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Abstract

We study in this work some statistical methods to estimate the pa-
rameters resulting from the use of an age-structured contact mathematical
epidemic model in order to analyze the evolution of the epidemic curve of
Covid-19 in the French overseas department Mayotte from march 13, 2020
to february 26,2021. Using several statistic methods based on time depen-
dent method, maximum likelihood, mixture method, we fit the probability
distribution which underlines the serial interval distribution and we give
an adapted version of the generation time distribution from Package RO.
The best-fit model of the serial interval was given by a mixture of Weibull
distribution. Furthermore this estimation allows to obtain the evolution
of the time varying effective reproduction number and hence the temporal
transmission rates. Finally based on others known estimates parameters
we incorporate the estimated parameters in the model in order to give
an approximation of the epidemic curve in Mayotte under the conditions
of the model. We also discuss the limit of our study and the conclusion
concerned a probable impact of non pharmacological interventions of the
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Covid-19 in Mayotte such us the re-infection cases and the introduction
of the variants which probably affect the estimates.

Key words and phrases: Covid-19, Mathematical model, Estimation, Repro-
ductive number, Epidemiology, Parameter estimation.

1 Introduction

Following the emergence of the Covid-19 and its spread outside of China, Eu-
rope and now the all world are experiencing the pandemic. The COVID-19 virus
has caused a great disruption to the human health, social life, developments,
and economics. In response, several countries have implemented unprecedented
non-pharmaceutical interventions including case isolation of symptomatic indi-
viduals and their contacts, the closure of schools and universities, banning of
mass gatherings and some public events, and widescale social distancing includ-
ing local and national lockdowns of populations with all but essential internal
travel banned. Also in response to the rising numbers of cases and deaths, and to
maintain the capacity of health systems to treat as many severe cases as possible,
France like European countries and other continents, have implemented some
process measures to control the epidemic including his overseas department out-
side the metropolitan France namely in Mayotte island. To understand trends
in the development of the epidemic in Mayotte from march 13,2020, to february
26, 2021 we explore the estimation of important parameters in a justified math-
ematical model. To this end, we describe the evolution of an individual through
several possible states: susceptible, exposed, infected including symptomatics
and asymptomatics cases and removed or isolated. Mathematical models can be
defined as a method of emulating real life situations with mathematical equa-
tions to expect their future behavior. In epidemiology, mathematical models are
relevant tools in analyzing the spread and control of infectious diseases. Many
mathematical models of the COVID-19 coronavirus epidemic have been devel-
oped, and some of these are listed in the following papers [10, 13, 14, 6, 7]. Based
on the development of epidemiological characteristics of COVID-19 infection, a
model of type SEIR can be appropriate to study the dynamic of this disease
including some statistical method to estimate the associate parameters.

In this paper, we first introduce the observed data in Mayotte and the math-
ematical tools that justified the modeling procedure in section2. In section 3
we estimate the serial interval distribution by several methods and the best-fit
is given by a mixture model. We also derive an estimation of the generation
time distribution. Section 4 provide numerical simulation of the effective re-
production number and Section 5 deal with the numerical approximation of
the epidemic curve under some conditions. The results are presented and a
discussion on the limit of our study in the last section.
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2 Data and tools for the mathematical analysis

This work is concerned with some statistical analysis of the dynamic of the
Covid-19 epidemic curve in Mayotte over a given period. Note that the ob-
served epidemic in Mayotte started at march 13,2020 where the first detected
and reported case travelled from the metropolitan France three days ago. Some
others imported cases were confirmed later and lead to the actual state of the
spread of the virus. In this paper we use a subset of the database from march
13,2020 to february 26,2021 for simplicity. This horizon time is chosen in such
a way to justify the following fact: given that the starting of the vaccination
around January, 25 and since it took on average of 3 or 4 weeks for a complete
vaccination, this corresponds approximately at this end of study date. In addi-
tion, it coincided with the start of the second lockdown in Mayotte.

Note that data relating to covid-19 can be downloaded from https://www.
data.gouv.fr/fr/pages/donnees-sante/. The following pictures illustrate
the daily and cumulative reported number of confirmed infected cases as well as
confirmed hospitalization, intensive care and death cases in Mayotte the above
interval date.
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Figure 1: Reported daily cases of Covid-19 epidemic in Mayotte from march 13,
2021 to february 26, 2021
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Figure 2: Cumulative cases of Covid-19 epidemic in Mayotte from march 13,
2021 to february 26, 2021

2.1 Statistical analysis by regression

Let H(t), ICU(t) and D(t) denote respectively the number of Hospitalized, In-
tensive care unit and Death cases at time ¢. Regression is a predictive statistical
approach for modeling relationship between a dependent variable say Y with a
given set of observed variables say X = (X3, Xo, ..., X;,) in the form

Y:f(X777)+ea

where 7 is unknown (vector) parameter and e representing an additive error
that may stand for a white noise.

