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Abstract 26 

The ongoing COVID-19 pandemic has produced substantial impacts on our society. Wastewater 27 

surveillance has increasingly been introduced to support the monitoring, and thus mitigation, of 28 

COVID-19 outbreaks and transmission. Monitoring of buildings and sub-sewershed areas via a 29 

wastewater surveillance approach has been a cost-effective strategy for mass testing of residents 30 

in congregate living situations such as universities. A series of spatial and spatiotemporal data 31 

are involved with wastewater surveillance, and these data must be interpreted and integrated with 32 

other information to better serve as guidance on response to a positive wastewater signal. The 33 

management and analysis of these data poses a significant challenge, in particular, for the need 34 

of supporting timely decision making. In this study, we present a web-based spatial decision 35 

support system framework to address this challenge. Our study area is the main campus of the 36 

University of North Carolina at Charlotte. We develop a spatiotemporal data model that 37 

facilitates the management of space-time data related to wastewater surveillance. We use 38 

spatiotemporal analysis and modeling to discover spatio-temporal patterns of COVID-19 virus 39 

abundance at wastewater collection sites that may not be readily apparent in wastewater data as 40 

they are routinely collected. Web-based GIS dashboards are implemented to support the 41 

automatic update and sharing of wastewater testing results. Our web-based SDSS framework 42 

enables the efficient and automated management, analytics, and sharing of spatiotemporal data of 43 

wastewater testing results for our study area. This framework provides substantial support for 44 

informing critical decisions or guidelines for the prevention of COVID-19 outbreak and the 45 

mitigation of virus transmission on campus.  46 

Keywords: Wastewater surveillance, spatial decision support systems, COVID-19, Web GIS  47 
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1. Introduction  48 

The COVID-19 pandemic has fueled a renewed interest in wastewater-based epidemiology. 49 

Wastewater testing for traces of viral and bacterial pathogens has been used for decades to track 50 

and manage outbreaks of infectious disease (Prado et al., 2012; Tambini et al., 1993). Early 51 

reports in mid-2020 demonstrated that wastewater concentrations of SARS-CoV-2 could serve as 52 

a leading indicator for cases detected by clinical testing within city sewersheds (Ahmed et al., 53 

2021; Peccia et al., 2020), with collection of samples from wastewater treatment plant influent 54 

providing coverage of entire cities or large neighborhoods. The practical application of 55 

monitoring at city scale is primarily to detect infection trends in communities, which has been 56 

especially useful in the case of COVID-19, both because COVID-19 infections may be 57 

asymptomatic for several days prior to detection of cases by testing, and because especially in 58 

the early months of the pandemic, testing capacity lagged behind the rapid spread of the disease. 59 

In such scenarios, wastewater testing can serve as a leading indicator of the increase of disease 60 

incidence in an urban area. There has also been an increasing interest in monitoring in 61 

neighborhood or smaller scale areas for the presence of the SARS-CoV-2 virus in wastewater, 62 

because such small-scale monitoring can provide evidence to support targeted public health 63 

interventions including distribution of masks or selection of populations for increased testing 64 

(Bowes et al., 2021).  65 

COVID-19 is easily transmitted in congregate living situations, with early and devastating 66 

outbreaks being documented in nursing homes and jails (Kırbıyık et al., 2020; Lam-Hine et al., 67 

2021). Beside these, other indoor settings such as schools (including universities), restaurants, 68 

and hospitals have been identified as having high risk for the spread of COVID-19 (Fox et al., 69 

https://paperpile.com/c/TwYPwE/YknL+R3hh
https://paperpile.com/c/TwYPwE/8j4a+EWOs
https://paperpile.com/c/TwYPwE/8j4a+EWOs
https://paperpile.com/c/TwYPwE/pDlW
https://paperpile.com/c/TwYPwE/TY0B+kwRw
https://paperpile.com/c/TwYPwE/TY0B+kwRw
https://paperpile.com/c/TwYPwE/kwRw+uxnW
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2021; Lam-Hine et al., 2021). Many universities attempted to implement some type of 70 

wastewater surveillance program during the early months of the pandemic, with varying degrees 71 

of success (Gibas et al., 2021; Harris-Lovett et al., 2021; Karthikeyan et al., 2021). To effectively 72 

detect and monitor outbreaks of COVID-19 in these indoor settings requires wastewater 73 

surveillance capabilities at small spatial scales such as building level. The study reported in this 74 

article is focused on building-level wastewater surveillance for COVID-19 monitoring from a 75 

spatiotemporally explicit perspective.   76 

Wastewater surveillance typically requires a set of sequential steps, including sample site setup, 77 

sample collection (including storage and shipping; per CDC Wastewater Surveillance strategy), 78 

lab analysis, and subsequent analysis and visualization of wastewater testing results and 79 

associated data. Geographic Information Systems (GIS) methods have been applied for the 80 

management and mapping of spatially explicit data related to wastewater testing and COVID-19 81 

monitoring, and dashboard techniques have gained increasing attention due to their visual 82 

presentation capabilities within web-based environments (Dong et al., 2020; Lan et al., 2021; 83 

Naughton et al., 2021). Yet, most of the existing dashboards for COVID-19 and wastewater 84 

studies only concentrate on management and visualization of relevant spatial or spatiotemporal 85 

data; their support on spatial analytics and modeling capabilities is inadequate. Spatial analytics 86 

and modeling, however, are pivotal in discovering patterns of interest hidden in complicated 87 

spatiotemporal data, and providing predictive or scenario analysis capabilities for monitoring and 88 

mitigation of pandemic situations (Franch-Pardo et al., 2020). Spatial Decision Support Systems 89 

(SDSS) hold potential in filling this gap. 90 

https://paperpile.com/c/TwYPwE/kwRw+uxnW
https://paperpile.com/c/TwYPwE/j4ZS+cfkq+bI1T
https://paperpile.com/c/TwYPwE/uFTR+RfKS+lUm9
https://paperpile.com/c/TwYPwE/uFTR+RfKS+lUm9
https://paperpile.com/c/TwYPwE/Bunh
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SDSS, which originated from the domain of Geographic Information Science (Armstrong et al., 91 

1986; Sugumaran & Degroote, 2010), have been increasingly applied to assist with decision 92 

making within spatially explicit contexts. SDSS is based on (but more than) the integration of 93 

decision support systems and GIS, and provides inherent support for spatial analytics and 94 

modeling capabilities. This makes SDSS unique and powerful in informing decision making 95 

processes associated with complex spatial or spatiotemporal phenomena. A variety of 96 

applications such as environmental monitoring, natural resources, public health, transportation, 97 

and land use and land cover change have built SDSS to address complex decision problems 98 

within spatially explicit contexts (Delmelle et al., 2014; Keenan & Jankowski, 2019; Sugumaran 99 

& Degroote, 2010). In particular, driven heavily by Internet technologies and cyberinfrastructure 100 

(NSF, 2007), web-based SDSS has received much attention over the past few years (Lan et al., 101 

2020; Lee et al., 2017; Tayyebi et al., 2016). While a growing body of the literature has 102 

highlighted the power of web-based SDSS, the applications of web-based SDSS for the 103 

resolution of complex spatiotemporal decision problems in general and small-scale wastewater 104 

surveillance for COVID-19 monitoring, in particular, remain scant.    105 

In this article, we describe a web-based SDSS framework for building-level wastewater 106 

surveillance. We used a university campus (the main campus of the University of North Carolina 107 

at Charlotte) as a study case. This framework supports the automated synchronization and update 108 

of lab test results, space-time cluster analysis for identifying hotspots of COVID-19 incidents at 109 

the building level over time, and automated update of dashboards within web-based 110 

environments. The integration of these geospatial data and analytics capabilities play a critical 111 

role in providing timely information on COVID-19 incidents in the study region over time. 112 

https://paperpile.com/c/TwYPwE/ImsL+3sFU
https://paperpile.com/c/TwYPwE/ImsL+3sFU
https://paperpile.com/c/TwYPwE/YzFE
https://paperpile.com/c/TwYPwE/AxyC+KYfz+Bp2Y
https://paperpile.com/c/TwYPwE/AxyC+KYfz+Bp2Y
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Specifically, we focus on addressing the following sets of research questions in this study: 1) Are 113 

there any space-time clusters of positive wastewater testing results at the building level and 114 

where are they? 2) What are those sampling sites that exhibit similar responses over time in 115 

terms of wastewater testing results and where are they?  116 

The remainder of this article is organized using the following structure. In section 2, we discuss 117 

the background and relevant literature of this study. In section 3, we present the study area and 118 

data, the design of the entire web-based SDSS framework as well as its implementation. Section 119 

