”—

n' c=1""c

= (bljl /oood)\b Pr (Ap|npk, R(1 —|—wb))> Z <bl;Ilpp(ng|/\b)> z:mn;ln/ '

c= (&

Next, we use the fact that the sum of independent Poisson-distributed random variables is also Poisson with rate parameter
equal to the sum of the individual rates, and that the distribution of independent Poisson random variables conditioned on their
sum is multinomial, to write
' A\ M
N )

<y;> = <H/Oo d\p Pr ()\b|nbk,R(1+wb))> Z Pp (n’|/\) Z Pt (n/
b=1"0

I— m
n’'=0 n': I —=n!
c=1 "¢

= <bl:[1/ooo dAp Pr (Ap|npk, R(1 +wb))> Z Pp (nll)‘) /\7;

n/=0

m [e'e) )\a
- <H/ d\y Pr (>\b|nbk7R(1+wb))> T
b=1 0
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Here A is a vector with entries {A1, A2,...}, and we have also introduced ) |, A = A. Note also that the outer sum on the first
line is over all vectors n’ whose (non-negative) entries sum to n’.

Computing the remaining integrals exactly is challenging, largely because the Gamma distributions have different rate pa-
rameters. To address this, next we will expand our expression to first order in the w,, since these are assumed to be small
parameters. Referring back to Eq. (S1), the expansion gives

(Ya) = <b1"_l[1/0°° dAy Pr (Xp|npk, R) {1 — kwy, (nb_ )J\%b>D % +0 (w?)
_ (bﬁl/ooodxb Pr (Abnbk,R)> ikw (n;\{)

Next we change variables to {\,q1 = A1 /A, g2 = Aa/A,...,¢m—1 = Am—1/A}, because the distribution of the sum of gamma-
distributed random variables, A, with the same rate parameter and the ratios of the individual variables to the total (A, /) follow
independent gamma and Dirichlet distributions '3>. The mth ratio ¢, = 1 — Z;”;ll g by conservation. By convention we will
also set wy, = 0, which can be thought of as normalizing the value of R relative to a reference genotype. The transformation
then gives

da

<y;>=/0 d\ Pr (A|nk, R) (H /dqb> Pp (qlnk) [1_kac (n )\}%C)

c=1

( /de> Pp (q|nk) [1_kac c_nQC)‘| qa
c=1
= (1—k2ncwc> Yo + (H /dqb> Pp (g|nk)nk chcha+waqa
c=1

c#a

m

nk 9

= (1 —nk bE 1wbyb> Ya + Erl nk bée WyYaYb + Wa (”]fya + ya)
= a

=Ya+ k—l- 1 <wa Zwbyb) .

In the expressions above Pp(g|c) is the Dirichlet distribution, with concentration parameters c given by nk in our case. Note
that if w,,, # 0, the last line should instead read

k m
<y¢/1> =Ya+ #_’_lya <wa _wm_zwbyb> .

b=1
Thus, we obtain (with w,,, = 0)

(Yo —Ya) = (Aya) = nk+1 (wa Zwbyb> :

Following a similar approach, we can compute the second moments. First, we consider

() ={(s) )

= (H / Xy Pr (Ap|npk, R(1+ws))
b=1"0

>i&wﬂ > oA
n/=0 n': ZC lnc_n
(H/ dXo Pr (Ap|npk, R(1+wp) ) > pp
>
1

Smen[(3)'+5% ()
<bl:[1/o dApr(Abmbk’R))

Q

w ’Il—&
c c R

. A
- /Oood/\ Pr (A[nk, R) (7::1_[11 /de> Pp (q|nk) [1 _Cz:mlkwc (nc— )\ch)
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In going from the third to the fourth line above, we have made the approximation that
<1> ~ 1
W ey A
which is valid for A\ > 1. Similarly,
! 7
i Mgy
Ya¥9) =\ 77, 2
ks <<zm1nf>2>
o Aa b
-/ HdA ¢ Pr (Ae|nek, R(1+w,)) ZPp 1—? =2
0o m
~ d 1\ Ao
N/O (Cl:lld)\ch()\cnck,R)> 1—kad <nd—R) (1—A) "
d>\P (\nk,R) H dge | Pp (g|nk) 1—ka n —@ i
T qc D q d d \ qaqp -