Now, let us analyse in the following lines the performance of some relevant
regression linear model

e 90.84% of the variations in the cumulative intensive care ICU(¢) are ex-
plained by the variations of t the cumulative infected cases I(t) with
a coefficient around 0.013 and CI equal to [0.012,0.013] with a p-value
< 2% 1076 and the constant around 2.78.

e 88.89% of the variations in the cumulative death D(¢) are explained by
the variations of the explanatory variable I(t) with a coefficient around
4.42.1073 and CI equal to [0.0042, 0.0045] with a p-value < 2.2%1071¢ and
a negligible effect of the constant.
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e 86.88% of the variations in the cumulative hospitalized cases H(t) are
explained by the variations of the cumulative infected cases I(t) with a
coefficient around 0.07 with a CI equal to [0.068,0.07] with a p-value
< 2.2% 10716 and an important effect of the constant (intercept).

Based on the above analysis, we summarize the obtained predictions in the
following pictures.
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Figure 3: Predicted cumulative cases by linear regression

One can observed in the above pictures that the predicted cumulative cases
based on the linear model is not better at certain points in time evolution. This
may be due to some non-linear variations. In order to do better, let us deal
with a fit based on Generalized Additive Model (GAM) which allows the to use
of mix nonlinear, linear functions and categorial effects to data without over-
fitting. With a GAM, however, we can fit data with smooths, or splines, which
are functions that can take on a wide variety of shapes. We fit a GAM using
a polynomial transformation and predict the above desired cumulative cases as
follows.
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Figure 4: Predicted cumulative cases by GAM

2.2 Some definitions

Now let us specify some definitions concerning the infectivity process. Consider
an infector ¢ and infectee j.

Definition 1 The generation time interval G; ; is the time interval from the
infection of i to infection of j.

The generation time distribution G describes infectiousness with respect to the
point of infection.

Definition 2 The serial interval time S; ; is the time interval between symptom
onset of the infector i and symptom onset of the infectee j.

Definition 3 The incubation time interval £ is the time interval between symp-
tom onset and the infection.

The infectious profile denoted by P; ; is the time interval from the symptom
onset of 7 to infection of j. It describes infectiousness relative to symptom
onset. The above distributions are typically derived from contact tracing and
can be captured by the following equations:

Si,j =P+ 5]‘ Giﬂ‘ =P+ &;

One can assume that P; ; and &£; are plausibly independent as well as &; inde-
pendent of &; so that S = P % £. Note that the incubation and serial interval
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distributions can be estimated without further assumptions but not the gener-
ation time and the infectious profile. We refer the reader to [11, 22] for further
explanations as concerns the way to derive the generation time distribution from
the serial interval.

2.3 Infection model from the Markovian SIR and SEIR

To model the number of infections over time, we need to understand how the
above transmission distributions appeared in a mathematical modeling. In the
context of population dynamics, let us recall the following formation of Lotka
and Euler in [15, 5]

+oo
I(t) = /0 I'(t — a)p(a)v(a)da,

where I'(t) is the number of births at time ¢, p(a) is the probability of survival
to age a and v(a) is the fertility at age a. The above renewal equation was
adapted to epidemics in the seminal work of Kermack and Mc Kendrick in [9].
To understand the above renewal equation in an epidemiological context, let us
consider firstly the following simple Markovian SIR model in a closed population
with size N partionned into Susceptible individuals S, Infectious individuals I
and Recovered individuals R. We consider only transmission from person-to-
person and we assume that infectious individuals become permanently immune
after their infectious period during our horizon time study 7. Of course in the
case of Covid-19 we do not have permanent immunity.

ast) = -swso L
dI(t) = B(6)S(t) %dt—h(t)z(t)da

dR(t) = h(t)I(t)dt

where h(t) is the hazard rate function associated to the survival function G(t)
of the time infectivity. The time varying transmission rate is denoted by S(¢).
For simple computations, we assume that h(t) is constant and equal to 7 the
mean rate of the infectivity (being exponentially distributed with parameter )
so that G(t) = e~ . The second equation of the above system tell us that