4 presents the results including space-time cluster analysis, and Section 5 gives relevant 120 

discussion. Section 6 concludes this article.  121 

2. Literature Review 122 

2.1. Wastewater Surveillance  123 

A typical workflow for building-level wastewater surveillance includes collection of a sample at 124 

regular intervals with laboratory results within 24 hours of collection. Samples can be collected 125 

using a variety of methods (Medema et al., 2020), ranging from collection of a sample volume at 126 

one timepoint (a “grab” sample), to composites collected by passive sampling for example using 127 

fibrous swabs (Liu et al., 2021), and composites collected using pump autosamplers which add to 128 

the sample at regular intervals over the course of a day prior to collection. Once collected, 129 

samples are processed and concentrated. A wide variety of methods are available for this 130 

concentration step as well, and choice of method is governed by a combination of viral recovery 131 

efficacy, cost, materials availability, and processing time, as described in our previous work  132 

(Juel et al., 2021). RNA is extracted from the concentrated sample, and virus is quantified using 133 

https://paperpile.com/c/TwYPwE/ho12
https://paperpile.com/c/TwYPwE/HeiG
https://paperpile.com/c/TwYPwE/zN0R
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a molecular detection protocol such as RT-qPCR or RT-ddPCR (Barua et al., 2021; Ciesielski et 134 

al., 2021), which provides a viral concentration in terms of copies of virus per liter of wastewater 135 

collected. This value can be used effectively as a simple binary indicator of positivity, as 136 

demonstrated in the pilot phase of our campus monitoring program (Gibas et al., 2021) but also 137 

has the potential to connect the information about population size and volume of water used in 138 

the building to provide an estimate of the number of individuals who might be SARS-CoV-2 139 

positive (Sweetapple et al., 2022). Once a positive signal is detected, a decision is made about 140 

whether to test all individuals in that building, after consulting institutional information about 141 

individuals who have recently tested positive or been connected to that site via contact tracing. If 142 

there are no previously-known individuals who are likely to be the source of the positive signal, 143 

then the entire building population is subjected to clinical testing. 144 

While many institutions and localities have deployed wastewater testing for SARS-CoV-2 during 145 

the pandemic, only a small fraction of these projects have so far made data available in service of 146 

larger efforts to develop quantitative models and consistent practices in wastewater 147 

epidemiology (Naughton et al., 2021). Data dashboards are a common means for sharing such 148 

information when it is made available, and in some cases have been incorporated into state-level 149 

public health reporting (e.g., see https://covid19.ncdhhs.gov/dashboard/wastewater-monitoring). 150 

Dashboard techniques have been extensively applied for the sharing of data related to COVID-151 

19. A number of dashboards have been developed and deployed to support the wastewater 152 

surveillance initiatives for the monitoring of COVID-19 worldwide. For example, there are a 153 

number of dashboards registered via the web site of COVIDPoops19 project (Naughton et al., 154 

2021). About 40% of these dashboards have built-in Web GIS functionality. The software 155 

https://paperpile.com/c/TwYPwE/iw3I+RZug
https://paperpile.com/c/TwYPwE/iw3I+RZug
https://paperpile.com/c/TwYPwE/cfkq
https://paperpile.com/c/TwYPwE/JI77
https://paperpile.com/c/TwYPwE/RfKS
https://paperpile.com/c/TwYPwE/RfKS
https://paperpile.com/c/TwYPwE/RfKS
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platforms used to present these dashboards include Esri ArcGIS Online, Tableau, R Shiny, 156 

Microsoft Power BI, and CARTO. The first three (ArcGIS Online, Tableau, and R Shiny) are the 157 

dominant choices for the implementation of wastewater surveillance dashboards. Most of the 158 

wastewater data managed and reported by these wastewater dashboards are at the wastewater 159 

treatment plant level and collected weekly, while a smaller number of projects report daily or 160 

multiple days per week. A few universities make campus wastewater data available in real time 161 

via public dashboards (e.g. University of California at San Diego, Clemson University), but in 162 

other cases, for instance at the University of North Carolina at Charlotte, the concern of upper 163 

administration not to alarm students or parents with details of wastewater alerts has resulted in a 164 

decision to keep this information for internal use only. A number of existing dashboards only 165 

focus on the visual presentation (in maps or charts) of wastewater-related data, and may not 166 

provide the spatiotemporal analytics and modeling of wastewater testing results and relevant 167 

data. The need for spatiotemporal analysis and modeling to guide the study of wastewater testing 168 

results for the monitoring of COVID-19 outbreak and prevention has been recognized in the 169 

literature (Karthikeyan et al., 2021).  170 

2.2. Spatial Decision Support Systems 171 

SDSS are integrative computer-based systems that provide decision-making support for complex 172 

spatial problems via the fusion of spatial data management, modeling, and visualization 173 

capabilities (Densham, 1991; Malczewski, 1999; Sugumaran & Degroote, 2010). SDSS, with an 174 

origin from Decision Support Systems (Marakas, 2003), are distinguished by their ability to 175 

handle decision-making support within a spatially explicit context via the incorporation of GIS-176 

based functionality. Yet, SDSS differ from GIS in that they encompass spatial modeling 177 

https://paperpile.com/c/TwYPwE/bI1T
https://paperpile.com/c/TwYPwE/3sFU+eKL5+1PQa
https://paperpile.com/c/TwYPwE/qEpp
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capabilities to aid decision-making (Armstrong et al., 1986; Sugumaran & Degroote, 2010). For 178 

example, with the incorporation of a spatial simulation model, SDSS can enable what-if scenario 179 

analysis to explore potential alternative solutions of a spatial problem. The spatial optimization 180 

model helps SDSS identify spatially explicit optimal solutions facing decision makers 181 

(represented by site selection problems). Further, spatial statistical models allow for the 182 

discovery of spatial patterns of interest (e.g., clusters of disease or accidents) from spatial data. 183 

All these modeling capabilities can be built within a SDSS that informs and facilitates decision 184 

making processes associated with complex spatial or spatiotemporal problems (Ghosh, 2008). In 185 

terms of implementation, a SDSS includes the following functional modules: data management, 186 

model management, visualization and report generation, and a user interface (Armstrong et al., 187 

1986; Densham, 1991; Sugumaran & Degroote, 2010).  188 

While the study of SDSS in early stages focuses on the development of conceptual architecture, 189 

cyberinfrastructure-enabled computing technologies such as web and cloud computing have been 190 

fostering the implementation and applications of SDSS into different domain studies (Sugumaran 191 

& Degroote, 2010; Tang et al., 2017).  For example, Mwaura and Kada (2017) presented a web-192 

based SDSS in which a multi-criteria decision making model was used to evaluate potential sites 193 

of geothermal wells in Kenya, east Africa. Crimi et al. (2019) investigated the identification of 194 

priority regions in Bradford, UK for freight lorry parking within a web-based SDSS 195 

environment. Lan et al. (2020) applied web-based SDSS that guides the monitoring and sharing 196 

of water quality information of private wells in Gaston County, NC, USA. Spatial interpolation 197 

algorithms were used in Lan et al.’s work to generate the spatially continuous distribution of 198 

water quality that will inform residents or governments for potential water contamination.  199 

https://paperpile.com/c/TwYPwE/3sFU+ImsL
https://paperpile.com/c/TwYPwE/ZSOO
https://paperpile.com/c/TwYPwE/ImsL+1PQa+3sFU
https://paperpile.com/c/TwYPwE/ImsL+1PQa+3sFU
https://paperpile.com/c/TwYPwE/3sFU+ekmV
https://paperpile.com/c/TwYPwE/3sFU+ekmV
https://paperpile.com/c/TwYPwE/O69J/?noauthor=1
https://paperpile.com/c/TwYPwE/jlHT/?noauthor=1
https://paperpile.com/c/TwYPwE/AxyC/?noauthor=1
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3. Materials and Methods 200 