Simplifying the expressions above is tedious but straightforward. The following results are helpful:

/ dA Pr(Ank, R) A = R,
0

l_ k/R
A nk—1’

nk
<H /dqc> Pp (qInk) qagy = k1 17aY
L Yal=ya) _ mk o 1
d P k f— a
(H/%) b (gnk) d = va + = T = et Y
— 1—y) nk
¢ | P 200 = (2 4 Yol = Ya
<H /dq> D (glnk) dats (y“+ nk+1 ) nk+2”

Ya(1—ya)\ nkyg +2
(H /de>PD (qlnk)qg (a nk+1 )) nk+2

Here we have frequently used n, = ny, to simplify expressions.
With the above results, simplifying expressions for the second moments, we finally find

/ d Pr (Alnk, R)

<(Aya)2> = [nk‘l—i—l + n:_]i . nlz/i} Ya (1—ya)+0 (1/0%),

and

VRV SR L

2
nk+1 nk+1 nk—l] yayb—i—(?(l/n )7

where we have assumed that the w, are O (1/n), as in the Wright-Fisher model with weak selection. We have thus found
that the first and second moments of frequency changes in our multi-variant epidemiological model have the same frequency
dependence as those in the multispecies Wright-Fisher model, but with different scaling. The first moment (‘drift’) is multiplied
by a factor of nk/(nk + 1), and the second moment (‘diffusion’) by

L, nk KR
nk+1 nk+1nk—1"

These prefactors match with the Wright-Fisher model exactly when k£ — oo (i.e., a pure Poisson distribution for the number of
new cases per infected individual) and R = 1.
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2.4. Derivation of the selection coefficient estimator

The derivation in this section closely follows that given in ref. '3, It is well known that a WF process can be approximated by
a continuous-time continuous-frequency diffusion process in the large n limit. In the continuous-time limit the time variable ¢
has units of n generations, with one generation in discrete time taking 7 = 1/n continuous time units. The selection coefficients
w, are assumed to scale with n such that w, = 10, /n, where 1@, is a parameter independent of the population size n. In the
limit of large population size, our generalized super-spreading model can, like the WF process, be approximated by a diffusion
process, where the transition probability density ¢ is the solution to the Fokker-Planck equation

M
0
*;T%d +Zzayaay b(y(1)| .

a=1b=1

where M is the number of distinct genotypes, ¥ is the genotype frequency vector, d is the drift vector, and C' is the diffusion
matrix. Here we ignore recombination and mutation, since these are comparatively small and therefore unlikely to significantly
affect estimates of changes in viral transmission (though these can be included and the solution remains tractable). The drift
and diffusion have entries given by,

da(y(t)) = lim n(Aya)

n—oo
nk
- nhﬁmoo nk+ 1 (wa Z wbyb )
= ya(t) (wa - Zwbyb(t)> )
b=1

3 1
Can(y(t)) = 3 nhj;on(AyaAyw

_1 11 Ya(t)(1=ya(t)) a=0
[NRH Ol a#tb.

For genotype frequencies observed at times ¢ and ¢ + 7At (i.e., over At generations), and for small 7At, the Fokker-Planck
equation can be converted into a path integral approximation for the transition probability density (see ref.'3¢ for a rigorous
derivation)

¢ (y(t+7A)y(t))
e {20 30 [yat+ A =y () — da(yO)r AL (O (4a(0)),, [wn(+ 70— (8) — do(y(8)) ] |
(4rT At)M/2, /det (C‘(y(t))) |

From this result, and recalling 7 = 1/n, the transition probability from time ¢,, to ¢,,+1 of the original branching process (for
large n/At) can be approximated by

Py(tmi1)|y(tm))

M
~ ¢ (Y(tm+1)|y(tm)) H dYa(tm+1)
a=1
exp{—g 0L, W [teltmsiimeln) —a (y(t)] (€ Waltm) ,, | 2220 —dy (y t1n)

- S . ” ﬁ dYa(tm+1),
a=1

(2w Aty /) M/2/det (C(y(tm)))

where we write the re-scaled drift vector as d, = d, 7, the re-scaled diffusion matrix as Cop = 2C4p, and At,, = tm+1 —tm
Since we aim to infer selection coefficients for the SN'Vs, it is more convenient to work with the allele frequencies x; instead
of the genotype frequencies y,. The allele frequency at site ¢ is given by

