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ABSTRACT 
 
As the COVID-19 pandemic continues, the SARS-CoV-2 virus continues to rapidly mutate and 
change in ways that impact virulence, transmissibility, and immune evasion. Genome sequencing 
is a critical tool, as other biological techniques can be more costly, time-consuming, and 
difficult. However, the rapid and complex evolution of SARS-CoV-2 challenges conventional 
sequence analysis methods like phylogenetic analysis. The virus picks up and loses mutations 
independently in multiple subclades, often in novel or unexpected combinations, and, as for the 
newly emerged Omicron variant, sometimes with long explained branches. We propose 
interpretable deep sequence models trained by machine learning to complement conventional 
methods. We apply Transformer-based neural network models developed for natural language 
processing to analyze protein sequences. We add network layers to generate sample embeddings 
and sequence-wide attention to interpret models and visualize multiscale patterns. We 
demonstrate and validate our framework by modeling SARS-CoV-2 and coronavirus taxonomy. 
We then develop an interpretable predictive model of disease severity that integrates SARS-
CoV-2 spike protein sequence and patient demographic variables, using publicly available data 
from the GISAID database. We also apply our model to Omicron. Based on knowledge prior to 
the availability of empirical data for Omicron, we predict: 1) reduced neutralization antibody 
activity (15-50 fold) greater than any previously characterized variant, varying between Omicron 
sublineages, and 2) reduced risk of severe disease (by 35-40%) relative to Delta. Both 
predictions are in accord with recent epidemiological and experimental data. 
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INTRODUCTION 
 
The emergence of the COVID-19 pandemic has coincided with the widespread availability of 
lower cost, rapid whole genome sequencing. While sequencing is still not as globally equitable 
or ubiquitous as it should be, an unprecedented amount of sequence data has been generated for 
SARS-CoV-2, the novel coronavirus that causes COVID-19. As of October 2021, when the data 
for most of the studies in this paper was collected, nearly 4 million sequences were available to 
researchers from the GISAID website (http://www.gisaid.org). [1] As of December 22, 2021, 
that number has grown to nearly 6.4 million sequences. The key challenge now is how to 
translate abundant biological sequence data to as much biological information as possible. This 
goal is particularly urgent as the virus continues to rapidly mutate and change, often in 
fundamental ways that affect disease severity and transmission—and experimental tools other 
than sequencing are costly, time-consuming, and often technically difficult to perform. 
 Conventional ways of interpreting large scale sequencing data rely on phylogenetic 
methods or sequence alignment and comparison to 1) group viral sequence variants into strains 
or lineages whose properties can be measured collectively, and 2) identify specific mutations 
with potential impact on virulence, transmission or immune escape. The quantity, diversity, and 
pace of changes in the SARS-CoV-2 genome as the pandemic has expanded—driven by its 
novelty to the human immune system and sheer number of infections worldwide—has strained 
conventional approaches to their limits. [2] While phylogenetic methods have been powerful 
tools to trace the transmission and origins of SARS-CoV-2, as the pandemic has expanded, the 
virus has picked up and lost mutations, often in novel or unexpected combinations. [3] When 
genetic lineages or subclades have reached a high level of fitness and spread around the globe, 
such as Alpha and Delta, complex sublineages have emerged which may have different immune 
evasion and virulence properties, sometimes sharing more in common with other genetic 
lineages than their parents.  And, because of the quantity and diversity of sequencing that has 
been done during the pandemic, we can see the complex genetic evolution of the virus in real 
time. Using alignment to identify single site mutations has also proven limited. Changes to 
SARS-CoV-2 properties can implicate complex combinations of multiple mutations that emerge 
simultaneously—and then sometimes even revert as the virus continues to evolve. [4] 
 We propose a framework of deep neural network sequence models as a complement to 
conventional comparative genomics techniques. In particular, we apply Transformer-based 
neural network models developed for the natural language processing field [5] to analyze protein 
sequences, by representing amino acids similarly to how language processing models represent 
words in a sentence. We further include layers in the neural network to generate spike protein 
embeddings and sequence-wide attention mapping in addition to making predictions. The 
embeddings and attention provide information that can be used to interpret how the model uses 
sequence information to make predictions, and to find deep patterns and connections within 
sequence that are relevant to the function of viral proteins. 