3.1. Study Area and Data  201 

Our study area is the main campus of the University of North Carolina at Charlotte, USA (see 202 

Fig. 1). The main campus of the University (35°18'25"N, 80°44'06"W) is located in the north of 203 

the City of Charlotte (within Mecklenburg County). The University is an urban university with 204 

about 3,000 employees (including faculty and staff); and 30,146 students in the Fall semester of 205 

2020. Among them, around 6,000 students are living in residential halls on campus. In total, 206 

there are 138 buildings in the main campus, 33 residence halls, 32 academic buildings, and 73 207 

other types. Please see Appendix 1 for sources of the aforementioned information about the 208 

University. In terms of topography, the main campus is high in east and west and low in the 209 

middle (range of elevation: 176-226 meters). The slope of the main campus varies from 0o to 25o 210 

(based on a 1-m DEM derived from LiDAR point cloud data).  The Toby Creek area is the 211 

lowest-lying region on campus. Toby Creek flows through the campus and discharges into 212 

Mallard Creek at the north end of the campus. The university’s sewer system is composed of 213 

gravity sewer lines, where a sampling at a specific sewer manhole location will be affected by 214 

upstream nodes. Lateral and branch sewer lines collect wastewater from all residence and 215 

academic buildings, and then connect to a main sewer line (Charlotte Water’s wastewater 216 

system) which parallels Toby Creek. Campus wastewater is treated at the nearby Mallard Creek 217 

Treatment Facility.  218 
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 219 

Fig. 1. Map of the main campus of the University of North Carolina at Charlotte, USA (sewage 220 

network details are not shown for the protection of physical security of university infrastructure). 221 

 222 

The University of North Carolina at Charlotte launched its wastewater-based epidemiology 223 

(WBE) surveillance program in late Summer 2020 to assist the University in monitoring 224 

COVID-19 incidence. Wastewater signal has been used since that time to identify dormitory 225 

populations for testing (“surge testing”) in the event of detection of SARS-CoV-2 virus in the 226 

absence of a previously identified source. The wastewater surveillance program has been 227 

collecting and analyzing wastewater samples since September, 2020. A team of faculty, staff, 228 
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and students from bioinformatics, engineering, computer science, and geography collaborate to 229 

develop this monitoring system, with infrastructure support from the University’s Facilities 230 

Management staff. The WBE team has also developed a Building Information Modeling (BIM; 231 

see Becerik-Gerber et al. (2012)) 3D model for each residence hall on campus. Each BIM model 232 

includes the building envelope and plumbing fixtures, which can be used to identify rooms and 233 

zones in which potential infected individuals are located. Wastewater data collected together 234 

with BIM models have allowed campus administration to make timely and targeted decisions to 235 

prevent the cluster outbreak and spread of COVID-19 on campus (see Gibas et al., 2021 for 236 

detail). We collected spatial data to support the wastewater surveillance work for our study area. 237 

These data include buildings, sewer lines, sampling sites, road network, and elevation.  238 

Table 1. Spatial data collected for the wastewater surveillance work for the study area. 239 

Spatial Data Data source GIS Data Format 

Buildings Department of Facilities Management of UNC Charlotte Polygon Vector 

Sewer lines  Department of Facilities Management of UNC Charlotte Polyline Vector 

Sampling sites  Wastewater Surveillance Task Force Group at UNC Charlotte Point Vector 

Road network Department of Facilities Management of UNC Charlotte Polyline Vector 

Elevation U.S. Geological Survey, 3D Elevation Program   Raster  

 240 

There are in total 38 sampling sites that were identified and established for wastewater collection 241 

since Fall 2020 (see Fig. 2 for illustration). These sampling sites are organized in two types: for 242 

residence halls (a sampling site covers a building or part of the building) and for buildings within 243 

a sub-sewershed—referred to as neighborhood site in this study (a sampling site covers multiple 244 

buildings). Manholes and plumbing cleanouts are selected to set up these sampling sites. As a 245 

manhole may connect to multiple sewage lines from different buildings, a manhole may have 246 

https://paperpile.com/c/TwYPwE/Dovp/?noauthor=1
https://paperpile.com/c/TwYPwE/cfkq/?prefix=see&suffix=for%20detail
https://paperpile.com/c/TwYPwE/cfkq/?prefix=see&suffix=for%20detail
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multiple auto-samplers with probes deployed in different directions (up to two in our study) 247 

installed to collect sewage samples from different buildings. Further, a building (typically large) 248 

may have two or more sampling sites each covering different parts of the building. These 249 

sampling sites cover in total 89 buildings on campus for wastewater monitoring. We used a 250 

Trimble GPS handheld unit (with a submeter accuracy) to obtain the coordinates of the sampling 251 

sites. However, 10 of 38 samplers are located either very close to the building or inside the 252 

building, which degrades the signal quality of GPS satellites. Therefore, their locations are 253 

determined using Google Earth and images taken using a digital camera. One sampling site is 254 

completely under trees with dense canopy, where we cannot determine its exact coordinates 255 

using a GPS instrument or Google Earth imagery. In such a case, we used the location of the 256 

corresponding manhole (identified from the GIS data of the sewage network) as the coordinates 257 

of the sampling site. 258 

 259 

Fig. 2. Illustration of sampling site setup for building-level wastewater surveillance.  260 

 261 
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3.2. Methods  262 

In this section, we present the framework of the web-based SDSS and its main components. Fig. 263 

3 illustrates the design of the web-based SDSS framework for wastewater surveillance in this 264 

study. This framework supports the data management, model management, and visualization of 265 

wastewater data that are spatiotemporally explicit. The integration of these functionality allows 266 

for the automated synchronization of wastewater testing results, on-demand spatiotemporal 267 

analysis of COVID-19 incidents from wastewater results, and automatic update of Web GIS 268 

dashboard that supports timely decision making in a spatially explicit manner.  269 

Building-level wastewater surveillance typically includes three steps (see Gibas et al., 2021): 270 

collection of wastewater samples, sample concentration and RNA extraction, and detection of 271 

COVID-19 virus. Various sample-related data are generated from these steps. These data are 272 

characterized with space-time stamps and associated with different sampling sites, buildings, and 273 

sewersheds. Fundamentally, these data are space-time series that represent various information 274 

related to wastewater testing over space and time. Mathematically, our wastewater surveillance 275 

data (noted as W) can be formulated as in Eq. 1: 276 

https://paperpile.com/c/TwYPwE/cfkq/?prefix=see
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 277 

Fig. 3. Framework of the web-based spatial decision support system for wastewater surveillance. 278 