R e O T

where ¢y is the starting date of the epidemic and g(7) = e~77 is the density
of the probability distribution function of the secondary infections according
to primary-infection: the so called generation time distribution (assumed to
be exponentially distributed). The above formula means that new susceptible
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individuals are reported at time ¢ according to the contact rate 3(t)y~! if they
were infected before time ¢ and remains infectious for the duration 7 until date
t with probability g(7). Set

mt):a;jgg)) and  Ro(t) = A(t)y ! 1)

At the beginning of the epidemic t = ¢y, we obtain the formula for the basic
reproduction number at the beginning of the outbreak:

Ro=pBy"Y, B=p(0).
assuming that S(0) ~ N.
We have
()

JaT" g(n)D(t - 7)dr

Ro(t) =

Therefore in a discrete time setting we have the following algorithmic formula
for all t > tq:

r(t)
9O (®) + gLt — 1) + -+ gt — to)T (ko)

The following fact is easy to verify

Ro(t) =

Proposition 1 In the above Markovian SIR model if v € [Ymin, Ymaz] then in
a discrete time setting we have

e e IO I () + b, Y gt — T)I(T)

to<t<t

< I(t) < e (b)) + vty Y glt—T)D(T),

tUSTSt

for allt >ty + 1.

We illustrate the above proposition as follow with v~! € [7,21] days.

The above Markovian SIR model under learn the estimation of I(t), this was
predictable since it does not take into account the delay in the infectivity pro-
cess due to the incubation.

Let is us consider a Markovian SEIR model where the population is partitionned
into five categories : Susceptibles S; Exposed E infected but not yet infectious
in a latent period with mean A~'; Infectious I being reported or unreported
with an infectious period with mean v~!, Dead D and Recovered R.

The model meets the following assumption.
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Figure 5: Estimated (lower and upper) cumulative infected cases with a marko-
vian SIR model

e The natural average mortality rate pu and a recruitment rate A can be
considered but we shall assume that the recruitment rate A compensates
succeptibles individuals who died:

A(t) = pS(t).
Given initial conditions D(0) = Dy and
S5(0) = N=E(0)~1(0)=R(0)=D(0), E(0) = Eo, 1(0) =1, R(0)= Ro,

where N is the total fixed population size, the model consists of the fol-
lowing system of differential equations

dS(t) = A — pS(t) - B(t) Z 4t

dE(t) = B(t)2WI0 gp — \E(¢)dt,

dI(t) = AE(t)dt — ~vI(t)dt One can look by this model to

dR(t) = (v — «)I(t)dt

dD(t) = al(t)dt
keep track of the cumulative cases from the time of onset of symptoms
C(t) which is not a compartment and defined as dC(t) = AE(t).
Assume that the probability of a susceptible to be alive at time t > 0
given that we was alive at time ¢ = 0 follows an exponential distribution
of parameter p. Assume also that the incubation and the infectiousness
are independent and follows respectively an exponential distribution with
parameter A and « and let G, Gy and G, their associate survival func-
tions.

The following proposition follows from the disease equations.

Proposition 2 Under the above assumption, we have in the Markovian
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Figure 6: Compartments of the SEIRD model
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We illustrate the above proposition as follow with v~ € [7,21] days and
A7 e [1.5,7] days
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Figure 7: Estimated cumulative exposed cases with F(0) = 15 in a markovian
SEIR model with various A
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Figure 8: Infected cumulative cases with E(0) = 15 in a markovian SEIR model
with various v and fixed A
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Figure 9: Infected cumulative cases with E/(0) = 15 in a markovian SEIR model
with various A and fixed ~y

Here again the Markovian SEIR model under learn the estimation of I(¢).
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This is due to the fact that the generation times are not exponential as we
will see in the next section. For a deeply study of non-Markonvian SEIR
model we refers the reader to the work of [6, 7].

3 Estimation of the serial interval and gen-
eration time distributions

Some major studies have been made on the determination of generation
times through serial interval distributions and incubation time from real
data collected, see for instance [8, 17]. For the rest of this paper, we
will focus on the data collected in [8] where the authors report tempo-
ral patterns of viral shedding in 94 patients with laboratory-confirmed
Covid-19 and modeled Covid-19 infectiousness profiles from a separate
sample of 77 infector—infectee transmission pairs. The variation between
individuals (infector/infectee) and the transmission process is summarized
respectively by the distribution of incubation periods and the distribution
of serial intervals. The database used contains the number of infected
cases (in red), the lower limit of infectors (in black) and the upper limit
of infectors (in green). The variation between individuals and chains of
transmission is summarized respectively by the distribution of incubation
periods and the distribution of serial intervals.
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Figure 10: Evolution of the infector/ infectee pairs
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The main purpose in this section is to study the above data of transmission
pairs in order to be able to fit the best distribution of the serial interval
which is computed as follow like in[8]:

z.ub+ x.lb

5 )

serial_interval =y — (

with
— a.lb : Lower limit dates of onset of symptoms of infectors

— z.ub: Upper limit dates of onset of symptoms of infectors

— y: Dates of onset of symptoms of the infectee.

