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New and more transmissible variants of SARS-CoV-2 have
arisen multiple times over the course of the pandemic. Rapidly
identifying mutations that affect transmission could facilitate
outbreak control efforts and highlight new variants that war-
rant further study. Here we develop an analytical epidemiologi-
cal model that infers the transmission effects of mutations from
genomic surveillance data. Applying our model to SARS-CoV-
2 data across many regions, we find multiple mutations that
strongly affect the transmission rate, both within and outside
the Spike protein. We also quantify the effects of travel and
competition between different lineages on the inferred trans-
mission effects of mutations. Importantly, our model detects
lineages with increased transmission as they arise. We infer sig-
nificant transmission advantages for the Alpha and Delta vari-
ants within a week of their appearances in regional data, when
their regional frequencies were only around 1%. Our model
thus enables the rapid identification of variants and mutations
that affect transmission from genomic surveillance data.

Viruses can acquire mutations that affect how efficiently
they infect new hosts, for example by increasing viral load
or escaping host immunity1–4. The ability to rapidly iden-
tify mutations that increase transmission could inform out-
break control efforts and identify potential immune escape
variants5–9. However, estimating how individual mutations
affect viral transmission is a challenging problem.

Current methods to estimate changes in viral transmission
generally rely on phylogenetic analyses or fitting changes in
variant frequencies to a simple growth model5,10–12. Phy-
logenetic analyses for viruses can be challenging due to a
high degree of sequence similarity, which implies that the
data can be explained equally well by a number of different
trees13. Phylogenetic analyses also typically rely on exten-
sive Markov chain Monte Carlo sampling that becomes in-
tractable for very large data sets. Simple growth models can
estimate the difference in transmissibility between one vari-
ant and others circulating in the same region. However, they
typically do not systematically account for competition be-
tween multiple variants, and their estimates may be difficult
to compare for variants that arose in other regions or with
different genetic backgrounds. These approaches also do not
consider travel of infected individuals, nor do they account
for superspreading —where a small number of infected indi-
viduals cause the majority of secondary infections —which
has been observed for viruses like SARS-CoV and SARS-
CoV-214,15.

To overcome these challenges, we developed a method to
infer the effects of single nucleotide variants (SNVs) on viral
transmission from genomic surveillance data that accounts
for competition between viral lineages, travel, superspread-
ing, and outbreaks in different locations. For clarity, we re-
fer to non-reference nucleotides (including deletions or in-
sertions) as SNVs and viral lineages possessing common sets
of SNVs as variants. Simulations show that our approach
can reliably estimate transmission effects of SNVs even from
limited data. We applied our method to more than 1.6 million
SARS-CoV-2 sequences from 87 geographical regions to re-
veal the effects of mutations on viral transmission throughout
the pandemic. While the vast majority of SARS-CoV-2 mu-
tations have negligible effects, we readily observe increased
transmission for sets of SNVs in Spike and other hotspots
throughout the genome. We further quantified the influence
of travel and competition between multiple variants, using
Nextstrain lineage 20E (EU1) as an example case. We found
that realistic rates of travel during the pandemic would only
slightly affect estimated changes in viral transmission. How-
ever, competition between variants has significant effects that
must be accounted for in order to accurately estimate changes
in transmission.

Importantly, our approach is sensitive enough to identify
variants with increased transmission before they reach high
frequencies. We demonstrate our capacity for early detection
by studying the rise of the Alpha and Delta variants using data
from the UK. In both cases, we reliably infer increased trans-
mission for these variants within a week of their emergence,
when their frequency in the region was only around 1%. Col-
lectively, these data show that our model can be applied for
the surveillance of evolving pathogens to robustly identify
variants with transmission advantages and to highlight key
mutations that may be driving changes in transmission.

Results

Epidemiological Model

To quantify the effects of mutations on viral transmission,
we developed a stochastic branching process model of infec-
tion based on the well-known susceptible-infected-recovered
(SIR) model. Our model incorporates superspreading by
drawing the number of secondary infections caused by an in-
fected individual from a negative binomial distribution with
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meanR, referred to as the effective reproduction number, and
dispersion parameter k (refs.14,15). Multiple variants with
different transmission rates are included by assigning a vari-
ant a an effective reproduction numberRa =R(1+wa). Un-
der an additive model, the net increase or decrease in trans-
mission for a variant is the sum of the individual transmission
effects si for each SNV i that the variant contains. In anal-
ogy with population genetics, we refer to the wa and si as
selection coefficients. In addition to superspreading and mul-
tiple variants, our model also incorporates travel of infected
individuals into or out of a localized outbreak (Methods).

We can then apply Bayesian inference to estimate the
transmission effects of SNVs that best explain the observed
evolutionary history of an outbreak. To simplify our analy-
sis, we use a path integral technique from statistical physics,
recently applied in the context of population genetics16, to
efficiently quantify the probability of the model parameters
given the data (for details, see Supplementary Information).
This allows us to derive an analytical estimate for the max-
imum a posteriori selection coefficients ŝ for a given set of
viral genomic surveillance data,

ŝ = [γI+Cint]−1 [∆x+τ int] . (1)

Here ∆x is the change in the SNV frequency vector over
time, γ specifies the width of a Gaussian prior probability
distribution for the selection coefficients si, and I is the iden-
tity matrix. Cint is the covariance matrix of SNV frequencies
integrated over time, and accounts for competition between
variants as well as the speed of growth for different viral lin-
eages (Supplementary Information). τ int accounts for travel
and is given explicitly in equation (S2). Data from multi-
ple outbreaks can be combined by summing contributions to
the integrated covariance, frequency change, and travel terms
from each individual trajectory.

Validation in simulations

To test our ability to reliably infer selection, we analyzed sim-
ulation data using a wide range of parameters. We found
that inference is accurate even without abundant data, es-
pecially when we combine information from multiple out-
breaks (Fig. 1, Supplementary Fig. 1). Because we model
the evolution of relative frequencies of different variants, ac-
curate inference of selection does not require the knowledge
of difficult-to-estimate parameters such as the current num-
ber of infected individuals or the effective reproduction num-
ber (Methods). Selection can be accurately inferred not only
when the population evolves according to the superspreading
model, but also if it evolves according to a classical multi-
variant SIR model (Supplementary Figs. 2-3). This indi-
cates that selection can be accurately estimated for a broad
range of epidemiological dynamics.

Global patterns of selection in SARS-CoV-2

We studied the evolutionary history of SARS-CoV-2 using
genomic data from GISAID17 as of August 6th, 2021. We
separated data by region and estimated selection coefficients
jointly over all regions (Methods). After filtering regions
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Fig. 1. Our approach accurately estimates transmission effects of mutations
in simulations. Simulated epidemiological dynamics beginning with a mixed pop-
ulation containing variants with beneficial, neutral, and deleterious mutations. a,
Selection coefficients for individual SNVs, shown as mean values ± one theoret-
ical s.d., can be accurately inferred from stochastic dynamics in a typical simu-
lation (Methods). b, Extensive tests on 1,000 replicate simulations with identical
parameters show that inferred selection coefficients are centered around their true
values. Deleterious coefficients are slightly more challenging to accurately infer
due to their low frequencies in data. Simulation parameters. The initial population
is a mixture of two variants with beneficial SNVs (s= 0.03), two with neutral SNVs
(s= 0), and two with deleterious SNVs (s=−0.03). The number of newly infected
individuals per serial interval rises rapidly from 6,000 to around 10,000 and stays
nearly constant thereafter. Dispersion parameter k is fixed at 0.1.

with low or infrequent coverage, our analysis included more
than 1.6 million SARS-CoV-2 sequences from 87 different
regions, containing 13,189 nonsynonymous SNVs observed
at nontrivial frequencies.

Our analysis revealed that, while the great majority of
SNVs were nearly neutral, a few dramatically increased vi-
ral transmission (Fig. 2a, Table 1). We observe clusters of
SNVs with strong effects on transmission along the SARS-
CoV-2 genome (Fig. 2b). The highest density of SNVs that
increase transmission is in Spike, especially in the S1 subunit.
Of the top 20 mutations that we infer to be most strongly se-
lected, 10 are in Spike (Table 1). However, clusters of SNVs
with a strong selective advantage are also found in other pro-
teins, especially in N, M, ORF3a, and NSP6.

Mutations inferred to substantially increase transmission

The top 50 mutations inferred to increase SARS-CoV-2 trans-
mission the most are given in Table 1. Experimental evi-
dence exists to directly or indirectly support many of these
inferences. For clarity, we will reference mutations at the
amino acid level rather than the underlying SNVs, which are
also given in Table 1. Spike mutations L452R and P681R/H
comprise three of the top four mutations, and all have
demonstrated functional effects that could increase trans-
mission4,18–21. Similarly, Spike mutations such as E484K
(ŝ = 5.2%, ranked 9th) and S477N (ŝ = 4.4%, ranked 15th)
appear prominently in our analysis. E484K has been shown
to increase resistance to antibodies22, and both E484K and
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Fig. 2. Inferred transmission effects of SARS-CoV-2 mutations. a, The vast
majority of the 13,189 nonsynonymous SNVs included in our study are inferred
to have negligible effects on transmission (that is, ŝ close to zero). However, a
few SNVs have strong effects, as evidenced by a large value of ŝ. b, Patterns of
selection across the SARS-CoV-2 genome. Beneficial SNVs often cluster together
in the genome. Clustering is especially apparent for the S1 subunit of Spike, where
many SNVs that are inferred to have the largest effects on transmission are located.

S477N were rapidly selected for increased ACE2 receptor
binding during in vitro evolution23. Four Spike N-terminal
domain (NTD) mutations/deletions (L18F, ∆141-142, and
D253G) are also strongly selected. These lie in the anti-
genic supersite where mutations have been shown to decrease
the neutralization potency of NTD-specific monoclonal anti-
bodies24. Spike mutations D614G (ŝ = 2.9%, ranked 52nd)
and N501Y (ŝ = 2.9%, ranked 58th) fall just outside the top
50 mutations in Table 1. D614G has been shown to in-
crease binding affinity to the ACE2 receptor, thus increas-
ing viral load and likely contributing to increased transmis-
sion7,25. Similarly, there is evidence that N501Y increases
ACE2 binding affinity as well as transmission of infection26.