 279 

W={W(i,t) | W(i,t) = {id, w, v1, v2, … , vp}}      (1) 280 

where: 281 

 i: sampling site ID, 𝑖 ∈ [1,2, . . . , 𝑛 ]; n: number of sampling sites; 282 

t: ID of time step; 𝑡 ∈  [𝑡1, 𝑡2, . . . , 𝑡𝑚 ]; t1: beginning date of wastewater sampling; tm:  283 

end date of sampling; m: number of sampling dates; 284 
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id: ID of the sample at site i and time t.  285 

w(i,t): wastewater testing result for site i at time t (w(i,t)={0,1}={negative, positive}); 286 

v1(i,t), v2(i,t), ..., vp(i,t): all other variables associated with site i at time t; These variables 287 

may change over time or not (e.g., testing results will change over time but the ID of 288 

associated building(s) will not).  289 

p: number of other variables for a sampling site; 290 

Among these variables, the wastewater testing result w(i,t) is a binary variable that indicates 291 

whether COVID-19 virus is detected (1: positive; 0: negative) for a sampling site on a specific 292 

date. In this study, qPCR detection results from three sample replicates are used to determine 293 

whether a sample is considered positive or not. When the virus concentration (mean Cq) values 294 

of all three sample replicates are lower (indicating higher viral load) than the empirically 295 

determined limit of detection threshold, the corresponding wastewater sample is considered 296 

positive. For the purposes of determining administrative response on campus, samples must have 297 

all three replicates producing signals to be considered “positive”. Any samples that have only ⅔ 298 

replicates producing signals are considered “suspicious” and 1 or fewer replicates producing 299 

signals considered negative. This “suspicious” designation is only used for administrative 300 

decision purposes. For more detail, please refer to Gibas et al. (2021). In our study here, samples 301 

that have 2 or less replicates producing signals are treated as negative (i.e., suspicious and 302 

negative samples are merged into a single category: negative).  303 

3.2.1. Spatiotemporal data management and data synchronization  304 

We developed an object-based spatiotemporal data model (see Fig. 4A) to represent 305 

spatiotemporally explicit information related to building-level wastewater surveillance for 306 

COVID-19 monitoring. Spatiotemporal data models have been developed to represent dynamic 307 

geospatial phenomena (Chen et al., 2016; Pelekis et al., 2004; Peuquet & Duan, 1995). Based on 308 

https://paperpile.com/c/TwYPwE/cfkq/?noauthor=1
https://paperpile.com/c/TwYPwE/IpDu+VFRA+zF29
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spatiotemporal data models, data structures and databases can be designed and implemented to 309 

handle data with spatiotemporal stamps. A series of spatiotemporal data models have been 310 

proposed in the literature, including snapshot-based, event-based, and object-based (Pelekis et 311 

al., 2004). Our spatiotemporal data model is object-based, in which a spatiotemporal object 312 

represents a geospatial entity in space and time. As the geometry of sampling sites and buildings 313 

does not change, our spatiotemporal data model only needs to take into account change in 314 

attributes (non-spatial information) associated with sampling sites or buildings. Thus, a 315 

wastewater sample collected at a site at a specific date is abstracted as a spatiotemporal object 316 

associated with a set of variables, including sampling site information (geometry: point), 317 

building information (geometry: footprint polygon), and lab testing results. Fig. 4B is the entity-318 

relationship (ER) diagram that we used to build the geodatabase based on the spatiotemporal data 319 

model. Database tables were created to manage the spatiotemporal data associated with 320 

wastewater surveillance (including sampling sites, buildings, sewersheds, historic lab testing 321 

results, and latest lab testing results). Further, we used a set of database tables to maintain the 322 

relationships between sampling sites and buildings, as well as sampling sites and sewersheds.  323 

We developed an automated synchronization module to upload wastewater testing results once 324 

they are available (including real-time and historic data).  This automated data synchronization 325 

module is implemented within a web-based interface. This synchronization module takes sample 326 

testing results (in a delimited file; CSV format) as input and associates these testing results with 327 

corresponding buildings or sewersheds (through SQL style left-joins). Then, these testing results 328 

are updated to the spatiotemporal database. 329 

https://paperpile.com/c/TwYPwE/VFRA
https://paperpile.com/c/TwYPwE/VFRA
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 330 

Fig. 4.  Illustration of spatiotemporal data model (A) and entity-relationship diagram (B) for 331 

building-level wastewater surveillance. 332 

 333 

3.2.2. Spatiotemporal analysis of wastewater testing results 334 

To address the research questions aforementioned in the Introduction section requires the use of 335 

space-time analysis and modeling approaches. We chose to use space-time scan statistics, space-336 

time simulation of asymptomatic individuals, and similarity analysis of space-time series.  337 

3.2.2.1. Space-time scan for cluster detection 338 

In this study, we utilized space-time scan statistics for the detection of space-time clusters of 339 

positive wastewater samples reported from wastewater surveillance. We used Kulldorff's 340 

retrospective space-time scan statistic (Kulldorff, 1999; Kulldorff et al., 1998), implemented in 341 

SaTScan (version 9.6). A variety of studies have applied the space-time scan statistics approach 342 

to detect clusters of covid cases during the COVID-19 pandemic (see, e.g., Desjardins et al., 343 

2020; Hohl et al., 2020; Kim & Castro, 2020; Masrur et al., 2020). However, the space-time 344 

https://paperpile.com/c/TwYPwE/Kpni+0RUR
https://paperpile.com/c/TwYPwE/4gv5+VTNO+imqm+iPAg/?prefix=see%2C%20e.g.%2C,,,
https://paperpile.com/c/TwYPwE/4gv5+VTNO+imqm+iPAg/?prefix=see%2C%20e.g.%2C,,,
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cluster detection for COVID-19 monitoring is often applied at large spatial or jurisdictional 345 

scales (e.g., state or county level for a country). To our knowledge, this is the first time that the 346 

space-time scan statistic is used to detect the presence of COVID19 in wastewater and at a small 347 

spatial scale (building level).  348 

The space-time scan statistics uses a cylinder-based scanning window to detect the cluster of 349 

space-time objects (e.g., positive wastewater samples here; see Fig.5). The base of the cylinder 350 

defines the geographic region covered by the scanning window (the radius of the base is the 351 

spatial bandwidth) while the height represents the time duration of the scanning window (i.e., 352 

temporal bandwidth). When applying space-time scan statistics, the center of the cylinder is 353 

placed at each spatial object (point-types; centroids can be used for polygon-type objects) and the 354 

spatiotemporal bandwidth is varied. Then, by using a likelihood ratio test, the number of 355 

observed events within and outside the cylinder is compared against their expected values based 356 

on Poisson or Bernoulli models (Kulldorff, 1997). Events within a cylinder scanning window 357 

with highest likelihood ratio (indication of elevated risk) are identified as a space-time cluster. 358 

Monte Carlo approach can be used to test the significance of the cluster(s). As the wastewater 359 

testing results are a binary variable (positive or negative) in this study, we used the Bernoulli 360 

model for the probability model used by the space-time scan statistics.  361 

https://paperpile.com/c/TwYPwE/7wFG


 

 

20 

 362 

Fig. 5. Illustration of using cylindrical scanning windows for space-time scan statistics. 363 

 364 

3.2.2.2. Space-time simulation of asymptomatic individuals 365 

In this study, wastewater testing results from a sampling site are indicative of the situation of the 366 

associated building(s)--whether there are presymptomatic individuals in the building. However, 367 

the location of the individual(s) within the building is unknown (for privacy protection)—i.e., 368 

spatial uncertainty. Further, collected samples on a particular day may be reflective of a prior 369 

contamination, keeping in mind that samples were collected every two days or more instead of 370 

every day in our study–i.e., temporal uncertainty. Therefore, we used a space-time point pattern 371 

simulation approach (see Diggle, 2013) to generate the locations of presymptomatic individuals 372 

within the associated building (footprint in polygonal form) and the time that the individuals 373 

begin to shed virus. In other words, this approach allows us to simulate space-time locations 374 

(where and when) of the presymptomatic individuals, represented as space-time objects in this 375 

study. 376 

https://paperpile.com/c/TwYPwE/zU5w/?prefix=see
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Fig. 6 illustrates the algorithm of the simulation of space-time point patterns of asymptomatic 377 

individuals within buildings. The space-time point pattern simulation begins with footprint 378 

polygons of all sampled buildings to determine the spatial location of an asymptomatic 379 

individual. A point is randomly generated within the bounding box of the footprint of each 380 

building. The point is retained if it is located within the building footprint polygon. Once the 381 

spatial location of the presymptomatic individual is determined, the date that the individual 382 

begins to shed virus is obtained by randomly perturbing the original sampling date up to 383 

n_perturb days before (e.g., n_perturb=3 in this study). This procedure is applied to each 384 

building for a number of Monte Carlo repetitions (e.g., 1,000 repetitions used in this study). 385 