M
m) = Zggya(tm) )
a=1
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where g is a 1 if there there is a mutant allele at site  on genome a and zero if there is not. Similarly, if the selection coefficient
for the genotype a is w, and the allele level selection coefficient for allele j is s;, then they are related by:

L
a
Wq = § 9555
j=1

where L is the length of the genome.
The allele level drift and diffusion terms will be linear combinations of the genotype level drift and diffusion, just as with the
frequencies and the selection coefficients. The drift vector for the allele frequencies can be transformed by

M
di (@(tm)) =Y _ gida (y(tm))
a=1

M M
=" g yaltm) (wa wab@m))
a=1 b=1

L
= 2i(tm) (L= zi(tm))si+ Y (@i(tm) = i(tm)2j(tm)) s; -
j=1.j#i

This can be used, along with the transition probability density for genomes, in order to find an approximation for the mutant
allele transition probability density:

P(:E(tm+1)|w(tm))
e { g rh yh [Pl gy (a(1,))] (0 lt),, [ZU 0 ()]}
~ (27 Aty /1) /2 /det (C(2(tm)))

L
[ dzi(tmi1) .
i=1
where here the diffusion C' is derived similarly to the drift d and has entries

1 1
Ci(altn)) = | + 7] (5(6m) ~ (b}t
A path integral then gives the probability of observing a trajectory of allele frequencies ((t1),x(t2),...,x(t7—1)), and is given
by

T-1
P ((@(tm)) [2(t0)) = II Pt iatin).

Bayesian analysis can then be used to show that the posterior probability of the selection coefficients s = (s1,$2,...,51,) given
an observed frequency path x(to), x(t1),...,x(t7—1) is

P (s| (m(tm))ﬁzo) x P ((m(tm))ﬁzl |w(t0)) % Pprios(s) (S2)

where we use a Gaussian prior distribution with zero mean and adjustable covariance determined by the parameter 7y, which is
the precision.

For the inferred coefficients, we take those that maximize the posterior probability. They can be analytically found by a
simple application of the Euler-Lagrange equations to (S2) and are given by

2 P2 -1 n
s 71+Zn(£i)20(tm)] [ ]ﬁ%(mam))]. S3)

2.5. Extension to multiple regions

In the SARS-CoV-2 pandemic, and in real disease outbreaks in general, there are frequently multiple different outbreaks in
different regions that develop largely or entirely independently of one another. In order to find the best estimate for the selection
coefficients using the data from multiple regions, the estimator can be generalized to find the maximum a posteriori estimate
for the selection coefficients given the time series of allele frequencies in each of the regions. If the probability for a specific
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path in a specific region r is given by P ((mr(tr,m))ﬁzl |mr(tr70)) , where x,. is the allele frequency vector in region r, then
the joint probability of the specific paths in all of the regions is simply the product of the individual region probabilities:

Q
P (@1t iy (@Qtum) s [ 1@ (tr0) Yy ) = TP (@ b)) i 20 (t0) )
r=1

where () is the number of different regions. Since this is a product of exponential functions, the log posterior will be the sum
of the exponents and the regularization. This can be maximized with respect to the selection coefficient vector s as before and
leads to the estimator:

-1
K2R? ke, Ry
= Y O | | Y g A i) | (S4)

T
T trm

2.6. Simplification of the estimator

In real outbreaks the parameters &, R, and n are in general time-varying. In our simulations as well, R and n are time-varying
(and k can be constant or time-varying). In order to accurately infer the selection coefficients according to Eq. (S3) or Eq. (S4),
it would seem that we need to accurately infer the values of k, R, and N at every point in the time series. In practice, this would
be extremely difficult. For general discussion about the effective reproduction number R and the basic reproduction number
Ry as well as some attempts to infer this, see refs.!3’~14!_ In order to get an accurate estimate for it is necessary to have
pervasive contact tracing, so that the negative binomial distribution is well sampled, and there are other difficulties in inferring
k as well 1427144 Lastly, it can be difficult to estimate the number of new infections due to multiple factors, including the
difference between the population that gets tested and the population that does not, test result inaccuracies, and delays between
symptom onset, testing, and reporting.