The incubation period is calculated by the formula

y — probable date of infection by the infector.

The following picture show the histogram of the serial interval from the
underline database.
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0.08
1 1
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0.00
1
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Figure 11: Histogram of the serial interval

Now, we will attempt to fit a theoretical distribution to the above his-
togram of the observed empirical distribution function of the serial distri-
bution among a set of distributions that we will choose. A rapid analysis of
the histogram seems to show that the serial interval can be fit by a family
of exponential distribution or a mixture of them because of the appear-
ance of several peaks. There are many methods for generating estimates
of parameters for standard probability distributions such as the method
of moments and the Maximum Likelihood.The use of others methods was
generally confined to analytical work on mixture densities.
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Estimation of the serial interval distribution by the
method of moments

In this section we use the method of moments amoung a set of classical
laws. The method of moments consists in estimating the parameters of
the distributions from the theoretical finite moments with their empirical
estimates. The results of this method can be seen in the following picture.
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Figure 12: Fitted distributions with the method of moments
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The above pictures mentioned namely fitted:

Gamma distribution with parameters 1.584523 and 0.2735611
— Lognormal distribution with parameters 1.756514 and 1.526372
— Weilbull distribution with parameters 1.756514 and 6.87615

— Two parameter Hypo-exponential (denoted by exp_conv) distribution
with parameters 1/4.9 and 1/2.1

Note that the standard exponential distribution (here with parameter
0.1726457) does give a good fit, as it can be seen in the following pic-

ture.
o
S —— exp_conv
e — exp
- — weibull
>
= / —— gamma
éc; S / lognormal
_ \\\
S | e/ [ s =
o [ [ [ |
0 5 10 15
X

Figure 13: Summary (moment method) of fitted distributions.

As we can see, the gamma, weibull seems to matche if we do not take into
account the left tails of the distributions. Using the Kolmogorov-Smirnov
non parametric test with a risk a = 0.05 gives an p-value around 0.5229,
0.5237 * 1079 and 6.312572 * 10~* for Gamma, Weibull and Lognormal
distribution respectively.

Note that the method of moments does not give best fit and this can be
explained by the fact that this basic method does not use any optimization
techniques as the following Likelihood method.
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3.1 Estimation of the serial interval distribution by
the Likelihood method

Here we consider the maximum likelihood estimator which is a statistical
method used to estimate the parameters of the probability law of a given
observation = (21, .., &, ) with probability densities f(x;|0) by determin-
ing the values of the parameters maximizing the log-likelihood function
given by :

n n
L(8) = log(] | £(x:l6)) = D log(f(:l6))

i=1 i=1
where 0 is the (vector) parameter to be estimate. The likelihood func-
tion then represents the joint density of the individual observations x; for
any given level of the distribution parameters. The maximum likelihood
estimate is the distribution parameter values, which maximize the likeli-
hood function since these same values of the estimators also maximize the
log-likelihood function. The nlm function of R-Package in [18] makes it
possible to optimize the log likelihood functions of the different laws that
we pass as an argument in addition to the initialization of the parameters
to be optimized and of the serial interval that we seek to determine its bet-
ter distribution. The following picture represents several fitted densities
estimated by this method.

Q- ——  expo_conv
o
—— exp
LD .
S — weibull
5 § —— gamma
o | / E lognormal
~N
o
s | ——
S | | | |
0 5 10 15
X

Figure 14: Estimation of distributions by the maximum likelihood method
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Table 1: Log-likelihood, AIC and BIC values

Law Log-likelihood ~ AIC BIC
Gamma 192.83 387.66 390.01
Log-normal 192.51 421.76  424.10
Weibull 194.30 390.60 392.94
Hypo-exponential 179.76 Inf Inf

We can see that compared to the method of moments, the Maximum
Likelihood improve in some way the estimation. The log-likelihood values
and widely applicable information AIC and BIC criteria is summarise in
the following table

We note that that the gamma, log-normal and weibull models are the best
to fit data. In addition one can see that the two parameter hypo- expo-
nential distribution does not converge, which explains why the estimated
parameters are negative.