After the space-time location is determined, associated sampler site data and testing results are 386 

joined. The number of days for perturbation is based on the sampling frequency within a week. 387 

For example, 3 days could be used to cover the tri-weekly testing interval. Once simulated 388 

results are generated, space-time cluster analysis can be performed on these simulated 389 

spatiotemporal point patterns to examine the robustness of space-time clusters detected from 390 

observed data.   391 

 392 

Algorithm for simulation of spatiotemporal point patterns of asymptomatic individuals 

Parameters:  

    n_monte:   number of Monte Carlo runs 

    n_perturb: number of days for temporal perturbation 

Begin Algorithm 

    For each Monte Carlo run of n_monte repetitions  

 For each sampling record (associated with a building and time) 

  Randomly generate a point within the building footprint for the sample site; 

Randomly generate the time by perturbing sampling date up to n_perturb days before; 

 End for sampling record 

    End for Monte Carlo run 

End Algorithm 

Fig. 6. Algorithm of simulation of space-time locations of asymptomatic individuals.  393 
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 394 

 395 
Fig. 7. Illustration of a simulated space-time point pattern of asymptomatic individuals 396 

(simulated period: January 4th, 2021 to May 18th, 2021; number of samples: 926; number of 397 

positive samples: 264; number of days for perturbation: 3). 398 

 399 

3.2.2.3. Similarity analysis of space-time series 400 

To investigate whether any sampling sites show similar responses over time in terms of 401 

wastewater testing results, we introduced similarity analysis of time series. We used two 402 

similarity metrics, Euclidean distance-based and Dynamic Time Warping (DTW)-based, in this 403 

study. Euclidean distance-based metric is a dissimilarity index that evaluates the distance of two 404 

time series in the temporal dimension (see Choi et al., 2010). The DTW-based metric allows for 405 

comparing time series in terms of shape (see Berndt & Clifford, 1994). DTW is a method that 406 

computes the optimal matching between time series (or any sequence patterns) by minimization 407 

https://paperpile.com/c/TwYPwE/SHfL/?prefix=see%20
https://paperpile.com/c/TwYPwE/K3xb/?prefix=see
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of distances (Aghabozorgi et al., 2015; Berndt & Clifford, 1994). Given sampling site i and j, 408 

Euclidean distance-based metric (noted as Dij) between time series of their wastewater testing 409 

results can be calculated by Eq. (2). The DTW-based measure (noted as DTWij) is represented 410 

using the shortest cumulative distance between the beginning and end time steps of wastewater 411 

testing results at site i and j once matching between the two time series is optimized (see Eq. 3).  412 

Dij = (∑ (𝑤(𝑖, 𝑡𝑘) − 𝑤(𝑗, 𝑡𝑘))2𝑚
𝑘=1 )1/2              (2) 413 

 DTWij =Cij(m,m) = dij(m,m) + min(Cij(m-1,m-1),Cij(m-1,m),Cij(m,m-1))  (3) 414 

s.t. 415 

Cij(0,0)=0; 416 

 dij(k, l) = |w(i,tk)- w(j,tl)| 417 

 418 

where Dij and DTWij are the Euclidean distance metric and the dynamic time warping metric of 419 

the time series between site i and j. w(i,tk) is the binary testing result of sampling site i at time tk, 420 

and w(j,tl) the binary testing result site j at time tl (k, l∈{1, 2, ..., m}; m: number of sampling 421 

dates; defined in Eq. 1). Cij(k,l) is the alignment cost between time step tk of site i and time step tl 422 

of site j. dij(k,l) is the distance between time step tk of site i and time step tl of site j. |.| is the 423 

absolute function that calculates the absolute distance between site i and j. min(.) is the function 424 

to calculate the minimum of costs. The DTW-based measure is derived using a dynamic 425 

programming approach (see Sakoe & Chiba, 1978). Each similarity measure is based on the 426 

comparison of two time series, which leads to a n by n matrix of similarity for our wastewater 427 

case (n: number of sampling sites; see Eq. 1). Once similarity measures are calculated, 428 

hierarchical clustering can be applied to these similarity metrics to compare time series of 429 

wastewater testing results of all sampling sites.  430 

 431 

https://paperpile.com/c/TwYPwE/K3xb+eiHH
https://paperpile.com/c/TwYPwE/mwVF/?prefix=see
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3.2.3. Web-based mapping and geovisualization  432 

We used a Web GIS approach (Fu & Sun, 2011; see Peng & Tsou, 2003) for the visual 433 

presentation of wastewater data and related spatiotemporal analysis results. Based on the 434 

spatiotemporal data model, wastewater data are organized in a spatiotemporal database. We 435 

publish these spatially explicit data (sampling sites, sewage network, buildings) into geospatial 436 

web services that can be mashed up on a client-side web-based dashboard. When new 437 

wastewater testing results are available or the previous sample results are updated, the Web GIS 438 

module will automatically update these spatiotemporal data (via API) to the client-side web 439 

dashboard (including data, charts, and maps). Further, when new sampling sites are added or 440 

some existing sites are retired, the Web GIS module allows for updating spatial data and their 441 

geospatial web services (e.g., sampling sites in points, sewersheds in polygons).  442 

We used Esri ArcGIS Online (https://www.arcgis.com/) for Web GIS-based dashboard and 443 

ArcGIS API for the automated update of wastewater data to the dashboard. Fig. 8 shows the 444 

snapshot of our Web GIS dashboard. The web mapping interface shows the locations of 445 

buildings, samplers, and sewersheds (aka, neighborhoods), and sewer networks (hidden for 446 

confidentiality consideration). Moreover, the color scheme of samplers and buildings indicate the 447 

sample testing results (shown in the map legend). Summary of wastewater testing results 448 

including number of positive buildings, sampling sites, sewershed sites, and their time series is 449 

displayed (for example, in charts). This provides visual and interactive analytics support that can 450 

inform decision makers for subsequent decision making on, for example, clinical testing or 451 

contract tracing.  452 

https://paperpile.com/c/TwYPwE/MDkV+QaRg/?prefix=see,
https://www.arcgis.com/index.html
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 453 

Fig. 8. Snapshot of the Web GIS dashboard (sewer networks is hidden due to confidentiality 454 

consideration). 455 

 456 

3.2.4. Implementation 457 

Our web-based SDSS is implemented within a web server. Jupyter Notebooks 458 

(https://jupyter.org/) were used to implement the web-based main interface of the SDSS and 459 

access to its individual modules. Table 2 shows the software or libraries used to implement each 460 

individual module of the SDSS. We use ArcGIS API for Python to update wastewater testing 461 

results to the Web GIS dashboard based on ArcGIS Online. Google OAuth was chosen as the 462 

authentication mechanism of a web-based system for automated data synchronization.  463 

 464 

 465 

 466 
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Table 2. Software or libraries used by the web-based SDSS for wastewater surveillance. 467 

Module name Sub-module Software/Library  URL 

Module for 
geospatial database 
design and data 
synchronization 

Web interface for data 
synchronization 

ArcGIS API for Python 
(v1.9.1) 
Flask (v3.1) 

https://developers.a
rcgis.com/python/ 
https://flask.pallets
projects.com 

 
 