Research on viral transmission has naturally focused on
Spike because of its role in viral entry and as a target of
neutralizing antibodies. However, our analysis also reveals
strongly selected mutations outside of Spike. These include
the Nucleocapsid mutations D3L and R203M. D3L (ŝ= 6%,
ranked 5th) has been reported to increase production of a non-
canonical subgenomic RNA that encodes for ORF9b (ref.27),
an interferon suppressing gene that can aid innate immune
evasion and thereby increase transmission28. R203M (ŝ =

4.6%, ranked 13th), present in the linker region of Nucle-
ocapsid, has been shown to enhance viral RNA replication,
delivery, and packaging, which may increase transmission29.
The Nucleocapsid mutation T205I (ŝ = 3.3%, ranked 40th)
improves RNA delivery and expression to a lesser degree29.
A Nucleocapsid mutation S202N (ŝ = 3.3, ranked 39th) is
also inferred to be strongly selected. While the effect of this
specific mutation is unknown, a mutation to Arginine at the
same residue (S202R, which we infer to be more moderately
beneficial, ŝ = 1.7%) has been reported to increase replica-
tion, RNA delivery, and packaging29. Other strongly selected
mutations outside of Spike include the Membrane I82T mu-
tation (ŝ= 7.5%, ranked 2nd) and NSP6 deletions ∆106-108
(ŝ = 5.4%, 4.2%, and 3.1%, ranked 7th, 23rd, and 43rd).
Similar examples may provide good targets for future stud-
ies of the functional effects of non-Spike mutations.

Estimates of selection for major SARS-CoV-2 variants

We estimated the net increase in viral transmission relative to
the Wuhan-Hu-1 reference sequence for well-known SARS-
CoV-2 variants by adding contributions from the individual
variant-defining SNVs (Fig. 3, see Methods). Because our
model uses global data and infers the transmission effects of
individual SNVs, variants can be compared to one another
directly even if they arose on different genetic backgrounds,
or if they appeared in different regions or at different times.
This also allows us to infer substantially increased transmis-
sion for variants such as Gamma, Beta, Lambda, and Epsilon,
which never achieved the level of global dominance exhib-
ited by Alpha and Delta (Fig. 3). For reference, we show
the selection coefficient inferred for the cluster of mutations
including the Spike mutation D614G that fixed early in the
pandemic.

Our findings are consistent with past estimates that have
shown a substantial transmission advantage for Alpha and
Delta relative to other lineages30–32. However, past esti-
mates have varied substantially depending on the data source
and method of inference. For example, in different analyses
Delta has been inferred to have an advantage of between 34%
and 97% relative to other lineages30–32. Similarly, Alpha has
been estimated to increase transmission by 29% to 90% rel-
ative to pre-existing lineages in different regions5,11,12,31,33.
One advantage of our approach is that it can infer selection
coefficients that best explain the growth or decline of variants
across many regions, allowing selection for different variants
to be compared on even footing.

In November 2021, a new variant, Omicron, was detected
in South Africa. The data that we consider only extends to
August 6th, 2021, and thus Omicron is not present in our
data set. However, because this variant bears SNVs observed
in other lineages, we can provide a preliminary estimate of
its transmission advantage. Even without considering the ef-
fects of 17 Omicron SNVs (out of 96 total) that were not
previously observed in data, the total selection coefficient for
Omicron is ŵ = 55.2%, which surpasses Alpha. While more
data will be necessary to fully assess the transmission ad-
vantage of this variant, our model suggests that Omicron is
highly transmissible, supporting its designation as a variant
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Fig. 3. Multiple SARS-CoV-2 variants strongly increase transmission rate. Fre-
quencies of major variants and their total inferred selection coefficients, defined
relative to the Wuhan-Hu-1 reference sequence. Selection coefficients for variants
with multiple SNVs are obtained by summing the effects of all variant-defining SNVs
(Methods). Because our method uses global data and accounts for competition be-
tween variants, we infer large transmission advantages even for variants such as
Gamma, Beta, Lambda, and Epsilon, which never achieved the same level of global
dominance as variants such as Alpha and Delta.

of concern (VOC) by WHO34.

Effects of travel and competition on inferred coefficients

In addition to differences in transmissibility, variant frequen-
cies are affected by the travel of infected individuals between
regions and competition between variants. Multiple intro-
ductions of a new variant into a region can increase its lo-
cal frequency even if the variant has no transmission advan-
tage35,36. This could, for example, make a neutral variant
appear beneficial. Conversely, variants that transmit more
effectively than ancestral SARS-CoV-2 can still be outcom-
peted by other, more transmissible variants, causing them to
decline. In population genetics, this is referred to as clonal
interference37,38.

We studied the history of Nextstrain lineage 20E (EU1) as
an example to investigate the influence of travel and inter-
lineage competition on inferred changes in transmission. A
detailed analysis showed how 20E (EU1) spread from Spain
to other regions in Europe35. There it was estimated that
20E (EU1) was introduced into the UK roughly 380 times
during the summer of 2020. Assuming no travel between the
UK and other regions, we infer a total selection coefficient
for novel 20E (EU1) SNVs of 15.6% using UK data gathered
from the beginning of the pandemic through May 1st, 2021,
when 20E (EU1) had died out locally. Including 380 impor-
tations into the UK during the summer of 2020, our inferred
selection coefficient is only slightly reduced to 15.4% (Meth-
ods). Around 37,000 importations would be necessary dur-
ing this time for 20E (EU1) to be inferred to be completely
neutral. Thus, while travel was crucial for the early spread
of 20E (EU1) in the UK and across Europe, its subsequent
growth ultimately dominates estimates of its effects on trans-
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Fig. 4. Inferred transmission benefit for the Spike mutation A222V. a, The
20E (EU1) lineage, bearing the Spike mutation A222V, is outcompeted by Alpha
in the UK. b, Because our model accounts for competition between variants, we
nonetheless infer a transmission benefit for A222V, as well as other 20E (EU1)
mutations, that persists even as 20E (EU1) dies out in the UK. c, Globally, S:A222V
has arisen on different sequence backgrounds and increased in frequency since
June 2021, consistent with a transmission advantage for this mutation.

mission.
Competition between Alpha and 20E (EU1), which was

rising in the UK before the emergence of Alpha, provides a
clear example of clonal interference in SARS-CoV-2. Inter-
ference can be readily observed in their frequency trajectories
in the UK (Fig. 4a). Changes in frequency for the two vari-
ants have a Pearson correlation of −0.73.

To measure the influence of competition on estimates of
transmission, we inferred selection coefficients for variants
circulating in the UK with all nucleotide changes present in
the Alpha variant reverted to the Wuhan-Hu-1 reference se-
quence. This provides an estimate for the 20E (EU1) selec-
tion coefficient that ignores competition with Alpha. Using
all of the data, 20E (EU1) is inferred to have a significant
transmission advantage relative to the previously dominant
variant B.1 (ŵ20E(EU1)− ŵB.1 = 10.2%). However, when
competition with Alpha is ignored, 20E (EU1) is inferred to
be mildly deleterious (ŵ20E(EU1)− ŵB.1 = −1.7%). Thus,
ignoring competition between variants would lead to a dra-
matic and likely incorrect change in inferred selection.

The re-emergence of the Spike mutation A222V, which ap-
peared within the 20E (EU1) variant, further supports a trans-
mission advantage. Using global data, we infer A222V to
significantly increase transmission (ŝ = 3.8%, ranked 29th,
see Table 1). In our analysis, A222V contributes far more
than any other mutation to the increased transmission of 20E
(EU1) relative to contemporary variants. Focusing on data
from the UK alone, the inferred benefit of A222V remains
roughly constant even as 20E (EU1) is outcompeted by Al-
pha (Fig. 4b). Later, A222V arises on other sequence back-
grounds and steadily increases in frequency (Fig. 4c), consis-
tent with the increase in transmission inferred by our model.

Our analysis therefore suggests that 20E (EU1) possessed
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Fig. 5. Our model rapidly infers increased transmission for Alpha and Delta. a, The null distribution of inferred selection coefficients for neutral variants over all
intermediate times and across all regions. Neutral variants are defined as (collections of) SNVs that are inferred to have total selection coefficients |w| < 1% using global
data. b, Frequency of Alpha in London and its inferred selection coefficient over time. The inferred coefficient exceeds the largest one in the null distribution on November
9th, 2020. c, Frequency of Delta in the UK and the inferred selection coefficient for novel Delta SNVs over time. The inferred coefficient exceeds the null on March 31st, 2021.

a modest but real transmission advantage relative to contem-
porary SARS-CoV-2 sequences. This finding is consistent
with analysis in ref.35, where a model of 20E (EU1) spread
due to travel alone underestimated the observed frequency of
the variant by 1- to 12-fold in all regions. More generally,
our analysis suggests that very large inferred selection coef-
ficients for variants or SNVs in our model are unlikely to be
explained by travel alone.

Rapid detection of variants with enhanced transmission

Rapidly identifying variants with increased transmission is
important to inform public health efforts to limit viral spread.
However, the inherent stochasticity of infection and of ge-
nomic surveillance data collection makes accurate inferences
difficult. For example, neutral or modestly deleterious vari-
ants may initially appear to be beneficial due to a transient
rise in frequency despite having no selective advantage.

To quantify how fluctuations affect estimates of selection
for neutral variants, we first identified all variants (including
both SNVs and collections of SNVs that are strongly linked
to one another) that are inferred to have selection coefficients
with magnitude less than 1% using all of the data. We then
calculated the selection coefficients that would have been
inferred for the SNVs or variants at all earlier time points
and in all regions after they were first observed in the data.
This “null” distribution (Fig. 5a) quantifies fluctuations in
inferred selection coefficients for nearly-neutral variants due
to stochasticity in viral spread and sampling. Variants with
selection coefficients larger than any in the null distribution
could then be expected with high confidence to have some
transmission advantage.

To assess our ability to rapidly detect variants with a trans-
mission advantage, we studied the rise of the Alpha variant in
the London area. Using the above criterion, we identify Al-
pha as very likely to increase transmission using sequence
data that was collected on or before November 9th, 2020
(Fig. 5b). This is roughly three weeks before Public Health
England labeled Alpha as a variant of interest (VOI)39, and
more than a month before it was classified as a VOC40. At

this time the frequency of Alpha in London was around 1%.
A similar analysis also shows that our model rapidly infers

increased transmission for the Delta variant. Using data from
the UK, we reliably infer Delta to increase transmission by
March 31st, 2021 (Fig. 5c). Delta was classified as a VOI
on April 4th, 2021 and as a VOC more than one month later
on May 6th, 202141. At the time that we detected increased
transmission for Delta, its frequency was still low (< 1%) in
the UK. Collectively, these results demonstrate our ability to
rapidly identify variants with higher transmission, even when
they represent a small fraction of all infections in a region.

Discussion
Quantifying the effects of mutations on viral transmission is
an important but challenging problem. To overcome limita-
tions of current methods, we developed a flexible, SIR-based
epidemiological model that provides analytical estimates for
the transmission effects of SNVs from genomic surveillance
data. Applying our model to SARS-CoV-2 data, we identi-
fied SNVs that substantially increase viral transmission, in-
cluding both experimentally-validated Spike mutations and
other, less-studied mutations that may be promising targets
for future investigation. We further explored the effects of
travel and competition between variants on inferred changes
in transmission, using the history of 20E (EU1) as an ex-
ample. Importantly, we found that our model is sensitive
enough to detect substantial transmission advantages for vari-
ants such as Alpha and Delta even when they comprised only
a small fraction of the total number of infections in a re-
gion, thus providing an “early warning” for more transmis-
sible variants.