 In this paper, we demonstrate our interpretable deep modeling approach of the SARS-
CoV-2 spike protein, which is responsible for binding to host cell receptors and mediating and 
cell entry, and which is a major target for host immune response. [6] While we focus on SARS-
CoV-2 and the spike protein in this paper, the model architecture we develop can be flexibly 
adapted to other biological sequence problems. Indeed, we show that within the SARS-CoV-2 
spike protein context, where the sequence length remains approximately constant, we can train 
the model on diverse classification and regression tasks without changing the model architecture 
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or going through costly hyperparameter tuning exercises. These tasks include: (i) regression of 
sequence data to the date of a sequence’s first emergence, as a way to qualitatively validate the 
significance of the embedding and attention-based interpretations generated by our model; (ii) 
predicting disease severity of sequences by using patient metadata available for a subset of 
sequences in the GISAID databases and using attention to identify mutations that may be related 
to heightened risks of severe disease; and (iii) demonstrating the flexibility of our approach by 
applying it to genus-level classification of coronavirus spike proteins. 
 While this manuscript was being finalized, a new SARS-CoV-2 lineage, B.1.529, was 
identified as a variant of concern by WHO and named Omicron. First reported on November 25, 
2021 from sequences in Southern Africa, the Omicron variant has exhibited rapid growth around 
the world. [7] Because we did not consider any sequence data in GISAID after October 2021, the 
other studies in this paper entirely excluded Omicron sequences. Omicron also contains 
numerous spike protein mutations. [8], [9] Given that many of these mutations are in the spike 
protein’s receptor binding domain, it raises important questions about Omicron’s ability to evade 
the immune response in previously infected and vaccinated patients, as well as infectivity and 
virulence. Consequently, Omicron is a critical challenge for our modeling approach. The 
Omicron variant has different sequence properties from other variants found before its 
emergence, so it differs significantly from the data used to train the neural network model.  We 
demonstrate that the model can be used to make computational predictions before any empirical 
data emerges, specifically by predicting Omicron’s immune evasion and relative risk of disease 
severity as compared to Delta and Alpha. This proof of concept shows the potential for a 
predictive computational model that can provide a starting point for epidemiological guidance 
before health observations and laboratory data are collected. 
 
2. BACKGROUND & RELATED WORK 
 
Evolution of Coronavirus lineages and the SARS-CoV-2 spike protein 
 We focus on the spike protein because of its crucial role in COVID-19 infection and the 
immune response. [6], [10], [11] As a practical matter, moreover, the spike protein is the key 
target for COVID-19 vaccines and antibody therapies. [12]–[14] Briefly, the SARS-CoV-2 spike 
protein (S) is a glycoprotein that is responsible for binding to the host cell receptor, angiotensin-
converting enzyme 2 (ACE2) and then gaining entry to the cell. [6] The spike protein is 
responsible for cell membrane entry in all coronavirus species. Generally, the spike proteins of 
coronaviruses have two subunits, S1, which is responsible for binding to the receptor, and S2, for 
membrane fusion. [15] The sequence of the SARS-CoV-2 spike protein is similar to that of 
SARS-CoV-1 (76% identity), and more than 90% identity with bat and pangolin coronavirus 
species, which may suggest its origin in those animals. [6] Notably, even when the spike protein 
binds the same receptor (e.g., ACE2 in the case of SARS-CoV-1 and SARS-CoV-2) there are 
differences in antigenicity and epitopes. [16] Collectively, there are four genuses of coronavirus, 
Alphacoronvirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus. The coronavirus 
species known to infect humans are all betacoronaviruses, but lie in different subgenuses: SARS-
CoV-1 and SARS-CoV-2; MERS-CoV; and HCoV-229E, HCoV-OC43, and HKU-1 
respectively; the last pair of which generally cause mild disease. [17] Coronavirus spike proteins 
bind a variety of different receptors. [18] Indeed, in addition to ACE2, SARS-CoV-1 also binds 
dipeptidyl peptidase 4 (DPP4); however, SARS-CoV-2’s spike protein only weakly binds DPP4 
and there is no evidence that it uses it as a host cell receptor. [19] Other differences in spike 
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protein sequence can influence how the coronavirus interacts with the host cell as well. For 
example, unlike its closer genetic relatives, SARS-CoV-2 spike has a furin cleavage site, which 
is used to prime for cell entry. [20] In sum, relatively small differences in spike protein sequence 
can have substantial effects on the protein structure and function. 