 
Module for 
spatiotemporal 
analysis 

Space-time cluster 
detection 

SatScan https://www.satsca
n.org/ 

Space-time simulation 
of point-type events 

Python scripts n/a 

Similarity measures of 
time series 

TSdist v3.1 - Distance 
Measures for Time 
Series in R 

https://cran.r-
project.org/web/pa
ckages/TSdist/inde
x.html 

Module for web-
based mapping and 
geovisualization 

Web GIS dashboard Esri ArcGIS Online https://www.arcgis.
com/index.html 

 468 

4. Results 469 

4.1. Overall results  470 

Our wastewater surveillance initiative has been collecting wastewater data since Fall 2020. We 471 

have established 38 sampling sites since then. These sites provide strong support for monitoring 472 

the COVID-19 situation via the wastewater surveillance approach. Wastewater testing results are 473 

uploaded, synchronized, processed, analyzed, and visualized via the web-based SDSS.  In this 474 

study, we focus on using wastewater testing results from 23 residence hall sites from 475 

01/04/2021to 05/18/2021 (in total 135 days) as we have consistently used these sites to collect 476 

samples during this period (results for neighborhoods sites and sampling sites of residence halls 477 

that were established or removed during this period were excluded). Sewage samples were 478 

collected three times a week on Monday, Wednesday, and Fridays for Spring 2021. This leads to 479 

https://developers.arcgis.com/python/
https://developers.arcgis.com/python/
https://flask.palletsprojects.com/
https://flask.palletsprojects.com/
https://cran.r-project.org/web/packages/TSdist/index.html
https://cran.r-project.org/web/packages/TSdist/index.html
https://cran.r-project.org/web/packages/TSdist/index.html
https://cran.r-project.org/web/packages/TSdist/index.html
https://www.arcgis.com/index.html
https://www.arcgis.com/index.html
https://www.arcgis.com/index.html
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54 sample collections for each sampling site during the study period (18 weeks times 3 480 

collections per week). However, it is not always possible to collect a sample at every site every 481 

time due to variations in flow or unexpected physical obstruction of the autosampler probe. As a 482 

result, 926 samples were collected from these 23 sites for Spring 2021. Among them, there are 483 

662 negative (71.49%), and 264 positive (28.50%).  484 

Fig. 9 depicts the number of positive sampling sites during the study period compared to the 7-485 

day averaged number of cases in Mecklenburg County, NC (original data is retrieved from the 486 

U.S. Centers for Disease Control and Prevention, https://ephtracking.cdc.gov/DataExplorer/). As 487 

we could see, the number of positive sites fluctuates between 0 and 8 before March 24th, 2021. 488 

After that date, an increasing pattern in terms of the number of positive sampling sites can be 489 

observed and lasts for about 2 weeks. This number reaches its maximum (16) on April 9th, 2021. 490 

After April 9th, the number drops to under 10 and tends to show a decreasing pattern over time.  491 

The spring semester of the University was postponed to start from January 20th, 2021 and Spring 492 

Break was changed to the week from February 8th to 13th, which was a decision made by the 493 

university due to the consideration of the pandemics (number of cases in Mecklenburg County is 494 

high in January and February; see Fig. 9). This explains the lower number of positive wastewater 495 

samples during the early stage of the semester. An increase in the number of cases in 496 

Mecklenburg County (corresponding to the local peak of the SARS-CoV-2 Alpha variant) 497 

appeared from mid March to mid April, 2021. Relaxation of local COVID-19 restrictions may 498 

also have contributed to this peak (see Executive Orders No. 195 and No. 204 by the North 499 

Carolina Governor on February 26th (NC government, 2021a) and March 26th (NC government, 500 

2021b)). This corresponds to (and may explain) a dramatic increase in the number of positive 501 

https://paperpile.com/c/TwYPwE/foK1
https://paperpile.com/c/TwYPwE/sfC5
https://paperpile.com/c/TwYPwE/sfC5
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samples on campus during that period. Decreasing trends appeared from mid to late April, 2021 502 

in Mecklenburg County in terms of number of cases and on campus with respect to the number 503 

of positive wastewater samples. This can be attributed to the availability of vaccines to more 504 

people (increase in vaccination rate). Students started to receive vaccines beginning on March 505 

31st, 2021, and vaccines were available to all adults in North Carolina by April 7th (Source: 506 

https://governor.nc.gov). Two on-campus vaccine clinics (March 31st, 2021, and April 12th, 507 

2021) hosted by the university facilitated vaccine uptake by students and faculty. All of these 508 

vaccine-related events play an important role in contributing to the decreasing number of 509 

positive samples in the final weeks of the semester. 510 

511 
Fig. 9. Number of positive sampling sites in the study area and 7-day averaged number of cases 512 

in Mecklenburg County, NC over the study period.  513 

4.2. Results of space-time cluster analysis 514 

The use of space-time scan statistics needs to determine the upper limit of the spatiotemporal 515 

cluster size bandwidth (spatial bandwidth and temporal bandwidth). For the upper limit of the 516 

spatial bandwidth, we set the maximum spatial cluster parameter (corresponding to the 517 
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percentage of population at risk—i.e., number of collected samples for this study) as 50%. The 518 

upper limit of the temporal bandwidth is set to 50% of the duration of the study period.  519 

4.2.1. Space-time cluster analysis results based on samples collected from sampling sites 520 

Fig. 10 and Table 3 depict the space-time scan results based on the collected samples for which 521 

the locations of samplers were used as coordinates for space-time scan analysis. Fig. 10 shows 522 

the map of detected space-time clusters. One significant cluster (p-value under 5%; based on 999 523 

Monte Carlo runs) was detected that contains two sampling sites lasting from March 17th, 2021 524 

to April 30th, 2021 (in total 44 days--about 7 weeks). These two sampling sites cover three 525 

residence halls. Both the total number of collected samples (population for space-time scan) and 526 

number of positive samples (cases) are 34, indicating all collected samples are positive in the 527 

detected space-time cluster during these 7 weeks. The detection of this significant cluster is 528 

because the three buildings have been used by the University for isolation and quarantine 529 

purposes. The relative risk is 3.88 in the detected cluster, indicating the residence halls covered 530 

by the sampling sites within the clusters are around 3-4 times higher than those out of the 531 

clusters in terms of the ratio of number of positive samples over expected value. 532 

Table 3. Information of the detected space-time cluster based on locations of sampling sites. 533 
Parameter Value Description 
Time span 3/17/2021 to 4/30/2021 Start date and end date of the cluster 

Population 34 Number of collected samples 

Number of cases 34 Number of positive samples 

Expected cases 9.69 The number of samples within the cluster multiplied 
by the ratio of the total number of positive samples 
over the total number of samples for the entire study 
region. 

Estimated risk  3.51 The ratio of the number of positive samples within 
the cluster over the number of expected cases within 
the cluster 

Relative risk 3.88 The ratio of the estimated risk within the cluster over 
that outside of the cluster 

p-value 5.2E-15 (p<=0.05) p-value based on 1,000 Monte Carlo runs 
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 534 
Fig. 10.  Map of the sampling sites in the detected cluster and corresponding residence halls 535 

(sewer networks were hidden due to confidentiality consideration) 536 

 537 

4.2.2. Space-time cluster analysis results from simulated space-time point patterns 538 

The space-time scan results using locations of collected samples are based on sampling sites. In 539 

our case study, these wastewater samples were contributed from individuals living in their 540 

residence halls. Our sampling sites are, however, either outside or inside of residence halls, thus 541 

posing an issue of locational uncertainty. To address this issue, we used the space-time 542 

simulation of point-type events. We associate the binary (positive/negative) wastewater sampling 543 

results from sampling sites back to the residence halls. For those sites that cover a single 544 

building, once the wastewater testing result from any of these sites is positive, the residence hall 545 

will exhibit a positive signal. For a sampling site that covers multiple buildings, all these covered 546 
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buildings will be positive if the testing results from the site are positive. The number of 547 

simulations for generating space-time point patterns was set to 1,000 in this study.  548 