Further monitoring will be important to identify and char-
acterize new variants as they arise. The Omicron variant that
was recently detected in South Africa provides one such ex-
ample. While the data in our study only extends to August
6th, 2021, we would estimate a selection coefficient of 55.2%
for Omicron based on the mutations that it shares with previ-
ous variants alone.
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While our study has focused on SARS-CoV-2, the epi-
demiological model that we have developed is very general.
The same methodology could be applied to study the trans-
mission of other pathogens such as influenza. Combined with
thorough genomic surveillance data, our model provides a
powerful method for rapidly identifying more transmissible
viral lineages and quantifying the contributions of individual
mutations to changes in transmission.
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Methods

Epidemiological model
We use a discrete time branching process to model the spread
of infection. Individuals can be infected by any one of M
viral variants, which are represented by genetic sequences
g = {g1,g2, . . . ,gL} of length L. For simplicity, we will
first assume that alleles at each site i in the genetic sequence
for variant a are either equal to the “wild-type” or reference
(gai = 0) or mutants (gai = 1). Later we will relax this as-
sumption to consider genetic sequences with 5 possible states
at each site (4 nucleotides or a gap). We call na(t) the
number of individuals infected by variant a at time t. To
account for super-spreading, the number of newly infected
individuals at time t+ 1 follows a negative binomial dis-
tribution42, P (na(t+ 1)|na(t),k,Ra) = PNB (r,p), where
r = nak, p = k/(k+Ra), and Ra = R(1 +wa). Here r
and p are the negative binomial distribution parameters, k is
the dispersion, R is the average effective reproductive num-
ber, and wa encodes the variant dependence of the infectiv-
ity. Here R is also an implicit function of time, representing
change in the number of susceptible and recovered individ-
uals as well as the effects of public health interventions or
changes in behavior that modify viral transmission.

To incorporate travel, na is the sum of the locally infected
population and the net flux of infected individuals into the
region, na = na,local +na,inflow−na,outflow ≡ na,local + δna.
Defining the frequency of variant a as ya = na/

∑
bnb, the

probability that the frequency vector is y(t+ 1) = {y1(t+
1),y2(t+ 1), . . .} given the initial frequency vector y(0), is

P ((y(t))Tt=1|y(0)) =
T−1∏
t=0

P (y(t+ 1)|y(t)) . (2)

Derivation of the estimator
Because (2) is difficult to work with directly, we introduce
a “diffusion approximation” where we assume that the to-
tal number of infected individuals is large and the effects of
mutations on transmission are small. Similar approximations
have been widely used in population genetics43–45. Under
these assumptions, the probability distribution for the vari-
ant frequencies satisfies a Fokker-Planck equation with terms
derived from the first and second moments of the frequency
changes ya(t+1)−ya(t) under the negative binomial distri-

butions above.
However, the genotype space is high-dimensional (dimen-

sion 2L, with either a mutant or wild-type allele at each site)
and undersampled, making inference of selection for geno-
types extremely challenging. To simplify the inference prob-
lem, we assume that selection is additive, so the total selec-
tion coefficient wa for a variant a is the sum of selection co-
efficients si for mutant alleles at each site i:

wa =
L∑
i=1

gai si .

We can then derive a Fokker-Planck expression for the dy-
namics of mutant allele frequencies

xi =
M∑
a=1

gai ya .

At the allele level, the Fokker-Planck equation has a drift vec-
tor given by

di(x) = xi(1−xi)si+
L∑
j=1

(xij−xixj)sj (3)

+ 1
R

[
δxi−xi

M∑
b=1

δnb
n

]
,

and a diffusion matrix

Cij =
(

1
k

+ 1
R

)
×

{
xij−xixj i 6= j

xi(1−xi) i= j
,

where xij is the frequency of infected individuals that have
mutant alleles at both site i and site j at time t, and δxi is the
change in the frequency due to individuals traveling. Here
n =

∑M
a=1na is the total number of individuals infected by

all variants. If li = li,inflow− li,outflow is the number of people
traveling into a region minus that traveling out of it who are
infected with a variant that has a mutant allele at site i, then
δxi = li/n.

The Fokker-Planck equation can then be used to derive a
path integral, which expresses the probability of an entire
evolutionary history or “path” (i.e., frequencies of genetic
variants over time, (x(tk))T−1

k=1 ). The path integral is

P
(

(x(tk))T−1
k=1 |x(t0),s,n,δn

)
≈

(
T−1∏
k=0

1√
detC

( n
2π

)L/2 L∏
i=1

dxi(tk+1)
)

exp
(
−n2S((x(tk)Tk=0)

)
(4)

S((x(tk)Tk=0) =
T−1∑
k=1

[
x(tk+1)−x(tk)

∆tk
−d(x(tk))

]
C−1(x(tk))

[
x(tk+1)−x(tk)

∆tk
−d(x(tk))

]
.
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The path integral quantifies the probability density for paths
of mutant allele frequencies in the evolutionary history of
the pathogen. We can then use Bayesian inference to find
the maximum a posteriori estimate for the selection coeffi-
cients given the frequencies, the infected population size, the
parameters R and k, and the composition of the population
traveling into or out of the regional outbreak. The posterior
probability of the selection coefficients is

P
(
s|(x(tk))Tt=0

)
∝ P

(
(x(tk))Tt=1|x(t0)

)
PPrior(s) , (5)

where P
(
(x(tk))Tt=1|x(t0)

)
is the probability of a

path given by (4) and the PPrior(s) is a Gaussian
prior probability for the selection coefficients with
zero mean and covariance matrix σ2I . Here, I is the
identity matrix and σ2 is the variance of the prior.
The selection coefficients that maximize (5) are

ŝ=
[
γI+

T∑
t=0

nk2R2

(k+R)2C(t)
]−1[T−1∑

t=0

nkR

k+R

(
x(t+ 1)−x(t)− 1

R

(
δx(t)−x(t)

M∑
b=1

δnb(t)
n

))]
(6)

where the parameters k, R, and n are implicitly functions
of t.

There are two interesting limiting forms of the estimator.
First, we define the new matrix C̄ whose entries are

C̄ij =
{
xij(t)−xi(t)xj(t) i 6= j

xi(t)(1−xi(t)) i= j
. (7)

In the limit that k →∞, the negative binomial distribution
for new infections becomes a Poisson distribution with rate
λ = R. In this special case, the model is equivalent to the
Wright-Fisher model from population genetics. The estima-
tor reduces to

ŝ=
[
γI+

T∑
t=0

nR C̄

]−1[T−1∑
t=0

nR (x(t+ 1)−x(t))
]
, (8)

where we have dropped the migration term for simplicity.
The opposite limit k→ 0 corresponds to a distribution for

new infections with extremely heavy tails, i.e., one where
super-spreading is dominant. In this case the drift in (3),
which quantifies expected frequency changes due to selec-
tion and travel, is unchanged. However, the diffusion matrix,
which encodes linkage as well as the changes in frequency
that are due to the stochastic nature of infection transmission,
diverges. In this case, diffusion dominates the process en-
tirely.

Simplifying the estimator and robustness to incom-
plete knowledge of time-varying parameters
In practice, parameters appearing in (6), such as the infected
population size n, the dispersion k, and the mean reproduc-
tive number R, are likely time-varying. While such time
dependencies are accommodated by our model, they can be
challenging to reliably estimate from data. However, we gen-
erally do not require full knowledge of these time-dependent
parameters to accurately estimate selection.

In fact, due to finite sampling noise, estimates of selec-
tion produced by assuming constant (and incorrect) parame-
ters are more accurate than estimates that use the true time-
varying parameters (Supplementary Fig. 4). The naive es-
timator in (6) implies that time points or regions with larger

R, n, or k should be weighted more heavily in the estimate.
However, frequency information is always inaccurate due to
noise from finite sampling, so weighing some time points or
regions significantly more than others based upon the param-
eters alone means that undue weight is given to the uncertain
information available from these times and regions.

For this reason, we assume parameters that are spatially
and temporally constant in all of the following analysis, ex-
cept when considering travel, as discussed below. This al-
lows the estimator to be simplified substantially. If we as-
sume constant parameters and scale the regularization γ by
the prefactor in the numerator in (6), the parameter depen-
dence in the numerator and the denominator is almost the
same and largely cancels out. With the same definition of the
matrix C̄ as above, and additionally defining C̄int =

∑T
t=0 C̄,

the simplified estimator is given by

ŝ=
[
γI+ C̄int

]−1 [x(T )−x(0) + τint] , (9)

where τint =−
T∑
t=0

1
R

(
δx(t)−x(t)

M∑
b=1

δnb
n

)
.

This form of the estimator has significant advantages over
(6). The most important is that, if the travel term is dropped,
the difficult-to-estimate parameters R, k, and n are no longer
required. For methods of inferring these parameters as well
as discussions about the difficulty of inferring them, see
refs.46–55.

Extension to multiple regions and multiple SNVs at
each site

The model can easily account for outbreaks in multiple re-
gions or outbreaks at different times. If the probability of the
evolutionary path in each region is independent, which is the
case if there is no travel between regions, then the probability
of all of the evolutionary paths in all of the regions is simply
the product of the probabilities of the paths in each region,
given by (4). Bayesian inference can be applied in the same
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way as before, resulting in the estimator

ŝ=
[
γI+

Q∑
r=1

C̄r,int

]−1 [ Q∑
r=1

xr(Tr)−xr(tr,0)
]
, (10)

where Q is the number of regions, tr is the time in region r,
Tr is the final time in region r, tr,0 is the initial time in region
r, xr is the frequency in region r, and C̄r,int is the scaled inte-
grated covariance matrix in region r given by integrating (7)
over time. The estimator can further be extended to allow for
multiple different nucleotides at each site by simply letting
each different nucleotide have its own entry in the frequency
vector xi. If there are J mutations at each site this results
in a frequency vector of length LJ , and a covariance matrix
of size LJ ×LJ . By convention, reference sequence alleles
have selection coefficients of zero, so the mutant allele se-
lection coefficients at each site are normalized by subtracting
the inferred coefficient for the reference allele.

Branching process simulations
We implemented the superspreading branching process for
the number of infected individuals in Python. We used a neg-
ative binomial distribution for the number of secondary infec-
tions caused by a group of individuals infected with the same
pathogen variant. To test how finite sampling affects model
estimates, we sampled ns genomes per time point to use for
analysis. We computed the single and double mutant frequen-
cies, xi and xij , respectively, from the sampled sequences
and estimated the selection coefficients from these using (1),
possibly extended to account for multiple outbreaks or mul-
tiple alleles at each locus as described above.