We propose an alternative that lets us avoid these complications. The prefactor nkR/(R + k), multiplies both the numerator
and the denominator. Therefore, the only effect of the prefactor is to weight time points more heavily if the population size,
the dispersion parameter, or the basic reproduction number, is larger. This makes sense in theory, because a larger n or k
implies that there is less noise and the trajectories are more deterministic, while a larger R means that there are more new
infections per generation and thus more data to use to infer the selection coefficients. This does hold with perfect information,
that is, if all infected individuals are sampled at every time point. However, in practice, finite sampling is the source of
significantly more noise than that due to a time-varying population size or dispersion, so weighting the time points based
upon n, k, or R in fact leads to worse inference than assuming the parameters are constant in time and thus weighting the
time points equally. However, in the special and unrealistic case of perfect sampling, using the actual parameters does lead to
better inference than using constant parameters (see Supplementary Fig. 11). If the time points are weighted equally, then,
provided that the regularization + is scaled appropriately (and in general it must be determined by separate means, discussed
below), the prefactors in the numerator and denominator cancel, and the estimator is independent of n, k, and R. Defining

v =~nkR/(k+ R) and C by
O {nk‘R}c—,’

E+R

so that
G Tij(tm) —@i(tm)z;(tm) i #7
1] — . ]
2i(tm) (1 — 23 (tm)) i=]
Eqgs. (S3) and (S4) for the selection coefficients become, respectively

-1
[Z Aw(tm)] :

§=|vYI+> Cltm)
L tm

—1

§ = ")//I+ Z Z C’r(tr,m) Z Z Aw'r(tr,m) )

T trm T trm

which are the same as the MPL estimators for the Wright-Fisher model except for the absence of a mutation term '3

2.7. Covariance of the inferred selection coefficients

Since the posterior given in (S2) is a Gaussian distribution for the selection coefficients, the covariance matrix of the inferred
selection coefficients can be easily found. For any Gaussian distributed random vector z, the inverse of the covariance can be
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calculated as the second derivative with respect to z of the negative log of the probability density function. That is, if we define

J=—In [P (sl (m(tm))fn:o)}

vs® + Z T(tmt1) — (tm)_d(w(tm))]TC_l(ic(tm))[w(tm-i-l)_w(tm)_d(fb(tm))]

+ Z <L1n< )+1n(det0))

then the inverse of the covariance matrix of the parameters is given by the second derivative of J with respect to s. The first
derivative of J with respect to s gives

Ha(tme) —2(tm) — d(@(tm))] -

T-1
nkR
— cCc~
2 irr

The second derivative, which is the inverse of the covariance of the selection coefficients s, is

= k2R?

— (k+R)?

02J

9s0sT C(z(tm))-

This implies that the covariance of the inferred coefficients is given by

T—-1 k2R2 ‘|
S = |yl + Cla(tm))
U z::() (k+R)?

Using the definitions of v/ and C given above, in the case where the parameters n, k, and R are constant, this reduces to

k—i—R

—1
5= ’I+ZC (tm) ] : (S5)

Since (k+ R)/nkR is a decreasing function of k, this implies that the theoretical covariance decreases as the dispersion
k becomes larger. Supplementary Fig. 14a shows the theoretical uncertainty in the selection coefficients with the largest
magnitudes that we infer from SARS-CoV-2 data. Because the theoretical uncertainties do not account for finite sampling,
these error bars tend to be fairly small. To obtain more realistic error bars, we also performed bootstrap resampling of the data,
where multiple regions were also omitted from the analysis at random (Supplementary Fig. 14b.