Fig. 11 shows the spatial pattern of residence halls within the detected clusters from 1,000 549 

simulated space-time point patterns (if a simulated presymptomatic individual within a building 550 

belongs to a cluster, then we consider the building is within the cluster). There are 8 residence 551 

halls that are within significant space-time clusters (at a 95% confidence level). We hide the 552 

names of the residence halls for confidentiality purposes. Table 4 summarizes the information of 553 

detected clusters based on the 1,000 simulated space-time point patterns. Relative risk within 554 

clusters is 2.774, indicating the estimated risk of residence halls within the cluster is 2-3 times 555 

higher than that outside the cluster.  556 

Table 5 depicts start and end dates of each building within clusters, and Table 6 illustrates the 557 

number of weeks that the detected space-time clusters from 1,000 simulations last. Fig. 12 shows 558 

the histogram of the number of clusters in terms of the start date and end date of a building 559 

within detected clusters. It can be observed from Table 6 that detected clusters last from 1 week 560 

to 6 weeks, and 92.8% of the clusters last around 3-5 weeks. In general, the significant start date 561 

of clusters on each building at high risk concentrates on March 24th, 2021 (one exception is 562 

March 26th for building 7) and most of them end around April 23rd or 24th (April 20th for building 563 

7), lasting around 1 month. This suggests that the wastewater signals from these 8 buildings 564 

correspond to the second peak of the pandemic in Mecklenburg County (see Fig. 9). The three 565 

buildings used for isolation and quarantine purposes are included in these 8 buildings. 566 
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 567 
Fig. 11.  Map of the residence halls in the detected clusters from simulated space-time point 568 

patterns (number of simulations: 1,000) 569 

 570 

Table 4. Summary of the clusters detected in 1,000 simulated datasets. 571 

  Mean Standard 
Deviation 

Minimum Maximum Confidence Level 
for mean (95%) 

Population 156.144 26.971 32 205 1.674 

Number of cases 94.292 11.547 32 112 0.717 

Expected cases 44.516 7.689 9.123 58.445 0.477 

Estimated risk  2.145 0.167 1.901 3.508 0.010 

Relative risk 2.774 0.129 2.544 3.904 0.008 

P-value  1.08E-11 2.21E-11 6.99E-15 2.26E-10 1.37E-12 

 572 

 573 
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Table 5. Start and end dates of the buildings detected within clusters based on 1,000 simulations. 574 

Building index Start date (p<=0.05) End date (p<=0.05) Number of days at high risk 

Building 1 March 23rd, 2021 April 24th, 2021 33 

Building 2 March 23rd, 2021 April 24th, 2021 33 

Building 3 March 23rd, 2021 April 24th, 2021 33 

Building 4 March 23rd, 2021 April 23rd, 2021 32 

Building 5 March 23rd, 2021 April 23rd, 2021 32 

Building 6 March 23rd, 2021 April 23rd, 2021 32 

Building 7 March 26th, 2021 April 20th, 2021 26 

Building 8 March 23rd, 2021 April 24th, 2021 33 

 575 

Table 6. Number of weeks covered by the space-time clusters detected from simulated patterns 576 

(number of simulations: 1,000). 577 

#Weeks Frequency 

1 week 53 

2 weeks 18 

3 weeks 254 

4 weeks 384 

5 weeks 290 

6 weeks 1 

 578 

 579 
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 580 
Fig. 12. Histograms of the start (A) and end (B) dates that a building (Building 1) was identified 581 

as within a cluster (blue) and the number of occurrences that a building was identified as within a 582 

cluster over time (green) from simulations. Significant start and end dates (95% confidence 583 

level) were colored in red. Number of simulations: 1,000. 584 

 585 

The use of space-time scan for cluster analysis is computationally demanding because each 586 

analysis would need additional 999 Monte Carlo runs for significance testing, and we need to 587 

conduct this analysis on 1,000 simulated space-time point patterns of presymptomatic 588 

individuals. To address this computational challenge, we deployed these analyses to a high 589 

performance computing (HPC) cluster (computing node configuration: dual 24-Core Intel Xeon 590 

Gold 6248R CPU with clock rate of 3.00 GHz and 384GB memory). Twenty computing nodes 591 

(each with 24 cores--i.e., in total 480 CPUs) were used for acceleration. The parallel computing 592 

time of the analysis of a single simulated point pattern on a computing node varies from 7.76 to 593 

16.26 minutes with a mean of 8.42 minutes, while the mean sequential computing time for a 594 

single analysis is 139.36 minutes. The total parallel computing time on 480 CPUs for 1,000 595 

analyses is 7.08 hours, compared with the total sequential computing time (on a single CPU) of 596 
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2,322.72 hours (around 97 days). As a result, 327.91 times of acceleration was achieved for these 597 

analyses by using 480 CPUs.   598 

 599 

4.3. Results of Similarity Analysis of Time Series 600 

We conducted similarity analyses based on the time series of wastewater testing results from the 601 

23 sampling sites over the study period. Fig. 13 shows the results of similarity analysis with 602 

respect to metrics of Euclidean distance and DTW. Both Euclidean distance and DTW are 603 

dissimilarity metrics, meaning that the larger the value of the metrics, the more dissimilar the 604 

time series of two sites are. We then applied hierarchical clustering analysis to each of the two 605 

metrics. Elbow method (Thorndike, 1953) was used to determine the number of clusters based on 606 

these metrics. As a result, two clusters were identified with respect to the Euclidean distance 607 

metric and three clusters for the DTW metric.  608 

Fig. 14 depicts the cluster dendrograms of the two similarity metrics as well as the spatial 609 

distribution of the identified clusters with respect to each of the similarity metrics. Fig. 15 shows 610 

the number of positive sites per week for each group identified by similarity metrics. The 611 

Euclidean distance-based metric clusters the sampling sites to two groups, whereas there are 612 

three main groups identified by the DTW metric. In terms of Euclidean distance-based metric 613 

(see Fig. 15A), group 1 covers five sampling sites, about 22% over 23 sampling sites in this 614 

study. The number of positive samples of group 1 fluctuates around 5 positive samples per 615 

collection day before and on March 15th, 2021. It rises to 10 - 15 positive samples per collection 616 

day from late March to mid April and then a decreasing trend appears until mid May. Group 2 617 

has 18 sampling sites, around three times higher than those in group 1. The number of positive 618 

https://paperpile.com/c/TwYPwE/yGf2
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samples for each group in the study period tends to be close compared with the total number of 619 

sampling sites in each group, indicating that buildings in group 1 are at higher risk of being 620 

exposed under virus than those in group 2. We can also observe a rising pattern in the number of 621 

positive samples for group 2 in mid March and a decreasing trend from late April to the end of 622 

the study period. 623 

 624 
 625 

Fig. 13. Matrix of similarity metrics. (A:  Euclidean distance; B: Dynamic Time Warping). 626 
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 627 
 628 

Fig. 14. Cluster dendrograms of similarity metrics and spatial patterns of clustered results. A and 629 

B are for Euclidean distance metric. C and D are for Dynamic Time Warping metric. The cut-off 630 

of the number of clusters (red line) was identified using the Elbow curves. Group 1, 2, and 3 631 

were shaded in orange, blue, and purple. 632 
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 633 

Fig. 15. Number of positive sampling sites per week for each group identified by similarity 634 

metric over time. A: for the Euclidean distance metric. B: for the Dynamic Time Warping metric. 635 

The horizontal axis shows the start date of each week. The last week starting from May 17th only 636 

has two-days data available. 637 

With respect to the DTW metric (see Fig. 15B), three groups are identified, where the number of 638 

sampling sites are 8, 6, and 9 for group 1, 2, and 3. It is observed that the weekly number of 639 

positive samples in group 1 is higher than those of groups 2 and 3 in between January 25th, 2021 640 

and May 3rd, 2021, covering most of the study period. The number of weekly positive samples in 641 

group 2 is higher than that in group 3 especially in the beginning of the study period until 642 

February 8th, 2021, and from March 15th to May 18th, 2021. Group 3 stays between 0 to 3 643 

positive samples per week during this time span. Group 1 and 2 exhibit similar responses to the 644 
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spread of COVID-19 as we can observe three peaks in the time series: around January 20th, 645 

March 1st, and April 5th. Both group 1 and 2 strongly responded to the wave in Mecklenburg 646 