 As the COVID-19 pandemic has continued, the SARS-CoV-2 spike protein itself has 
accumulated mutations, and variant protein sequences have emerged. As it is a RNA virus, 
SARS-CoV-2’s genome is prone to mutate, albeit at a rate is mitigated by its large genome size 
and the proofreading function of the exoribonuclease that it encodes. [21] The most frequent 
mutations observed in coronaviruses more generally are substitutions, although insertions and 
deletions are observed as well. [22] In some cases, insertions from other viral genomes may 
occur, and, in fact, it appears as though the SARS-CoV-2 genome includes an insertion from 
human RNA. [23] In other human coronaviruses, estimated mutation rate is around 
3 × 10− 4 substitutions per site per year. [24], [25] Early on in the pandemic, spike protein 
sequence variants began to be observed, such as a substitution D614G, which rapidly became 
dominant as the pandemic began to spread within Europe. [26], [27]  Since then, the amount of 
mutation observed during the COVID-19 pandemic has been more substantial, perhaps because 
it is a novel virus exposed to hosts around the world. [28] We have seen that SARS-CoV-2 
variants can have critical differences in the level of virulence, pathogenicity, immune evasion 
(with implications for therapeutic antibodies and vaccine efficacy), and transmissibility. [2] 
 Because of its critical role in antigenicity and cell entry, changes in the spike protein 
sequence can be particularly impactful. And the SARS-CoV-2 spike protein will continue to 
change. Even before the emergence of the novel coronavirus, it was shown that in another human 
coronavirus, HCoV-OC43, the spike gene had a higher rate of substitution and positive selection 
sites than other genes. [29] This suggests that genetic drift in the spike gene plays a role in 
adaptive evolution of HCoV-OC43 and likely also other coronaviruses, given that the spike 
protein is the major antigen recognized by the immune response. Indeed, one paper published in 
July 2021 estimated that, to that point, SARS-CoV-2 had only “explored” 31% of the potential 
space for spike protein variation, based on comparisons with related sarbecoviruses. [30] 
 Initial work on the impact of spike protein variants focused on the D614G substitution in 
the spike protein, which was found in an animal model to have an increase in fitness and 
transmissibility. [31] However, as other studies accumulated, it proved difficult to show a clear 
impact on virulence or transmissibility, although clinical samples with the variant were found to 
have higher virus titers. [32] The wide spread of the Alpha (B.1.1.7) variant starting in December 
2020 did suggest that it had an increase in transmissibility over wild type and previous variants 
[33], although it is unclear that it resulted in more severe disease. [34]–[37] The later Delta 
(B.1.617.2) variant, however, has had a clear-cut increase in transmissibility supported by both 
epidemiological estimates [38] and laboratory studies that show increased fitness over previous 
variants, including enhanced viral replication due to modification in the furin cleavage site of the 
spike protein. [39], [40] Epidemiology and cell/animal-model work has been complemented by 
computational and in vitro work mapping the impact of individual mutations on spike protein 
structure, fitness, and antibody evasion. [41], [42] One area in which intensive study of the effect 
of variants has been undertaken is in studies of potential impact on vaccine efficacy. Particular 
variants, such as the Beta (B.1.351) variant once dominant in South Africa, have consistently 
shown substantial decreases in neutralizing antibody response in sera from individuals 
vaccinated with diverse adenoviral vector, mRNA, and recombinant protein subunit vaccines. 