Susceptible-infected-recovered simulations
We simulated a multi-variant Susceptible-Infected-
Recovered (SIR) model with M variants of a pathogen
circulating in a population of N individuals, assuming total
cross-immunity between variants. Mathematically, the SIR
dynamics are expressed as

dS

dt
=−

M∑
b=1

βb
SIb
N

dIa
dt

= βa
SIa
N
− raIa

dR

dt
=

M∑
b=1

rbIb ,

for a = 1, . . . ,M , where Ia is the number of individuals in-
fected by variant a, βa and ra are the transmission and re-
covery rate associated with the ath variant, and S and R
are the total number of susceptible and recovered individu-
als, respectively. Each variant is represented by a binary se-
quence of length L, with 0 representing the wild-type (WT)
allele and 1 representing the mutant allele. Considering
the all-zero sequence as the reference with transmission rate
βref, the transmission rate of variant a can be expressed as
βa = βref

(
1 +
∑L
i=1 g

a
i si

)
, with gai and si defined as above.

We further incorporate the effect of public health inter-
ventions and changing human behaviour on transmission by
making the transmission rate a function of time, i.e., βref(t).
As the number of susceptible individuals decreases, the ef-
fective transmission rate will decrease. The effective repro-
ductive number of the ath variant at time t is

Rt,a = βa(t)
r

S(t)
N

. (11)

We used MATLAB to simulate the SIR model under a sce-
nario where the number of newly-infected individuals con-
tinues to increase and then remains fixed (Supplementary
Fig. 2), and a scenario where we fix ra = 1 and adapt the
transmission rate over time such that the system follows the
typical SIR dynamics (Supplementary Fig. 3). In the SIR
model there is no superspreading, which corresponds to the
limit k→∞ in the branching process model described above.
The estimator for the selection coefficients then reduces to a
scaled version of (8),

ŝ=
[
γI+

∑
t

nRC̄

]−1[∑
t

nR

βref
(x(t+ 1)−x(t))

]
,

where n = n(t) is the number of newly-infected individuals
at time t (and is different therefore from I), x is the frequency
vector of newly infected individuals, and γ is the regulariza-
tion. In both cases selection coefficients are accurately recov-
ered.

Regions and time-series for SARS-CoV-2 analysis
We used sequence alignments and metadata downloaded
from GISAID (ref.56) on August 14th, 2021, which includes
more than 3 million sequences. Ideally, we would like to
divide this data into the smallest separate areas that have out-
breaks that are largely independent of those in the surround-
ing regions, so as to avoid biases due to travel between re-
gions or unequal sampling in different locations. However,
this needs to be balanced with the limitations of the data,
since regions with poor sampling could contribute more noise
than signal. We therefore divided data into the smallest re-
gions available in the metadata that are still large enough such
that infections resulting from travel outside of the region are
likely to be far less frequent than transmission within the re-
gion. This results in the inclusion of mostly separate coun-
tries in Europe and Asia and states in North America. Two
exceptions to this are that we separate northern and southern
California due to the geographical separation of population
centers, and we separate Northern Ireland from the rest of the
United Kingdom due to its geographical isolation.

To minimize the effects of sampling noise, we chose re-
gions and time-series within these regions based on the fol-
lowing criteria:

1. In any period of 5 days within the time-series there are
at least 20 total samples.

2. The number of days in the time-series is greater than
20.
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3. The number of new infections per day is at least around
100.

The last criterion ensures that there are enough infected in-
dividuals that transmission is not driven overwhelmingly by
stochasticity.

Our results are robust to reasonable variation in these pa-
rameters. Comparing the number of locations used and the
sample sizes shown in Supplementary Fig. 5 in the data
to those used in the simulations shown in Supplementary
Fig. 1, we expect our inference to accurately distinguish ben-
eficial, deleterious, and neutral SNVs from one another.

Data processing
We perform a number of preprocessing steps to ensure data
quality. We first eliminated incomplete sequences with gaps
at more than one third of the genome. We then removed sites
from our analysis where gaps are observed at > 95% fre-
quency, since these sites may represent very rare insertions
or sequencing errors. We also removed sites in noncoding
regions of the SARS-CoV-2 genome and ones where all ob-
served SNVs are synonymous. We imputed ambiguous nu-
cleotides with the nucleotide at the same site that occurs most
frequently in other sequences from the same region.

For the remaining sites, we excluded rare SNVs whose fre-
quency is never larger than 1% in any region and ones that
are not observed at least 5 times. These sites, if included, are
almost always inferred to have extremely small selection co-
efficients. Furthermore, since their frequencies are so small,
their covariance with other sites is also small and is there-
fore unlikely to have a large effect on inference. We veri-
fied that different reasonable values for these cutoffs result in
essentially identical selection coefficients (Supplementary
Fig. 6).

Calculating frequency changes and covariances
To increase robustness to finite sampling, we integrated terms
in (6) over time, assuming that frequencies and covariances
are piecewise linear, rather than summing contributions from
each time point57. To obtain better estimates of changes in
SNV frequencies (the term x(T )−x(0) in (9)), we averaged
x(T ) as the frequencies in the window of the final 10 days
and x(0) as the frequencies in the window of the first 10
days for each time-series and region. This smoothing is nec-
essary especially in regions where sampling is sparse, where
the number of genomes sampled on a particular day may be
as small as 1 or 2. We confirmed that our results are ro-
bust to reasonable changes of this window size of 10 days
(Supplementary Fig. 6).

We also normalized time in units of serial intervals or
“generations” by dividing the integrated covariance matrix
by 5, following results that the serial interval for SARS-CoV-
2 is roughly 5 days58–60. This allows us to convert from units
of time in days to generations, as in (9).

Calculating selection coefficients
After the above preprocessing (before eliminating synony-
mous SNVs) there remain 21,050 SNVs observed at a fre-

quency above 1% in at least one region and observed at least
5 times. We assume constant values for R, n, and k in all
regions, and use (10) to estimate selection. When R, n, and
k are constant, these terms can be effectively absorbed into
the regularization γ.

We normalize selection coefficients such that the nu-
cleotide for the Wuhan-Hu-1 reference sequence at each site
has a selection coefficient of 0. To do this, we subtract the
selection coefficient for the reference nucleotide from the in-
ferred coefficient for each other allele at that site after all se-
lection coefficients have been computed.

We used these estimates for the selection coefficients for
nonsynonymous SNVs to estimate the corresponding selec-
tion coefficients for amino acid substitutions (Table 1). If
there were multiple SNVs in a codon that result in the same
amino acid variant, but are not strongly linked to one another,
then the selection coefficient for the amino acid was calcu-
lated as the largest (in absolute value) of the SNVs. If there
were multiple SNVs in the same codon that yield the same
amino acid and these SNVs are strongly linked to one an-
other, then the selection coefficient for the mutant amino acid
was calculated as the sum of the selection coefficients for the
SNVs.

We calculated selection coefficients for major variants by
summing the individual nucleotide SNVs that define the vari-
ant, which follows from our assumption of additive fitness.
SNVs for major variants were obtained by first finding groups
of strongly linked SNVs that correspond to a variant, and then
adding any other mutations given on https://covariants.org
that were not identified by our linkage analysis.

We also computed selection coefficients for collections of
strongly linked SNVs that may not be officially-designated
variants. To determine sets of strongly linked SNVs, we con-
sidered the following statistics. If the number of genomes
with a SNV at site i is called hi and the number of genomes
with SNVs at both site i and site j is hij , then we say that
two sites i and j are strongly linked if hij/hi and hij/hj are
both greater than 80%. As for the major variants, we com-
puted selection coefficients for sets of strongly linked SNVs
by summing the contributions from individual SNVs. Selec-
tion coefficients for strongly linked SNVs were used to com-
pute the “null” distribution that we use as a metric for early
detection of variants with increased transmission.

Choice of regularization
In principle, the regularization strength γ is related to the
width of the prior distribution for SNV selection coefficients.
The regularization strength also plays a role in reducing noise
in selection coefficient estimates due to finite sampling of vi-
ral sequences. This is especially important for SNVs that are
observed only briefly in data, as they will have small inte-
grated variances in the “denominator” of (6). Larger values
of the regularization more strongly suppress noise, but they
also shrink inferred selection coefficients towards zero.

We use a regularization strength of γ = 40 after absorb-
ing factors of n, k, and R into γ (see (S4) in Supplementary
Information). For much smaller values of γ, selection coeffi-
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cient estimates are unstable due to sampling noise. However,
inferred selection coefficients stabilize and become insensi-
tive to the precise value of γ for γ & 10 ( Supplementary
Fig. 6). Larger values of γ will result in selection coefficients
with smaller absolute values, but for large enough γ the rank
ordering of inferred selection coefficients is highly reliable.
In summary, the coefficients that appear to be the most bene-
ficial or deleterious remain this way regardless of reasonable
choices for γ, though their precise values scales with the reg-
ularization strength.

Rapid detection of variants with increased transmis-
sion
To estimate how quickly we can detect a transmission ad-
vantage for a new SNV or variant, selection coefficients are
calculated only in the specific region where the variant arose.
Since inference is only done in a single region, SNVs that
appear only briefly at low frequencies —and which there-
fore are unlikely to change transmission rate —only appear
once, whereas in the global analysis such SNVs may appear
at low frequencies in multiple regions. For this reason we
use a lower regularization of 10 for regional analysis. The
null distribution is calculated by first finding all variants (in-
cluding one or more SNVs) that are inferred to have a selec-
tion coefficient of absolute value less than 1% using the joint
inference over all regions. We then calculated the selection
coefficients that would have been inferred for these variants
at all earlier time points in each region after they were first
observed in that region. We can then say with high confi-
dence that a variant increases transmission once the inferred
coefficient for that variant in a specific region surpasses any
of the inferred coefficients in the null distribution.

Effects of travel on inferred selection
Travel of infected individuals can bias inferred selection co-
efficients by changing the frequency of variants in a region
for reasons that are not due to increased or decreased trans-
mission. To analyze the effect that travel has on the inferred
selection coefficients, we focused on the United Kingdom,
and especially on the variant 20E (EU1), because sampling
the UK is excellent and because there exists a high-quality
estimate for the number of importations of this variant61. In
order to quantify the effect of travel, it is important to have
an estimate for the number of newly infected individuals on
each day since the effect due to travel depends on the num-
ber of cases that are imported relative to the number of local
cases (see 6). We used statistics from the Institute for Health
Metrics and Evaluation62 to estimate the number of newly
infected individuals in the UK. For simplicity, we assumed a
constant number of importations of 20E (EU1) per day start-
ing on July 7th, 2020 (the first day a 20E (EU1) sequence was
sampled in the UK) and continuing for 100 days. We then in-
ferred the selection coefficients for many different numbers
of importations. The results are shown in Supplementary
Fig. 7, where we find that a very large number of importa-
tions is necessary for 20E (EU1) to be inferred to be neutral
(ŵ = 0).

In our full data set, selection coefficients that are inferred
to be close to zero may in fact be slightly beneficial or dele-
terious and are inferred incorrectly due to travel. However,
given the degree of travel needed to substantially bias inferred
selection demonstrated in Supplementary Fig. 7, travel is
unlikely fully explain large inferred selection coefficients.
This is especially true for variants observed in regions where
travel restrictions reduced the number of infected individuals
entering or leaving a region. In addition, the effects of travel
are also muted when the number of local infections is large.