County, NC starting from mid March, 2021 (see Fig. 9); however, group 3 did not show a 647 

significant reaction to this wave, indicating residence halls in this group appear a relatively lower 648 

risk of being exposed to the virus than others during the study period. 649 

Sites 6 and 7 identified in group 1 of both similarity metrics (see Fig. 14) are also detected within 650 

the cluster using space-time scan (see Fig. 10), indicating that buildings related to the two sites 651 

are more likely to be under exposure of the COVID-19 during the study period. Site 14, 17, and 652 

18 in group 1 for Euclidean distance are also included in the group 1 of DTW metric, indicating 653 

these sites also need to be paid attention. Further, group 1 of DTW metric suggests that site 12, 654 

19, and 21 are at relatively higher risk as well. Buildings in group 2 of the Euclidean distance 655 

metric appear less likely to be under exposure of the virus than those in group 1. It can be 656 

observed that buildings in group 2 and 3 detected by the DTW metric are included in group 2 of 657 

the Euclidean distance. Results in Fig. 15B also suggests that the two groups of DTW metric, 658 

especially group 2, appear to be characterized by a relatively low number of positive wastewater 659 

samples during the study period. 660 

5. Discussion 661 

Our web-based SDSS provides support for automating data operations, analysis and modeling, 662 

and visualization capabilities within an integrative environment. Wastewater surveillance is 663 

dependent on various data that may cut across different spatiotemporal scales. Our web-based 664 

SDSS allows for automated synchronization and mapping of these spatiotemporal data. This 665 
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provides timely support for the early detection of the COVID-19 virus in campus wastewater and 666 

thus greatly facilitates the monitoring and mitigation of the pandemic situation in the University. 667 

At the same time, the management of space-time wastewater data within this integrated 668 

environment can help monitor the status of samplers and their sampling sites. If any issues occur 669 

to the autosamplers that lead to the unavailability of samples over time, we could quickly 670 

identify and resolve the issues with support from this SDSS, thus ensuring the continual 671 

functioning of samplers.  672 

Wastewater surveillance data are spatiotemporally explicit. Spatiotemporal analysis and 673 

modeling can be of great help in discovering interesting patterns in these spatiotemporal data, 674 

represented by the clusters of positive samples or residence halls detected using space-time scan 675 

approach and similarity analysis of space-time series in this study. The combination of the 676 

spatiotemporal analysis approaches has been suggested in the literature (see Xu & Beard, 2021). 677 

Space-time scan methods, represented by SatScan in this study, allows for detecting the co-678 

occurrence of space-time events (positive samples in this study) within a specific time period 679 

(i.e., local- or regional-level analysis). Further, similarity analysis of space-time series offers a 680 

means of comparing space-time events over the entire study period--i.e., system-level 681 

comparison. Combining these spatiotemporal analysis methods enables us to discover patterns of 682 

interest from different levels (with respect to the study system of interest). On the one hand, this 683 

combined approach allows for identifying those residence halls where interactions with their 684 

residents are at a high risk during specific time periods. On the other hand, it gives us 685 

recommendations on the group of residence halls with a lower risk of virus even when it was 686 

peaking. This combined analysis approach provides substantial support for addressing 687 

https://paperpile.com/c/TwYPwE/Yqdc/?prefix=see
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spatiotemporal questions (as in the Introduction section).  It is also noted that the detection of 688 

these space-time clusters may be biased as samples may not be collected from every site each 689 

time, which will be investigated in future work. However, in general, these detected clusters 690 

from spatiotemporal analysis and modeling provide invaluable and critical support for the 691 

University on decisions or guidelines for the prevention of outbreak of the virus and control of 692 

virus transmission on campus. 693 

The use of the space-time simulation of presymptomatic individuals was necessary because the 694 

relationship between sampling sites and their associated buildings is complicated (instead of one-695 

to-one mapping) and because individuals in residence halls are sources that contribute to the 696 

wastewater testing results instead of samplers at sampling sites. The space-time scan results 697 

based on simulated individuals in residence halls are different than those based on sampling 698 

sites. The former approach detects more residence halls within the clusters of positive 699 

wastewater samples. The space-time simulation of the presymptomatic individuals provides an 700 

alternative approach for the possible locations of these individuals instead of relying on the 701 

sampling sites. While the detected clusters include more residence halls from space-time 702 

simulation, it is better than underestimating the number of residence halls that may exhibit strong 703 

positive signals of COVID-19 virus in wastewater. Of course, these clusters of positive 704 

wastewater samples are based on the space-time scan, which is a statistically based exploratory 705 

data analysis approach. The further interpretation of these clusters would require the expert 706 

knowledge from the collaboration of domain scientists (e.g., biogenetic professionals), better 707 

understanding of the wastewater surveillance system (e.g., sampling sites, residence halls, 708 

student interactions), and the incorporation of clinical testing and contact tracing data. In 709 
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particular, clinical testing data could be used to further improve the space-time simulation of 710 

presymptomatic individuals in terms of model calibration and validation. For example, in this 711 

study, wastewater samples that have 2 or less replicates producing signals are treated as negative. 712 

The use of clinical testing data could help us to fine tune the relationship between wastewater 713 

signals and infected individuals for more reliable spatiotemporal cluster analysis.   714 

Web-based GIS is of essence in this web-based SDSS in terms of visual presentation of space-715 

time data related to wastewater surveillance. Web-based GIS technologies and geospatial web 716 

services have been increasingly developed and available for the online management and mapping 717 

of spatially explicit data. However, the automatic update of data to Web GIS dashboards has 718 

been the bottleneck of Web GIS applications. Our web-based GIS and visualization module 719 

provides automation support that allows for the automatic update of wastewater sample data to 720 

the web GIS dashboard. Specifically, we aimed to reduce the time and number of steps that data 721 

are taken from the lab to the dashboard. This module will lead to the saving of tremendous time 722 

and cost as required by the update and dissemination of wastewater data that are continuously 723 

available over time.  724 

6. Conclusions  725 

The web-based SDSS framework presented in this study empowers the management, analytics 726 

and sharing of wastewater surveillance-related data at multiple spatiotemporal scales. The SDSS 727 

framework serves as a synergistic platform that integrates various types of data based on the 728 

spatiotemporal data model. Spatiotemporal analysis and modeling capabilities incorporated in 729 

this framework offer a means of unveiling interesting or unexpected patterns from the 730 
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wastewater data. These patterns may not be easily detected using visual inspection. These data- 731 

and model-related capabilities are managed and automated within the SDSS framework to ensure 732 

their reusability and the reproducibility of analytic results. This SDSS framework, built in with 733 

Web GIS dashboard functionality, will inform critical decision-making and guideline 734 

development for monitoring COVID-19 situations in the study region. 735 

Future work of our study includes: 1) integration of 3D BIM-based building model into the web-736 

based environment, 2) adding more spatial modeling capabilities (e.g., spatial simulation for 737 

scenario analysis and representation of individual behavior and social behavior using agent-738 

based modeling; spatial optimization for optimal allocation of sampling sites), 3) use of 739 

continuous variable of virus concentration in wastewater samples instead of binary indicator for 740 

spatiotemporal analysis, and 4) extend the web-based SDSS framework to other or larger regions 741 

by, for example, linking to city sewage network and wastewater treatment plants at regional 742 

level.  743 
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Appendix  964 

Appendix 1. Sources of the information about the University of North Carolina at Charlotte 965 

(retrieved year: 2021).  966 

Sources URLs 

Faculty and Staff Resources https://www.charlotte.edu/gateway/faculty-staff 

Housing and Residence Life  https://housing.charlotte.edu/ 

University Catalogs https://catalog.uncc.edu/preview_program.php?catoi

d=30&poid=8179 

Housing and Residence Life https://housing.charlotte.edu/housing-options/find-

your-home 

Undergraduate Admissions https://admissions.charlotte.edu/about-unc-

charlotte/university-profile 
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