gamma exp Tognorm

minimum 192.8342 209.8803 192.5157

estimate 2.3157219, 0.3680613 0.1655624 1.608040, 0.702471

gradient -9.941429e-07, 2.529532e-06 -1.98952e-06 -1.558913e-05, 6.264145e-05

code ali 1 1

iterations 18 4 8
weibull exp_conv
minimum 194.3016 1.797693e+308
estimate 1.568012, 7.047558 -0.5877867, -1.1314021
gradient 1.486328e-06, 1.935766e-07 0, 0
code 1 1
iterations 20 0

Figure 15: Maximum likelihood method results

Note also that the left tails of the distributions don’t matches and since
the underline left tail data represents 7% of the data we neglect this part
of the data. Another upcoming work will deal with the theoretical aspects
of estimating heavy tails of distribution that may be appropriate for doing
cross mixtures of heavy tails and exponential family laws.

3.2 Estimation of the serial interval distribution by
mixture methods

Now let us deal with mixture modeling with exponential families. Mixture
models are a powerful and flexible tools (see [16, 2] ) to model an known
smooth probability density function as a weighted sum of parametric den-
sity functions f;(z|6;) in a possibly multivariate independent observations
x = (x1,..,2,) drawn from k several densities :

k
f(z) = ijfj(ﬂﬂwj)
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where k represents the number of classes or groups of the mixing, p; >
0 the relative proportion of observations from each class j such that
ZT‘L—1 p; = 1. The mixture density will allow to find the parameter © =
(p], 6;) of the model where 6; is the (vector) parameter from class j.

The log likelihood of the mixing density is defined by:

n

L(®) = log(H (z4]©)) Zlog ijfj (x105))

i=1

The maximum likelihood estimates are:

n k—1
maXZ IOg(Z p]f] $z|9 1_Zp] fk mzlek))
i=1 7j=1

subject to

For k > 1, the sum of term appearing inside a logarithm makes this opti-
mization quite difficult. Solution of this non-linear optimization problem
has long been a difficult task for applied researchers. There are, of course,
many general iterative procedures which are suitable for finding an ap-
proximate solution of the likelihood equations and which have been honed
to a high degree of sophistication within the optimization community.
For the data, a two-component mixture model is clearly a reasonable
model based on the bi-modality evident in the histogram.

Using the R software function optim, it possible to minimize the log like-
lihood functions of the different laws taken as arguments of this function
in addition to the initialization of the parameters to be optimized and
the serial interval distributions we want the best-fit. The figures below
summarize the estimation results of the mixture models. Gamma mixing,
lognormal and weibull mixing seem to give better results compared to the
others.
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Figure 16: Mixture distributions by the Optim method
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Figure 17: Mixture distributions by the Optim method

The Kolmogorov-Smirnov test, log-likehood, AIC and BIC values is sum-
marised in the following table We conclude that the best-fit mixture
is given by p = 0.0406 and two Weibull distributions with parameters
(9.96140450, 16.90693027) and (1.70447135, 6.20140484).

We can see the visualization of the results of the mixtures of each law as fol-
lows.Note that one can still go further in the estimation by a cross-mixture
among the best three-fit distributions and the a heavy tail distribution by
the use of the EM algorithm. This will be done in another forthcoming
theoretical and practical work.

Table 2: Kolmogorov-Smirnov test, log-likehood, AIC and BIC values

Law P-value alpha Log-likehood AlIC BIC
Gamma 0.686 0.05 192.06 -374.12  -362.40
Log-normal  6.65*10~%  0.05 191.90 -373.81  -362.0935
Weibull 1.16¥10~1°  0.05 191.60 -373.21  -361.49
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Figure 18: Result of each mixture density distribution

3.3 Results of the estimation on the incubation and
infectious time distribution

Let us summarise here some well known works about the estimation of
the infectiousness and incubation period of [12]. In this work, the authors
established that the best fit bincubation period distribution is of mean 5.2
days with 95% CI equal to [4.1, 7]. Using statistical estimation method, the
authors also show that the best-fit distribution of this incubation rate is
managed by a log normal distribution of parameters 1.434065 and 0.6612.

Their analysis also suggests that viral shedding may begin 5 to 6 days be-
fore the appearance of the first symptoms and inferred that infectiousness
started from 12.3 days (95% CI equal to [5.9,17] days before symptom
onset and peaked at symptom onset (95% CI equal to [-0.9,0.9] days).
The authors pointed out that with sensitivity analysis, the infectiousness
start from 5, 8 and 11 days before symptom onset and infectiousness was
shown to peak at 2 days before to 1 day after symptom onset, and the
proportion of pre-symptomatic transmission ranged from 37% to 48%.