Data and code
Sets of processed data, computer code, and scripts that we
have used in our analysis are available in the GitHub repos-
itory located at https://github.com/bartonlab/paper-SARS-
CoV-2-transmission. This repository also contains Jupyter
notebooks that can be run to reproduce the results presented
here, using sequence data and metadata from GISAID.
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Supplementary Fig. 1. Accuracy of inference for different parameters. How the AUROC scores for both beneficial SNVs (in red) and deleterious SNVs (in blue) depends
upon the different model parameters. a, Inference accuracy for different values of newly-infected population size. The parameters used are 10 simulations each with 50
sampled genomes per generation for 25 generations. b, Inference accuracy for different numbers of generations (serial intervals). Data is from a single simulation with 25
samples per generation and a newly-infected population size of 10,000. c, Inference accuracy for different numbers of independent outbreaks (simulations). The parameters
used are 50 samples per generation for 10 generations and a newly-infected population size of 10,000. d, Inference accuracy for different values of samples per generations.
Data is from a single simulation with 50 generations with a newly-infected population size of 10,000. The initial population is a mixture of two variants with beneficial SNVs
(s= 0.03), two with neutral SNVs (s= 0), and two with deleterious SNVs (s=−0.03). Dispersion parameter k is fixed at 0.1. This is the same initial population composition
as described in Fig. 1. All AUROC scores are calculated by averaging over 1,000 replicate simulations.
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Supplementary Fig. 2. Estimated selection coefficients are accurate even under a deterministic SIR model of disease spread. Here the simulation parameters are
such that the number of newly infected individuals increases over time and then remains almost constant. a, True and estimated selection coefficients. We observe that
the estimates are quite accurate. b, Variants present in the population along with the number of individuals infected by each variant at the initial time. c, Plot of effective
reproduction number (Rt) of each variant over time. In this simulation we adjust the value ofRt by adaptively updating transmission rate β of each variant such that the total
number of newly-infected individuals at each time remains almost constant. d, Plot of individuals newly-infected by each variant along with the total number of newly-infected
individuals. e, Mutant frequency trajectories observed at each locus. Simulation parameters: Recovery rate for all variants is assumed to be the same, i.e., ra = r = 0.12,
population size N = 10,000,000, the effective reproduction number Rt of the WT variant is initialized to a value of 2 while Rt for other variants is calculated from (11).
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Supplementary Fig. 3. Estimated selection coefficients are accurate even under a deterministic SIR model of disease spread. Here the simulation parameters are
such that the number of newly-infected individuals follow the typical SIR dynamics. a, True and estimated selection coefficients. We observe that the estimates are quite
accurate. b, Variants present in the population along with the number of individuals infected by each variant at the initial time. c, Plot of effective reproduction number (Rt)
of each variant over time. In this simulation we adjust the value of Rt of each variant such that the total number of newly-infected individuals at each time follows typical SIR
dynamics. d, Plot of individuals newly-infected by each variant along with the total number of newly-infected individuals. e, Mutant frequency trajectories observed at each
locus. Simulation parameters: Recovery rate for all variants is assumed to be the same, i.e., ra = r = 1, population sizeN = 10,000,000, the transmission rate is adapted
such that system follows the typical SIR dynamics.
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Supplementary Fig. 4. Effects of finite sampling on inference using constant and time-varying parameters. The ability of the model to distinguish beneficial and
deleterious SNVs, as measured by the AUROC score, depending on whether the sampling is perfect or finite and whether constant arbitrary parameters or the true time-
varying parameters are used for the population size n in the inference. Both simulations use constant values of k= 0.01 andR= 1. The results are similar but less dramatic
if the correct time-varying values are used for k or R as well. Results are shown for different population trajectories and are consistent regardless of the trajectory. Rows that
yield better inference are marked by bold text. If the sampling is finite, then it is better to use constant parameters; if the sampling is perfect, then it is better to use the real
time-varying parameters. The initial population is a mixture of two variants with beneficial SNVs (s = 0.03), two with neutral SNVs (s = 0), and two with deleterious SNVs
(s = −0.03), which is the same as that used in Fig. 1. Simulations are run for 50 simulations with 25 samples in each generation, and AUROC scores are averaged over
1,000 replicate simulations.
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Supplementary Fig. 5. Sampling Distributions. The number of genomes per day in the regions that are used for inference.
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Supplementary Fig. 6. Inferred selection coefficients are robust to different values of the regularization γ, different frequency cutoffs, and different numbers
of days used to calculate the frequency changes. a-b, Comparison of inferred coefficients when the number of days at the beginning and end of the time-series are
used in order to calculate the frequency changes. Inferred coefficients are largely robust to these changes c-d, Comparison of inferred coefficients for different frequency
cutoffs. Including more or less sites does not alter the order of inferred coefficients. e-h, Comparison of inferred coefficients for different values of the regularization. Altering
the regularization value has little effect upon the distribution of inferred selection coefficients, and selection coefficients for different values of the regularization are highly
correlated.
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Supplementary Fig. 7. Travel into the United Kingdom in unlikely to explain the apparent increase in transmission rate of the 20E (EU1) variant. A plot of the
inferred coefficient for the 20E (EU1) variant versus the total number of importations of this variant into the United Kingdom. The number of importations must be very large
for the inferred coefficient to be small, indicating that travel of individuals infected with the variant 20E (EU1) is unlikely to fully explain the apparent fitness benefit provided by
the group of SNVs.
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Supplementary Fig. 8. Correction to inference due to travel. The distribution of inferred selection coefficients for a neutral SNV when individuals who are infected with the
variant travel into a regional outbreak. Simulation parameters: n= 10,000 and k = 0.1. The number of newly infected individuals per serial interval rises rapidly from 6,000
to around 10,000 and stays nearly constant thereafter. The initial population is a mixture of two variants with beneficial SNVs (s= 0.03), two with neutral SNVs (s= 0), and
two with deleterious SNVs (s = −0.03). This is the same initial population composition as in Supplementary Figure 1. 25 individuals infected with a variant containing a
single neutral mutation travel into the population per generation for 100 generations. The distribution of inferred coefficients for the neutral SNV including travel (blue) and not
including travel (red) is shown over 1,000 replicate simulations.
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Rank Protein Mutation(s) Mutation Selection Location Phenotypic effect
(nt) (aa) (%)

1 S T22917G L452R 7.5 RBM Increased resistance to nAbs 63 and increased cell entry 64

2 M T26767C I82T 7.5
3 S C23604G P681R 7.2 FCS Enhanced cleavage, fusogenicity, and pathogenicity 65

4 S C23604A P681H 6.5 FCS Enhanced cleavage 66 and increased resistance to interferon-induced
immunity 67, leading to increased replication and/or transmission

5 N G28280C, A28281T, T28282A# D3L 6.0 Increased transmissibility by introducing a transcription regulatory
sequence upstream of ORF9b 68

6 NSP13 C16466T P77L 5.5
7 NSP6 ∆11288-11290 S106- 5.4 *Increased transmission by interferon antagonism 69

8 NSP4 C10029T T492I 5.3
9 S G23012A E484K 5.2 RBM Increased resistance to nAbs 63 and increased ACE2 binding 70

10 S G24410A D950N 5.1 HR1
11 S C21618G T19R 5.1 NTD *Increased resistance to NTD-specific nAbs 71,72

12 N A28299T Q9L 4.6
13 N G28881T R203M 4.6 Enhanced replication, RNA delivery and packaging 73

14 S G24368T D936Y 4.4 HR1
15 S G22992A S477N 4.4 RBM Increased ACE2 binding 74

16 ORF7a C27752T T120I 4.4 *Mutation at residue 119 results in complete loss of ubiquitination
and partial loss of interferon pathway inhibition 75

17 S C23604T P681L 4.4 FCS *Enhanced cleavage 66

18 N A28461G D63G 4.3
19 NSP12 C15952A L838I 4.3
20 S T22917A L452Q 4.2 RBM *Increased resistance to nAbs 63 and increased cell entry 64

21 NSP6 A11201G T77A 4.2
22 M T26767G I82S 4.2
23 NSP6 ∆11291-11293 G107- 4.2 *Increased transmission by interferon antagonism 69

24 S C22995A T478K 4.1 RBM Increased resistance to nAbs 63

25 NSP14 C18086T T16I 4.0
26 ORF3a C25469T S26L 3.9
27 N G29402T D377Y 3.8
28 NSP12 G15451A G671S 3.8
29 S C22227T A222V 3.8 NTD *Slightly increased cell entry 61

30 S ∆21986-21988 G142- 3.6
31 NSP3 C5184T P822L 3.5
32 N ∆28877-28879 S202- 3.5 Enhanced replication, RNA delivery and packaging 73

33 ORF3a ∆26158-26160 V256- 3.5
34 ORF3a C25904T S171L 3.4
35 NSP12 G14030A R197Q 3.4
36 S G21974T D138Y 3.4 NTD
37 S A22320G D253G 3.4 NTD Increased resistance to NTD-specific nAbs 71,72

38 NSP8 C12357T T89I 3.4
39 N G28878A S202N 3.3 Enhanced replication, RNA delivery and packaging 73

40 N C28887T T205I 3.3 Improved RNA delivery and packaging 73

41 M G26730C V70L 3.2
42 S G23012C E484Q 3.2 RBM *Increased resistance to nAbs 63 and increased ACE2 binding 70

43 NSP6 ∆11294-11296 F108- 3.1 *Increased transmission by interferon antagonism 69

44 S C24642T T1027I 3.1
45 S C21614T L18F 3.1 NTD Increased resistance to NTD-specific nAbs 72

46 N G28975A, G28975T, G28975C† M234I 3.1
47 S ∆21983-21985 L141- 3.1 NTD *Increased resistance to NTD-specific nAbs 72

48 NSP6 A11451G Q160R 3
49 ORF8 T28251C F120L 3
50 NSP14 C19161T S374F 3

Table 1. Table of most highly selected amino acid substitutions across the SARS-CoV-2 genome. * represents the cases where phenotypic effect of an amino acid variant
has not been reported explicitly in the literature. Instead, it is either based on the function of the encompassing gene, for a mutation to a different amino acid or deletion at
the same position, or for a mutation at a neighboring position. # all three mutations appear together; † each individual mutation leads to the same amino acid mutation; RBM
= receptor binding motif; NTD= N-terminal domain; FCS = S1/S2 furin cleavage site; HR1 = heptad repeat 1; nAbs = neutralizing antibodies.
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Variant Pango Lineage Selection Co-
efficient (%)

Mutations

B.1 B.1 9 S-D614G, NSP12-P323L
20E-
EU1

B.1.177 19.3 S-A222V, S-D614G, NSP12-P323L, N-A220V, ORF10-V30L

Epsilon B.1.427/B.1.429 25.2 S-L452R, N-T205I, S-D614G, NSP12-P323L, NSP13-D260Y,
S-S13I, S-W152C, NSP9-I65V, ORF3a-Q57H

Lambda C.37 39.9 NSP4-T492I, S-L452Q, NSP3-P1469S, NSP4-L438P, S-
D614G, NSP6-S106-, NSP12-P323L, NSP5-G15S, S-F490S,
NSP6-G107-, NSP6-F108-, S-T859N, NSP3-T428I, S-G75V,
S-T76I, S-P251-, S-T250-, N-G214C, S-G252-, S-D253-,
S-S247-, S-Y248-, S-L249-, NSP3-F1569V, S-R246-