[43]–[48] This has been paralleled by reduced efficacy in clinical trials and studies among 
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patients with sequenced variants and in South Africa. [49], [50] Moderately reduced neutralizing 
antibody response was also found for the Delta (B.1.617.2) variant, which became dominant 
worldwide through 2021. However, the impact of vaccine efficacy turned out to be 
proportionately greater, perhaps due to Delta’s increased replication proficiency. [40], [51] These 
differences in vaccine efficacy are consistent with experiments which show that the principal 
SARS-CoV-2 variants observed so far, including Alpha, Beta, and Gamma, are antigenically 
distinct; in particular, that convalescent sera from patients infected with one of these variants 
shows the smallest reduction in neutralizing antibody to the wild type of the virus and greater 
reductions to other variants. [52] 
 Fortunately, widespread genetic sequencing has allowed for an unprecedented view into 
changes in the SARS-CoV-2 genome over time and in different regions. [53], [54] Over five 
million sequences are now available in the GISAID (Global Initiative on Sharing All Influenza 
Data) database (http://www.gisaid.org), which has encouraged data sharing by trading 
restrictions on republishing raw sequence information with access to that information for 
analysis. [55] So much data has been generated and made available that it has spurred the 
development of computational tools for high frequency tracking [56] and even daily updates. 
[57] The first prominent tool for tracking SARS-CoV-2 genomic variation was the NextStrain 
project, which was originally developed as a general tool for viruses and adapted to offer clade 
definitions for SARS-CoV-2 based on phylogenetic analysis. [58] Subsequently, the Pango 
lineage (Pangolin) definition of lineages was developed, with an emphasis on highlighting 
potentially significant lineages that would be grouped together, supported by a machine learning 
approach (using random forests) to classify sequences to lineages. [59] Particularly significant 
Pango lineages have been identified by the World Health Organization (WHO) as variants of 
concern (VOC) and given Greek letter designations [60], such as Alpha (B.1.1.7), Beta 
(B.1.351), Delta (B.1.167.2), and, recently, Omicron (B.1.1.529).  
 Being able to leverage the sheer volume of available data has proven to be a challenge. 
Some have questioned whether the current methods of classifying variants is sustainable as so 
many have emerged. [2] One drawback for tree-based approaches to classification is that 
particular variants may occur independently in different lineages, as has been observed, for 
example, in the N501Y substitution which has arisen in multiple clades (without any evidence 
for recombination). [61] Another challenge for a phylogenetic approach is that multiple variants 
may occur within an individual infection. [62] Some immunocompromised individuals have 
chronic infections that can last six months to a year  [63] In some cases, those patients may be 
treated with convalescent plasma or antibodies which may be selecting for evasive mutations that 
are being observed. [64] During the long-term infection, a spike protein can emerge with 
multiple variations, which phylogenetic analysis identifies as “long branch” divergence from the 
phylogenetic tree. Indeed, the Omicron variant has such a long branch divergence, which has led 
to suggestions that it may have emerged in an immunocompromised host, or even potentially 
reverse zoonosis given that COVID-19 can infect animals as well. [9] 
 The challenges that SARS-CoV-2 evolution pose to conventional computational methods 
have motivated the development of alternatives based on bar-coding [65], co-mutational modules 
[66], and k-mer abundance [67]. However, even these methods may be unsustainable as they are 
based on historical information, even as phylogeny-based classifications become more chaotic. 
[68] Further complicating the problem is that combinations of variants can have nonlinear 
effects, either synergistic, antagonistic, or neither. In one study of antibody responses in 
convalescent plasma from recovered patients and sera from vaccinated but uninfected 
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individuals, it was found that a simultaneous deletion at sites 69-70 (∆H69/V70) as well as 
substitution E484K had enhanced decrease in antibody neutralization. Conversely, L452R and 
P681R resulted in a decreased neutralization less than the effect of both individually. Another 
pair, E484K and N501Y, resulted in a neutralization decrease that was the sum of each. [69]  
 
Deep Learning’s potential and pitfalls in predicting outcome and evolution of SARS-CoV-2 
 Within the more than five million sequences uploaded to GISAID, a small fraction 
(nearly 220,000 of over 5,500,000 sequences as of November 27, 2021) have some metadata 
about the clinical status of patients. Such metadata can include whether the sample comes from 
someone who is alive or dead, whether they were in the ICU or had mild or severe disease, etc. 