2.8. Covariance of inferred selection coefficients for a group of fully linked sites

The above analysis can be used to quantify the covariance between inferred coefficients for a group of SNVs that are fully
linked, meaning that all of the SN'Vs in the group appear together on every sequence on which one of the SNVs appear. This is
useful because it provides an estimate for the maximum covariance between linked SNVs. An analytical result is presented only
for the special case where all of the SNVs under consideration are fully linked, though simulations indicate that the maximum
value is not strongly dependent on other SNVs that are partially linked to the main group. The covariance matrix at any time
for a group of fully linked SNVs has (4, j)th element given by (C(tm))i; = [§ + %] @i(tm) (1 — x;(tm)) for any (4,5), since
the frequencies x;(t,,) for all of the SNVs are identical. This implies that the second term in (S5) is a matrix with every entry
identical. If we define the elements of the matrix
T-1
nk?R?
——=Ci(x(tm)) =
— (k+ R)> i (@ (tm)) = a,
the vector w as the vector of all 1’s, and use the notation ()T to denote transpose, then the covariance of the inferred coefficients
can be written as
1!
Slinked = [’YI"HIUU } .
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Because of the simplicity of this form of the matrix, the inversion can be carried out explicitly using the Sherman-Morrison
formula, which for an n X n matrix gives

1 aV%IuUTI
Slinked = —f — ——=—7
¥ 1+au Iu;
1 1
=—1- ’YziuuT.
v L +9n

From this the correlation matrix can be easily calculated, and the off-diagonal elements represent the maximum correlation
between n SN'Vs that are fully linked to one another. The off diagonal elements of the correlation matrix are given by

1
Pij = FR—

o

We analyzed sets of strongly linked mutations in the Alpha, Delta, and Omicron variants to test our ability to distinguish the
independent selective effects of individual mutations. Supplementary Figure 15 shows that, while many inferred selection
coefficients are naturally correlated, this correlation is far from complete. Only in rare circumstances (e.g., the three nucleotide
mutations comprising N:D3L in Alpha) are SN'Vs so strongly linked that their effects cannot be at least partially disentangled.

3. Simulations

We tested the inference using simulations of disease spread. Specifically, we ran super-spreader simulations based on the
model described above, which is an analog of the Wright-Fisher model where the sampling distribution for the number of new
infections per infected individual is drawn from a negative binomial distribution instead of a pure Poisson distribution.

3.1. Description of simulations

We simulated disease spread as a branching process in which the number of individuals infected per currently infected indi-
vidual is drawn from a negative binomial distribution whose shape is determined by the basic reproduction number Ry (or the
reproduction number, R, in a population that is not totally susceptible) and the dispersion parameter k. Because we sample
in this way, the population size is not constant. However, if the population size is too small, then the population is extremely
likely to die off stochastically, and if the population size is too large, then sampling from the negative binomial becomes too
computationally expensive. In order to avoid both of these problems, once the population size is large enough R is adaptively
adjusted so that the average reproduction number for the entire population will remain near 1, and the population size will
oscillate around a fixed value. An explicit time-varying population size can also be used as input, and R will be adaptively
adjusted to remain near the given curve. Constant values can be used for the dispersion k or k can vary as a function of time,
perhaps representing different degrees of social distancing or lockdown measures at different times. Since different interven-
tions implemented to prevent the spread of disease would likely affect the shape of the distribution of the number of individuals
infected by a single infected individual, time-varying values for k£ and R can be used to reflect these effects.

3.2. Inference

The simulations are run for a number of generations and genomes are sampled from the population of infected individuals at
different times using a multinomial sampling distribution. This sampled time series is then used to infer the selection coefficients
using (S3). Alternatively, multiple simulations can be run and the joint inference of the selection coefficients can be made using
(S4). We find that, given good enough sampling, a long enough time series, and sampling that occurs at a sufficient number
of times, the selection coefficients can be inferred very accurately (Fig. 1). The quality of inference is significantly improved
if multiple simulations are combined and if mutated sites show up in more than one of the simulations, even under less than
ideal sampling conditions. Beneficial coefficients are typically inferred more accurately than deleterious ones, likely because
deleterious SN'Vs frequently die off and therefore there is less data to use for inference.

The inference is robust to shortening the time-series or lowering the number of samples taken per generation, though obvi-
ously if either of these conditions is too extreme (or worse, both), the inference starts to break down. The negative effects of
a short time-series or poor sampling can be somewhat made up for by using multiple simulations, which is analogous to using
data from outbreaks in multiple regions. In addition, the diffusion approximation is only valid in the large n limit. However,
we tested the inference for small population sizes and found that inference is accurate even if the population of newly infected
individuals per serial interval is as low as a few hundred (Fig. 1).
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