Beta B.1.351 44.8 S-E484K, N-T205I, S-N501Y, S-D215G, S-A701V, S-D614G,
NSP6-S106-, NSP12-P323L, NSP6-G107-, NSP5-K90R,
NSP6-F108-, NSP3-K837N, S-D80A, S-A243-, E-P71L, S-
L242-, S-K417N, S-L241-, S-T240-, NSP2-T85I, ORF3a-Q57H

Alpha B.1.1.7 51.7 S-P681H, S-N501Y, S-D614G, N-R203K, S-H69-, N-D3L,
NSP6-S106-, NSP12-P323L, S-T716I, NSP6-G107-, NSP3-
A890D, NSP6-F108-, S-D1118H, ORF8-Q27*, S-S982A, S-
Y144-, ORF8-R52I, N-S235F, NSP3-T183I, S-V143-, ORF8-
Y73C, S-A570D, N-G204R, S-V70-, S-I68-, NSP3-I1412T

Gamma P.1 56.6 S-L18F, S-T1027I, S-N501Y, S-H655Y, S-D614G, N-R203K,
S-V1176F, NSP6-S106-, NSP12-P323L, NSP6-G107-, ORF8-
E92K, N-P80R, S-K417T, NSP6-F108-, S-R190S, NSP3-
K977Q, S-T20N, ORF3a-S253P, S-P26S, NSP3-S370L, NSP13-
E341D, N-G204R

Delta B.1.617.2 84.2 M-I82T, S-P681R, S-L452R, NSP13-P77L, S-T19R, S-D950N,
N-R203M, ORF7a-T120I, N-D63G, S-T478K, N-D377Y,
ORF3a-S26L, NSP12-G671S, ORF7a-V82A, S-D614G,
NSP12-P323L, ORF8-F120-, S-F157-, ORF8-D119-, S-R158-,
S-E156-

Table 2. Table of selection coefficients for groups of amino acid mutations. Mutations that contribute most strongly to selection are listed first. The selection coefficient for a
variant is calculated as the sum of the selection coefficients for the individual mutations that the variant contains.
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Supplementary Information

1. Summary
Here we discuss three main topics. First, we give a detailed introduction of our epidemiological model as well as a derivation of
the estimator (1). We then describe simulations of an outbreak and show that selection coefficients can be accurately recovered
from simulation data even with relatively poor sampling. Finally, we discuss our analysis of SARS-CoV-2 evolution during the
outbreak. We recover known results, and we show that inference is insensitive to a large variety of parameter choices.

2. Epidemiological model

2.1. Introduction
In epidemiology, the spread of infection can be modeled as a branching process where each infected individual (also referred
to as a case) infects n additional individuals1. The distribution of n is often taken to be Poisson, but differences in the number
of contacts with susceptible individuals, disease course within an individual, and other factors mean that the Poisson rate λ is
not generally the same for all cases2. Below, we first follow ref.2 to explore families of distributions for the number of new
cases per infected individual. Next, we extend these models to consider multiple variants of the pathogen that differ in their
spreading efficiency. We seek to characterize how the distribution of pathogen variant frequencies is expected to change over
time, and how such data can be used to estimate the relative spreading efficiency of different variants.

2.2. Distributions for the number of infected individuals
As noted above, the basic distribution of the number of new cases n caused by one case in a susceptible population is Poisson,

PP(n|λ) = λne−λ

n! .

Typically we might take the Poisson rate λ to be R, the effective reproduction number, which is the expected number of cases
directly caused by one case. In that case, the average number of cases following the Poisson distribution is

〈n〉PP(n|R) =
∞∑
n=0

nPP(n|R) =R.

To account for variability in transmission dynamics, the basic Poisson distribution with a single rate R can be replaced with a
continuous mixture of Poisson distributions, where the rate parameter λ follows a gamma distribution,

PΓ(λ|α,β) = βα

Γ(α)λ
α−1e−βλ ,

with shape parameter α and rate parameter β. The average value of λ is

〈λ〉PΓ(λ|α,β) = α

β
,

and its variance is 〈(
λ− α

β

)2
〉
PΓ(λ|α,β)

= α

β2 .

In this context, it is natural to take α= k and β = k/R. With these choices, the gamma distribution reads

PΓ(λ|k,R) = 1
Γ(k)

(
k

R

)k
λk−1e−kλ/R . (S1)

The parameter k is a dispersion parameter that determines how long-tailed the distribution is. The mean value of λ is always R,
but when k is smaller its variance increases. In the limit that k→∞, we recover the pure Poisson distribution with rate λ=R.
When k = 1, the distribution of the number of cases n is geometric,∫ ∞

0
dλ PΓ(λ|k = 1,R)PP(n|λ) = Pg(n|p) = (1−p)n p,

1
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where p= 1/(1 +R). For arbitrary values of k > 0, the number of cases follows a negative binomial distribution,

PNB(n|k,R) = Γ(k+n)
n!Γ(k)

(
k

k+R

)k(
R

k+R

)n
.

The standard parameters of the negative binomial distribution are r and p, which are set to k and k/(k+R) in our parameteri-
zation above.

2.3. Dynamics for the pathogen variant frequencies
Let us assume that there exist multiple variants of a pathogen, which are distinguished by an index a. The number of cases
infected with variant a is na. We assume that different variants have slightly different transmission probabilities, so that
Ra =R(1 +wa), with |wa| � 1. The term wa is analogous to a selection coefficient in population genetics.

2.3.1. Dynamics of multiple cases infected by a single variant

First, let us assume that n individuals, each labeled by an index i, are all infected by the same variant of a pathogen. For now
we will assume that there is no travel into or out of the population, though we will include it later. How many cases will be
generated from these individuals? The number of new cases for all individuals is

n′ =
n∑
i=1

n′i ,

where the numbers of cases n′i generated by individual i follows a negative binomial distribution. Because all individuals are
infected by the same variant, the negative binomial parameter p= k/(k+R) is the same for each of them. Then, assuming that
all of the infection events are independent, it can be shown that the probability distribution for the total number of new cases n′

also follows a negative binomial distribution with the same value of p, and with r = nk (that is, the new r parameter value is
the sum of the individual r parameter values). Thus, the distribution of n′ is

PNB+(n′|k,R,n) = Γ(nk+n′)
n′!Γ(nk)

(
k

k+R

)nk(
R

k+R

)n′

.

2.3.2. Dynamics for multiple cases infected by multiple variants

Let us extend the previous example to consider m variants of a pathogen. At the starting point, the number of individuals
infected by a given variant a is na, with a ∈ {1, . . . ,m}. The fraction of cases infected by variant a is

ya = na∑m
b=1nb

.

Now, we would like to know how the fraction of individuals infected by each variant is expected to change with each round of
infections. In other words, for variant a, we would like to compute

〈
y′a
〉

=
〈

n′a∑m
b=1n

′
b

〉
=
∑
n′

(
m∏
b=1

PNB+(n′b|k,R(1 +wb),nb)
)

n′a∑m
c=1n

′
c

where the outer sum is over all vectors n′ with entries {n′1,n′2, . . .}, and with n′b ≥ 0 for all b. Here, we have assumed that the
n′b’s are independent across b.

To proceed, it is convenient to write the negative binomial distributions as mixtures of Poisson distributions (as indicated
above), giving

〈
y′a
〉

=
∑
n′

(
m∏
b=1

∫ ∞
0
dλb PΓ (λb|nbk,R(1 +wb)) PP(n′b|λb)

)
n′a∑m
c=1n

′
c

=
(

m∏
b=1

∫ ∞
0
dλb PΓ (λb|nbk,R(1 +wb))

)∑
n′

(
m∏
b=1

PP(n′b|λb)
)

n′a∑m
c=1n

′
c

.

Next, we use the fact that the sum of independent Poisson-distributed random variables is also Poisson with rate parameter
equal to the sum of the individual rates, and that the distribution of independent Poisson random variables conditioned on their

2
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sum is multinomial, to write

〈
y′a
〉

=
(

m∏
b=1

∫ ∞
0

dλb PΓ (λb|nbk,R(1 +wb))
) ∞∑
n′=0

PP
(
n′|λ

) ∑
n′:
∑m

c=1n
′
c=n′

PM

(
n′
∣∣∣n′, λ

λ

)
n′a
n′

=
(

m∏
b=1

∫ ∞
0

dλb PΓ (λb|nbk,R(1 +wb))
) ∞∑
n′=0

PP
(
n′|λ

) λa
λ

=
(

m∏
b=1

∫ ∞
0

dλb PΓ (λb|nbk,R(1 +wb))
)
λa
λ
.

Here λ is a vector with entries {λ1,λ2, . . .}, and we have also introduced
∑
aλa = λ. Note also that the outer sum on the first

line is over all vectors n′ whose (non-negative) entries sum to n′.
Computing the remaining integrals exactly is challenging, largely because the Gamma distributions have different rate pa-

rameters. To address this, next we will expand our expression to first order in the wa, since these are assumed to be small
parameters. Referring back to Eq. (S1), the expansion gives

〈
y′a
〉

=
(

m∏
b=1

∫ ∞
0

dλb PΓ (λb|nbk,R)
[
1−kwb

(
nb−

λb
R

)])
λa
λ

+O
(
w2)

=
(

m∏
b=1

∫ ∞
0

dλb PΓ (λb|nbk,R)
)[

1−
m∑
c=1

kwc

(
nc−

λc
R

)]
λa
λ

+O
(
w2) .

Next we change variables to {λ,q1 = λ1/λ,q2 = λ2/λ, . . . , qm−1 = λm−1/λ}, because the distribution of the sum of gamma-
distributed random variables, λ, with the same rate parameter and the ratios of the individual variables to the total (λa/λ) follow
independent gamma and Dirichlet distributions3. The mth ratio qm = 1−

∑m−1
a=1 qa by conservation. By convention we will

also set wm = 0, which can be thought of as normalizing the value of R relative to a reference genotype. The transformation
then gives

〈
y′a
〉

=
∫ ∞

0
dλ PΓ (λ|nk,R)

(
m−1∏
b=1

∫
dqb

)
PD (q|nk)

[
1−

m∑
c=1

kwc

(
nc−

λqc
R

)]
qa

=
(
m−1∏
b=1

∫
dqb

)
PD (q|nk)

[
1−

m∑
c=1

kwc (nc−nqc)
]
qa

=
(

1−k
m∑
c=1

ncwc

)
ya+

(
m−1∏
b=1

∫
dqb

)
PD (q|nk)nk

∑
c6=a

wcqcqa+waq
2
a


=
(

1−nk
m∑
b=1

wbyb

)
xa+ nk

nk+ 1

nk∑
b 6=a

wbyayb+wa
(
nky2

a+ya
)

= ya+ nk

nk+ 1ya

(
wa−

m∑
b=1

wbyb

)
.