Estimation of the generation time distribution
Our aim here is the estimation of the generation time distribution by the

use of the above best-mixture distribution result. Let us mentioned that
in the package Ry (see [19, 3]), the best generation time distribution is
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Figure 19: Density distribution of incubation by a best-fit log-normal distribu-
tion with parameters 1.4340 and 0.6612
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Figure 20: Density distribution of the infectious time distribution

fitted by the generation.time function, based on the epidemic incidence
curve and the best-fit serial interval distribution choose from ”gamma”,
”log-normal” and ”weibull” distributions using the Newton-Raphson op-
timization algorithm. In our case, we have used the Optim function to
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fit the best serial interval distribution, which is given for instance by the
Weibull distribution (since it turns out to be the best to match the data
in mixture model). Thus, using our best-fit mixture model together with
the Mayotte epidemic curve, we obtain a modified generation time distri-
bution from the Package R0.The result can be seen in the following picture.

Generation Time distribution

o]
o
L 2
E o
Yo
o
o
o
Q —
S) | | | T |
0 5 10 15 20
Time

Figure 21: Generation time distribution by the best-fit mixture of the SI distri-
bution (Weibull) by the optim method associated to package RO

4 Numerical estimates of the effective repro-
duction number

Understanding the development of an epidemic is important in order to
control its spread. For this, various models point out the importance of
the the basic reproduction number Ry at the start of an epidemic. It is
historically defined as the average number of new cases of infection gen-
erated by an individual during a period of infectivity (see [4]). As stated
above, if this number is less than 1 then the epidemic will tend to die out.
There are several methods for computing the parameter Ry as well as its
time dependent version as explained above. Let us mentioned some others
parametric and non-parametric approaches. In the parametric approach,
we will approach the estimation of Ry by two method based on the attack
rate of an epidemic and an exponential growth rate. The non-parametric
approach will also be described from several angles.
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4.1 Estimation based on attack rate

Let us consider again the elementary Markovian SIR model. Recall that
the basic reproductive number and the time varying reproductive number
are defined by the relation
S(t S(t
RO = g and Ro(t) = ](V)i = ](\7)h€f)

In epidemiology, the attack rate AR is the percentage of an at-risk pop-
ulation that contracts the disease during a specified time interval. The
term attack rate is sometimes used interchangeably with the term inci-
dence proportion.The attack rate is calculated as the number of people
who became ill divided by the number of people at risk for the illness. if
we denote by

it is straighfoward to see that

uw=4m+smyﬂmy+égm§8y

If at time ¢ = 0,we assume that no one is retired then ¢(0) 4+ s(0) = 1 and
t
it)=1-s(t)+ = ln(i)).

By taking the limit and setting soo =1 — AR we will have:

—In(E=58)

Ro = AR—(1-S)

where Sy represents the percentage of the initial homogeneous and closed
population assuming no intervention during the epidemic. From the rela-
tion

Ro(t) = ROS(t).
The varying attack rate is then defined by

S()

AR = =50

The confidence interval with respect to the rate attack is given by

IC (AR) = AR+1.96 ARQ%fﬁz

Note that this approach assumes that the transmission rate § is known
which is not always true. This proves the limits of the parametric method.
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4.2 Non parametric estimation based on exponential
growth rate

The exponential growth rate r is the change per capita in the number
of new cases per unit time during the early phase of an outbreak. It is
an important measure for the speed of spread of an infectious disease. It
being zero is, like the basic reproduction number Ry = 1, a disease thresh-
old. The disease can invade a population if the growth rate is positive and
cannot invade (with a few initially individuals) if it is negative. In fact,
it can be used to infer Ry. We describe here a non parametric method
following J.Wallinga and M. Lipsitch in [23, 24]

Let 1 be the probability that an individual will remain infectious over
a unit of time after being infected (i.e. age of infection) and S be the
transmission rate at age of infection a. Then 7(a) = n(a)B(a) is the trans-
missibility of an infectious individual at the age of infection a, assuming
that the entire population is susceptible. Hence

Ro = /:o +(a) da.

=0

We can normalize 7(a) to be probability density function:

T o

=0
(@)
Ry
so that
7(a) = Row(a).

Let I'(¢) be the number of new infections during the time interval |¢; ¢+ dt[.
Note that the new infections at time ¢ are the sum of all infections caused
by infectious individuals infected at a unit of time (i.e. at time ¢ = a)
if they remain infectious at time ¢ (with an infectious age a) and their
contact is sensitive. In other words

I'(t)

/00 I(t — a)r(a)s(t)da = s(t) /OO I'(t — a)r(a)da
0 0
= s(t)/o I'(t — a)w(a)Roda.

At the start of an epidemic (¢ = 0), where the epidemic grows exponen-
tially (with an exponential growth rate r). s(t) ~ 1 and T'(t) = cpe"™
where ¢g is the initial number of cases at time ¢t = 0. Thus

coe™t = Ro/ coe)‘(tfa)w(a)da
0
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so that Rg = L

_ 1
o = M)

/ e~ "w(a)da

0

where

is the the moment generating function of the generation time distribu-
tion.For t # 0,

Ro(t) = Rg x s(t) =

4.3 Non parametric estimation based on Maximum
likehood

This estimation method is proposed by White and Pagano in [25] and is
based on the assumption that the number of secondary cases caused by
an index case follows a poison distribution with the expected value R. Let
(NO,N1,...,NT) be the incident case as a function of time with a time
horizon T and G a distribution of the generation time. We estimate R by
maximizing the log-likelihood

T e*/»btlutNt
LL(R) = ZIOg(Tt!)
t=1
where

k
p=RY NG
i=1

By derivation it is easy to show that

E = - ZtTfl Nt
Zt:l Zizl Ny—;G;

4.4 Numerical results of the estimation

In this section we make numerical simulation based on the observed data
in Mayotte island to estimate the time varying reproduction number using
not only the non parametric method based on the generation time distri-
bution fitted by the daily observed infected cases and the best mixture of
the serial interval distribution given by the Weibull distribution.

The following picture represents the evolution of the time varying repro-
duction number Ry (t)
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Figure 22: Evolution of the time varying reproductive number in Mayotte from
march 13, 2020 to february 26, 2021
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Figure 23: Time varying reproductive number in Mayotte with confidence in-
terval of 95 per cent
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Figure 24: Evolution of the time varying reproductive number in Mayotte

Table 3: Estimate of Ry with a time horizon T = 35

Method Mean value
Maximum likeli- | Ry = 1.018325
hood

Attack rate Ry = 1.022491
Exponential Ry = 1.056758
growth rate

We can see that at the start of the epidemic the basic reproductive number
is around 3, which is consistent with the litterature. In the following
picture, we make the curve smooth using estimates values.

Estimating of the number of reproduction number by the maximum like-
lihood, attack rate and exponential growth rate is given in the following

table.
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5 Numerical approximation of the Covid-19
epidemic curve in Mayotte

We set up here the numerical simulations by incorporating the above sta-
tistical estimates. The model equations are an age structured contact
model. Such model allow the heterogeneous structure of the population
since there is variation by age in the contact. The inclusion of the age and
the contact improves the realism of a model,[21, 1]. Consider a population
aggregated by age into n groups labelled by ¢ = 1, 2, ...,n. The population
within age group i is partitioned into Susceptibles S;, Exposed F;, infected
but not yet infectious, in a latent period; Infected and Infectious I; being
reported or unreported; Recovered R;. Let IN; be the total population of
the age group i. We have

Ni=8;+E+ILi+ 1+ R;.

If we assume that there is no change in the age group over time, we have

N:ZNi.

i

Contact matrix
Denote by Cj ; the number of contacts of a susceptible individual in age
group 7 with a susceptible individual in age group j;

Definition 4 The matriz (C; ;)1<ij<n 15 called the contact matriz. It
represents the average number of daily contacts of an individual of class i
with an individual of class j.

Clearly, the total number of contacts between group i to group j must be
equal to the total number of contacts between group j to group i. Thus
for closed population, we have the following reciprocity relation

CijNi = CjiNj,

where N; is the population in group 7. By dividing the places of contact
we obtain the following model of social contact

Cij=CE+cC2+0 +C¢ + 0P,

where C’iL,j is the number of contacts of a susceptible individual in age
group ¢ with a susceptible individual in age group j in a place L (Home,
School, Work,Shopping Center, Other).