In the expressions above PD(q|α) is the Dirichlet distribution, with concentration parameters α given by nk in our case. Note
that if wm 6= 0, the last line should instead read

〈
y′a
〉

= ya+ nk

nk+ 1ya

(
wa−wm−

m∑
b=1

wbyb

)
.

Thus, we obtain (with wm = 0) 〈
y′a−ya

〉
= 〈∆ya〉= nk

nk+ 1ya

(
wa−

m∑
b=1

wbyb

)
.
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Following a similar approach, we can compute the second moments. First, we consider〈(
y′a
)2〉=

〈(
n′a∑m
b=1n

′
b

)2
〉

=
(

m∏
b=1

∫ ∞
0

dλb PΓ (λb|nbk,R(1 +wb))
) ∞∑
n′=0

PP
(
n′|λ

) ∑
n′:
∑m

c=1n
′
c=n′

PM

(
n′
∣∣∣n′, λ

λ

)(
n′a
n′

)2

=
(

m∏
b=1

∫ ∞
0

dλb PΓ (λb|nbk,R(1 +wb))
) ∞∑
n′=0

PP
(
n′|λ

)[(λa
λ

)2
+ 1
n′
λa
λ

(
1− λa

λ

)]

≈

(
m∏
b=1

∫ ∞
0

dλb PΓ (λb|nbk,R)
)[

1−
m∑
c=1

kwc

(
nc−

λc
R

)][(
λa
λ

)2
+ 1
λ

λa
λ

(
1− λa

λ

)]

=
∫ ∞

0
dλ PΓ (λ|nk,R)

(
m−1∏
b=1

∫
dqb

)
PD (q|nk)

[
1−

m∑
c=1

kwc

(
nc−

λqc
R

)][
q2
a+ qa(1− qa)

λ

]
.

In going from the third to the fourth line above, we have made the approximation that〈
1
n′

〉
PP(n′|λ)

≈ 1
λ
,

which is valid for λ& 1. Similarly,

〈
y′ay
′
b

〉
=
〈

n′an
′
b(∑m

c=1n
′
c

)2
〉

=
∫ ∞

0

(
m∏
c=1

dλc PΓ (λc|nck,R(1 +wc))
) ∞∑
n′=0

PP
(
n′|λ

)(
1− 1

n′

)
λaλb
λ2

≈
∫ ∞

0

(
m∏
c=1

dλc PΓ (λc|nck,R)
)[

1−
m∑
d=1

kwd

(
nd−

λd
R

)](
1− 1

λ

)
λaλb
λ2

=
∫ ∞

0
dλ PΓ (λ|nk,R)

(
m−1∏
c=1

∫
dqc

)
PD (q|nk)

[
1−

m∑
d=1

kwd

(
nd−

λqd
R

)](
1− 1

λ

)
qaqb .

Simplifying the expressions above is tedious but straightforward. The following results are helpful:∫ ∞
0
dλ PΓ (λ|nk,R)λ= nR,∫ ∞

0
dλ PΓ (λ|nk,R) 1

λ
= k/R

nk−1 ,(
m−1∏
c=1

∫
dqc

)
PD (q|nk)qaqb = nk

nk+ 1yayb ,(
m−1∏
b=1

∫
dqb

)
PD (q|nk)q2

a = y2
a+ ya(1−ya)

nk+ 1 = nk

nk+ 1y
2
a+ 1

nk+ 1ya ,(
m−1∏
c=1

∫
dqc

)
PD (q|nk)q2

aqb =
(
y2
a+ ya(1−ya)

nk+ 1

)
nk

nk+ 2yb ,(
m−1∏
b=1

∫
dqb

)
PD (q|nk)q3

a =
(
y2
a+ ya(1−ya)

nk+ 1

)
nkya+ 2
nk+ 2 .

Here we have frequently used na = nya to simplify expressions.
With the above results, simplifying expressions for the second moments, we finally find〈

(∆ya)2
〉

=
[

1
nk+ 1 + nk

nk+ 1
k/R

nk−1

]
ya (1−ya) +O

(
1/n2) ,
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and

〈∆ya∆yb〉=−
[

1
nk+ 1 + nk

nk+ 1
k/R

nk−1

]
yayb+O

(
1/n2) ,

where we have assumed that the wa are O (1/n), as in the Wright-Fisher model with weak selection. We have thus found
that the first and second moments of frequency changes in our multi-variant epidemiological model have the same frequency
dependence as those in the multispecies Wright-Fisher model, but with different scaling. The first moment (‘drift’) is multiplied
by a factor of nk/(nk+ 1), and the second moment (‘diffusion’) by

1
nk+ 1 + nk

nk+ 1
k/R

nk−1 .

These prefactors match with the Wright-Fisher model exactly when k→∞ (i.e., a pure Poisson distribution for the number of
new cases per infected individual) and R= 1.

2.4. Correction to the first moment due to travel
Travel of infected individuals can change the total number of infected individuals in a region and will thus lead to a correction
in the first and second moments that have been calculated above. Call na,in−na,out = δna. There will be a first order correction
to the first moment due to fact that the number of individuals of variant a in the next generation is now n′a+ δna, where now
n′a represents the number of individuals of variant a in the next generation that don’t come from travel. In addition, the total
population in the next generation will be n′+

∑
b δnb, where n′ =

∑
bn
′
b. Therefore, in calculating the first moment we will

now have

〈
y′a
〉

=
(

m∏
b=1

∫ ∞
0

dλb PΓ (λb|nbk,R(1 +wb))
) ∞∑
n′=0

PP
(
n′|λ

) ∑
n′:
∑m

c=1n
′
c=n′

PM

(
n′
∣∣∣n′, λ

λ

)
n′a+ δna

n′+
∑
d δnd

.

If we allow that the total inflow and outflow of a specific variant, δna, and of all variants together,
∑
d δnd, are both much

smaller than the number of infected individuals, then the term on the far right can be expanded:

n′a+ δna
n′+

∑
d δnd

≈
(
n′a
n′
−
n′a
∑
d δnd

(n′)2 + δna
n′
−
δna

∑
d δnd

(n′)2

)
.

The first term simply reproduces the first order moment without travel. The last two terms lead to the correction

δya
R

nk

nk−1

[
1−
∑
d

wdxd−
∑
d δyd
R

nk

nk−2

(
1−2

∑
e

weye

)]
,

where δya = δna/n. Finally, for the second term, we have(
m∏
b=1

∫ ∞
0

dλb PΓ (λb|nbk,R(1 +wb))
) ∞∑
n′=0

PP
(
n′|λ

) λa
λ

(
−
∑
c δnc
n′

)
.

Ultimately, this produces the additional correction

−
ya
∑
b δyb
R

[
nk

nk−1 + nk

nk+ 1

(
wa−2 nk

nk−1
∑
d

wdyd

)]
.

Remembering that both δyd and wd are small, the overall first order correction will be

nk

nk−1
1
R

(
δya−ya

∑
b

δyb

)
. (S2)

2.5. Correction to the second moment due to travel
There will also be a correction to the second moment due to travel, and for the diagonal terms, we will have,

〈
(y′a)2〉=

(
m∏
b=1

∫ ∞
0

dλb PΓ (λb|nbk,R(1 +wb))
) ∞∑
n′=0

PP
(
n′|λ

) ∑
n′:
∑m

c=1n
′
c=n′

PM

(
n′
∣∣∣n′, λ

λ

)(
n′a+ δna

n′+
∑
d δnd

)2
.
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Again assuming that the number of infected individuals traveling is small compared to the total number of infected individuals
in a region, we can expand the term on the far right:(

n′a+ δna
n′+

∑
d δnd

)2
≈
(
n′a
n′

)2
+ 2n′aδna

(n′)2 −
2n′a

∑
d δnd

(n′)3 .

Similarly, we have

〈
y′ay
′
b

〉
=
(

m∏
c=1

∫ ∞
0

dλc PΓ (λb|nbk,R(1 +wc))
) ∞∑
n′=0

PP
(
n′|λ

) ∑
n′:
∑m

d=1n
′
d
=n′

PM

(
n′
∣∣∣n′, λ

λ

) (n′a+ δna)
(
n′b+ δnb

)
(n′+

∑
e δne)

2 ,

and the term on the far right can be expanded as

(n′a+ δna)
(
n′b+ δnb

)
(n′+

∑
e δne)

2 ≈
n′an

′
b

(n′)2 +
n′aδnb+n′bδna

(n′)2 −
2n′an′b

∑
e δne

(n′)3 .

These can be calculated in much the same way as the correction to the first moment, and all of the resulting terms areO(1/n2).

2.6. Derivation of the selection coefficient estimator

The derivation in this section closely follows that given in ref.4. It is well known that a WF process can be approximated by
a continuous-time continuous-frequency diffusion process in the large n limit. In the continuous-time limit the time variable
t has units of n generations, with one generation in discrete time taking τ = 1/N continuous time units. The change in the
frequency of variant a in one generation due to travel is δya, so the change of frequency in τ generations is δya∗τ . Furthermore,
the selection coefficients wa are assumed to scale with n such that wa = w̃a/n, where w̃a is a parameter independent of the
population size n. In the limit of large population size, our generalized super-spreading model can, like the WF process, be
approximated by a diffusion process, where the transition probability density φ is the solution to the Fokker-Planck equation

∂φ

∂t
=
[
−

M∑
a=1

∂

∂xa
d(y(t)) +

M∑
a=1

M∑
b=1

∂

∂ya

∂

∂yb
Cab(y(t))

]
φ,

where M is the number of distinct genotypes, y is the genotype frequency vector, d is the drift vector, and C is the diffusion
matrix. Ignoring recombination and mutation, since these are comparatively small and therefore unlikely to significantly affect
estimates of changes in viral transmission (though these can be included and the solution remains tractable), the drift and
diffusion have entries given by,

d̃a(y(t)) = lim
n→∞

n〈∆ya〉

= lim
n→∞

nk

nk+ 1ya(t)
(
wa−

M∑
b=1

wbyb(t)
)

+ nk

nk−1
1
R

(
δyaτ −ya

∑
b

δybτ

)

= ya(t)
(
w̃a−

M∑
b=1

w̃byb(t)
)

+ 1
R

(
δya−ya

∑
b

δyb

)
,

Cab = 1
2 lim
n→∞

n〈∆ya∆yb〉

= 1
2

[
1
k

+ 1
R

]{
ya(t)(1−ya(t)) a= b

−ya(t)yb(t) a 6= b .

The Fokker-Planck equation can be converted into a path integral approximation for the transition probability density

P (y(t+ 1)|y(t)) =
exp

{
−n4

∑M
a=1

∑M
b=1

[
ya(t+ 1)−ya(t)− d̃a(y(t))τ

](
C−1(ya(t)

)
ab

[
yb(t+ 1)−yb(t)− d̃b(y(t))τ

]}
(4π)M/2

√
det(C(y(t)))

.