A database of contact matrix from eight European countries was the sub-
ject of a study projected in many other countries, see [20] for more details.
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Unfortunately Mayotte island is not referenced in this study which pro-
vides the contact matrix for several countries. A natural idea is to find an
approximate contact matrix of a country with a similar population density
and age pyramid. We choose that of Rwanda because the 2019 popula-
tion density in Rwanda is 525 people per K'm? and that of Mayotte is 682
people per Km?2. The following picture show the population pyramid of
Rwanda and Mayotte as weel as the contact matrix of Rwanda.
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Figure 25: Age pyramid of Mayotte (left) and Rwanda (right) in 2020. Source
(https://www.populationpyramid.net/rwanda/2020/)

Figure 26: Contact matrix of Rwanda
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5.1 Simulation based on the age-structured contact
SEIRD model

The differential equations that govern the trajectories of our model are
formulated as follow:

dS;(t) = —B()Si(t) X2 ,g N ~dt

dE;(t) = B(t)Si(t) Y 10” X-dt — AEi(t)dt,
) = AE;(t)dt — (v + a)I; (t)dt (2)
(t ;

[ is the rate of infection on contact assumed intrinsic to the pathogen. We
consider closed populations because we assume that deaths are balanced
by births and immigration. The induced mortality rate o;; depend on the
age in this model. For simulation purpose we choose n = 16 to correspond
to the 16 age group into which the contact matrix data is partitioned.
Then the 5 * n = 80 ordinary differential equations are then numerically
integrated using R-software. The following table lists the parameters of
the model we’ll use for numerical simulation. These estimates are often
wide due to wide variations from one infection to another. We also give
the initial values of the model.
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Table 4: List of the parameters and initial values of the model

Description Mean value

Incubation pe- A~1=5.2 days [12]

riod

Infectious  pe- (7 T = 11 days (arbitrary given information from ARS-Mayotte)
riod

Transmission B(t) Estimated in this paper by formula (1)

rates

Induced mortal- | (0,0,0,0,0,0,1073,2.1073,2.1072,2.1072,3.1072,3.1073,4.1073,4.1073,5.10~3,5.10~9)
ity rate by age
(al,...,alﬁ)

C' : contact ma- Rwanda contact matrix[20]

trix

E(0):  Contact Approximately 15, [15-20] ARS-Mayotte 2020
tracing at the

beginning

(N1, ...N1g) https://www.insee.fr/fr/statistiques/1893198

(N1 — I,(0) — E1(0), ..., N1g — I16(0) — E16(0))

0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0)

(

(11(0), (

(E1(0), ..., F16(0)) (0,0,0,1,1,1,2,2,2,3,1,1,0,1,0,0)
( (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
( (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

The following pictures show by simulation the progress of the epidemic by
age. By observing the curve of infected by age group, we observe that the
epidemic peak is greater in the age group 1 to 4 corresponding to the age
class [0 — 19], followed by age group 5 to 9 ([20 — 44]), then age group 10
to 12 ([45 — 59]) and then age group 13 to 16 ([60+]).In this last class the
age group [60 — 64] is more affected than the class 65+. This shows that
there is a sensitivity according to the age group. The age group [0 — 19]
is more exposed which means that it is a population to be protected by
various means such as vaccination or isolation.
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Figure 27: Simulating the age-structured contact model
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Figure 28: Simulating the age-structured contact model
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Figure 29: Simulating the age-structured contact model

6 Discussion and conclusion

In the above simulation, we did not integrate the vaccination because it
was assumed that during the study interval of the epidemic curve, vacci-
nation in Mayotte had no effect because it started in February 2021, see
https://www.mayotte.ars.sante.fr. Given the current state of the epi-
demic in Mayotte, the above numerical simulation of the epidemic curve
show that, new factors have contributed to modify the dynamics of the
epidemic. It is important to note that the simulation is only theoreti-
cal and restricted by given conditions. A conclusion that can be drawn
subject to assumptions is that mitigation and non-pharmacological inter-
ventions of the Covid-19 of any kind can possibly be considered in the
model such as the factors of reinfection, immunity and the appearance of
variants. Note also that some conditions can be dramatically different in
reality for instance the infectious and the virus mortality rate by age. It
should also be noted a bias in the approximate use of the contact ma-
trix. In a forthcoming work, we will develop a model taking into account
the possibilities of reinfection, vaccination, immunity over a longer period.
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7 Supporting information

Additional supporting information of the original contributions presented
in the study are included in the article/supplementary material, further
inquiries can be directed to the corresponding author/s. Other data about
the population used in this study are openly available from the French IN-
SEE web site. Note that data relating to covid-19 can be downloaded from
https://wuw.data.gouv.fr/fr/pages/donnees-sante/. As concerned
the data on contact matrix, they are available in the supplementary ma-
terial of [20]. We provide in the supporting information our complete R
codes in an R-markdown format.
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