We write the re-scaled drift vector as da = d̃aτ . Since we aim to infer selection coefficients for the SNVs, it is more convenient
to work with the allele frequencies xi instead of the genotype frequencies ya. The allele frequency at site i is given by

xi(t) =
M∑
a=1

gai ya(t) ,
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where gai is a 1 if there there is a mutant allele at site i on genome a and zero if there is not. Similarly, if the selection coefficient
for the genotype a is wa and the allele level selection coefficient for allele i is si, then they are related by:

wa =
L∑
j=1

gaj sj ,

where L is the length of the genome.
The allele level drift and diffusion terms will be linear combinations of the genotype level drift and diffusion, just as with the

frequencies and the selection coefficients. The drift vector for the allele frequencies can be transformed by

di(x) =
M∑
a=1

gai da(y)

=
M∑
a=1

gai ya(t)
(
wa−

M∑
b=1

wbyb(t)
)

+gai
1
R

(
δya−ya

∑
b

δyb

)

= xi(t)(1−xi(t))si+
L∑

j=1,j 6=i
(xij(t)−xi(t)xj(t))sj + 1

R

[
δxi−xi

M∑
b=1

δnb
n

]
.

The sum in the last term can be interpreted as the total number of infected individuals added or subtracted to the population due
to travel, divided by the population size. This can be used, along with the transition probability density for genomes, in order
to find an approximation for the mutant allele transition probability density:

P (x(t+ 1)|x(t)) =
exp

{
−n4

∑L
i=1
∑L
j=1 [xi(t+ 1)−xi(t)−di(x(t))]

(
C−1(x(t)

)
ij

[xj(t+ 1)−xj(t)−dj(x(t))]
}

(2π/n)L/2
√

det(C(x(t)))
,

where here the diffusion C is derived similarly to the drift d and has entries

Cij(x(t)) =
[

1
k

+ 1
R

]
(xij(t)−xi(t)xj(t)) .

A path integral then gives the probability of observing a trajectory of allele frequencies (x(t1),x(t2), ...,x(tK)), and is given
by

P
(

(x(t))Kt=1
∣∣x(0)

)
=
K−1∏
t=0

P (x(t+ 1)|x(t)) .

Bayesian analysis can then be used to show that the posterior probability of the selection coefficients s= (s1,s2, ...,sL) given
an observed frequency path x(0),x(1), ...,x(T ) is

P
(
s
∣∣(x(t))Kt=0

)
∝ P

(
(x(t))Kt=1

∣∣x(0)
)
×PPrior(s) , (S3)

where we use a Gaussian prior distribution with zero mean and adjustable covariance determined by the parameter γ.
For the inferred coefficients, we take those that maximize the posterior probability. They can be analytically found by a

simple application of the Euler-Lagrange equations to equation S3 and are given by

ŝ=
[
γ+

∑
t

n
k2R2

(R+k)2C(t)
]−1[∑

t

nkR

k+R

(
∆x(t)− 1

R

(
δx−x

L∑
i=1

δxi

))]
. (S4)

The second term in the numerator is the correction due to travel of infected individuals into and out of the region, and is given
by

τ =−
∑
t

nkR

k+R

1
R

(
δx−x

M∑
a=1

δna
n

)
.
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2.7. Extension to multiple regions
In the SARS-CoV-2 pandemic, and in real disease outbreaks in general, there are frequently multiple different outbreaks in
different regions that develop largely or entirely independently of one another. In order to find the best estimate for the selection
coefficients using the data from multiple regions, the estimator can be generalized to find the maximum a posteriori estimate
for the selection coefficients given the time series of allele frequencies in each of the regions. If the probability for a specific
path in a specific region r is given by P

(
(xr(tr))Tr

tr=1
∣∣xr(0)

)
, where xr is the allele frequency vector in region r, then the

joint probability of the specific paths in all of the regions is simply the product of the individual region probabilities:

P
(

(x1(tr))T1
t=1, ...,(xM (tr))TM

tr=1
∣∣{xr(0)}Mr=1

)
=

M∏
r=1

P
(

(xr(t))Tr
t=1
∣∣xr(0)

)
,

where M is the number of different regions. Since this is a product of exponential functions, the log posterior will be the sum
of the exponents and the regularization. This can be maximized with respect to the selection coefficient vector s as before,
which, dropping the travel term, leads to the estimator:

ŝ=
[
γI+

∑
r

∑
tr

nrk
2
rR

2
r

(kr +Rr)2Cr(tr)
]−1[∑

r

∑
tr

krnrRr
kr +Rr

∆xr(tr)
]
. (S5)

2.8. Simplification of the estimator
In real outbreaks the parameters k, R, and n are in general time-varying. In our simulations as well, R and n are time-varying
(and k can be constant or time-varying). In order to accurately infer the selection coefficients according to Eq. (S4) or Eq. (S5),
it would seem that we need to accurately infer the values of k, R, and N at every point in the time series. In practice, this
would be extremely difficult. For general discussion about the effective reproduction number R and the basic reproduction
number Rt as well as some attempts to infer this, see refs.5–9. In order to get an accurate estimate for k it is necessary to have
pervasive contact tracing, so that the negative binomial distribution is well sampled, and there are other difficulties in inferring k
as well10–12. Lastly, it can be difficult to estimate the number of new infections due to multiple factors, including the difference
between the population that gets tested and the population that does not, test result inaccuracies, and delays between symptom
onset, testing, and reporting13,14.

We propose an alternative that lets us avoid these complications. The prefactor nkR/(R+k), multiplies both the numerator
and the denominator. Therefore, the only effect of the prefactor is to weight time points more heavily if the population size, the
dispersion parameter, or the basic reproduction number, is larger. This makes sense in theory, because a larger n or k implies
that there is less noise and the trajectories are more deterministic, while a larger R means that there are more new infections
per generation and thus more data to use to infer the selection coefficients. This does hold with perfect information, that is,
if all infected individuals are sampled at every time point. However, in practice, finite sampling is the source of significantly
more noise than that due to a time-varying population size or dispersion, so weighting the time points based upon n, k, or R
in fact leads to worse inference than assuming the parameters are constant in time and thus weighting the time points equally.
However, in the special and unrealistic case of perfect sampling, using the actual parameters does lead to better inference
than using constant parameters (see Supplementary Fig. 4). If the time points are weighted equally, then, provided that
the regularization γ is scaled appropriately (and in general it must be determined by separate means, discussed below), the
prefactors in the numerator and denominator cancel, and the estimator is independent of n, k, and R. Defining C̄ by

C =
[
nkR

k+R

]
C̄ ,

so that

C̄ij =
{
xij(t)−xi(t)xj(t) i 6= j

xi(1−xi) i= j
,

Eqs. (S4) and (S5) for the selection coefficients become, respectively

ŝ =
[
γI+

∑
t

C̄(t)
]−1[∑

t

∆x(t)
]
,

ŝ =
[
γI+

∑
r

∑
tr

C̄r(tr)
]−1[∑

r

∑
tr

∆xr(tr)
]
,

which are the same as the MPL estimators for the Wright-Fisher model except that we have ignored the mutation term because
the mutation rate for SARS-CoV-2 is small4.
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3. Simulations
We tested the inference using simulations of disease spread. We used two different kinds of simulations. The first is the super-
spreader simulation based on the model described above, which is an analog of the Wright-Fisher model where the sampling
distribution for the number of new infections per infected individual is drawn from a negative binomial distribution instead of
a pure Poisson distribution The second is a standard deterministic susceptible-infected-recovered (SIR) model that has been
adapted in order to include multiple variants of the virus with different transmission rates, described in Methods.

3.1. Description of simulations
We simulated disease spread as a branching process in which the number of individuals infected per currently infected indi-
vidual is drawn from a negative binomial distribution whose shape is determined by the basic reproduction number R0 (or the
reproduction number, R, in a population that is not totally susceptible) and the dispersion parameter k. Because we sample
in this way, the population size is not constant. However, if the population size is too small, then the population is extremely
likely to die off stochastically, and if the population size is too large, then sampling from the negative binomial becomes too
computationally expensive. In order to avoid both of these problems, once the population size is large enough R is adaptively
adjusted so that the average reproduction number for the entire population will remain near 1, and the population size will
oscillate around a fixed value. An explicit time-varying population size can also be used as input, and R will be adaptively
adjusted to remain near the given curve. Constant values can be used for the dispersion k or k can vary as a function of time,
perhaps representing different degrees of social distancing or lockdown measures at different times. Since different interven-
tions implemented to prevent the spread of disease would likely affect the shape of the distribution of the number of individuals
infected by a single infected individual, time-varying values for k and R can be used to reflect these effects. We also implement
travel of specified variants into or out of the population over time.

3.2. Inference
The simulations are run for a number of generations and genomes are sampled from the population of infected individuals at
different times using a multinomial sampling distribution. This sampled time series is then used to infer the selection coefficients
using Eq. (S4). Alternatively, multiple simulations can be run and the joint inference of the selection coefficients can be made
using Eq. (S5). We find that, given good enough sampling, a long enough time series, and sampling that occurs at a sufficient
number of times, the selection coefficients can be inferred very accurately (Fig. 1). The quality of inference is significantly
improved if multiple simulations are combined and if mutated sites show up in more than one of the simulations, even under
less than ideal sampling conditions. Beneficial coefficients are typically inferred more accurately than deleterious ones, likely
because deleterious SNVs frequently die off and therefore there is less data to use for inference.

The inference is robust to shortening the time-series or lowering the number of samples taken per generation, though obvi-
ously if either of these conditions is too extreme (or worse, both), the inference starts to break down. The negative effects of
a short time-series or poor sampling can be somewhat made up for by using multiple simulations, which is analogous to using
data from outbreaks in multiple regions. In addition, the diffusion approximation is only valid in the large n limit. However,
we tested the inference for small population sizes and found that inference is accurate even if the population of newly infected
individuals per serial interval is as low as a few hundred (Fig. 1).

It is reasonable to expect that in a real outbreak there will be some travel of infected individuals into and out of the population.
This can affect the estimation of the selection coefficients if the travel term, Eq. (S2), is ignored. As a simplified example,
imagine there is a steady influx of a variant that has a SNV that is entirely neutral, and little to no outflow of this variant. In this
case the selection coefficient for the SNV that migrates into the population will likely be overestimated because the frequency
of the SNV will in general be increasing, even though this increase in frequency is not due to a selective advantage. Similarly, if
there is an excess of outflow of a certain neutral SNV, then the fitness for this SNV will in general be underestimated. Testing this
with simulations, we found that modest influx of a neutral SNV over a long time (25 importations per serial interval compared
to n= 104 local transmissions, continuing for 100 serial intervals) produces a small but detectable bias in the inferred selection
coefficient, which can be corrected by including the travel term and using the true flux of variants for δna (Supplementary
Fig. 8). More generally, corrections due to travel should become significant when the term τint becomes large compared to
observed changes in SNV frequencies.
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