Generally, only one piece of information (such as “alive” or “dead,” or “mild” or “severe”) is 
conveyed through the metadata annotation. The GISAID dataset and focused patient studies 
(which are often the source of the data available on GISAID) have enabled researchers to study 
the potential link between sequence variation and virulence. These studies have included analysis 
of single nucleotide polymorphisms (SNP) and genome wide association studies [70], [71], 
literature meta-analysis [72], genome wide association studies [73], and the incidence and 
prevalence of mutations in GISAID entries with clinical metadata [74], [75]. The results of these 
studies found some correlation of symptomatic or severe disease with spike variants such as 
D614G, however, none of these have been verified elsewhere. However, another analysis of 
country-based case fatality rates (CFR) found no relationship between mortality and clade, at 
least through March 2021. [75] To the extent that patient status in GISAID metadata does show 
variation, other studies using logistic regression and conventional statistical techniques found it 
to largely reflect worse outcomes for older males, consistent with commonly understood clinical 
experience, while it was difficult to discern variation at the clade or sequence levels. [76], [77] 
Other more complex analysis has included the use of deep neural networks, in particular, a 
combination of convolutional neural network (CNN) and recurrent neural network (RNN), which 
attempted to predict what mutations would increase virulence severity based on countrywide 
death statistics. [78] Another approach that has been developed and recently validated is the use 
of Bayesian multinomial logistic regression to infer growth rate from individual mutations; from 
that, the authors posited that the mutations correlated with high growth rate also conferred fitness 
and transmissibility benefits. [79] 
 The complexity and volume of sequencing data have motivated the application of deep 
learning methods based on applying natural language processing (NLP) methods to DNA and 
protein sequence data. These works exploit the analogy between the semantic structure of 
language and the bases and amino acids that make up nucleotide and protein sequences. For 
example, one group has used concepts from semantic processing, e.g., the frequency of 
correlated words, to identify potential mutagenic sites in viruses including SARS-CoV-2. [80] A 
related work has used deep learning methods to simulate coronavirus spike protein variation to 
predict potential zoonotic sequences. [81] Another group has applied “ProtBERT” protein 
sequence embeddings obtained through self-supervised learning applying the BERT 
(Bidirectional Encoder Representations from Transformers) method from NLP to SARS-CoV-2 
in combination with k-means clustering to identify groups of correlated mutations. [82] Another 
work applied Long-Short Term Memory RNNs (LSTM) to classify sequences to lineages. [83] 
 While deep learning methods can identify complex features within data that allow 
classification, that strength comes with a major weakness: understanding what the deep model 
focused on in learning the classification and explaining its predictions. Accordingly, 
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interpretable machine learning has emerged as a significant area of research. [84], [85] 
Interpretable modeling is a critical need in biological sequence analysis. [86], [87] Interpretable 
modeling allows us the biomedical community to justify high stakes clinical and research 
decisions based on machine learning predictions. Interpretable models also allow researchers to 
leverage data to obtain as much understanding as possible, given that other biological techniques 
are often costly, slow, and hard to do reliably. Proposed methods for interpretable machine 
learning include examining the neural network structure, through relevance propagation, 
propagating activation differences through the network, and sensitivity analysis methods. [88], 
[89] Integrated gradients have been used in bioinformatics for developing models for RNA 
splicing. [90] For CNN-based models, a saliency map method has been proposed for identifying 
what part of a sample (image, or text) was identified as an important feature by the model. [91] 
 In view of the analogy between biological sequence and written language, we can also 
look to methods developed for NLP. In particular, attention mechanisms developed by [92] and 
[93] have been used to highlight the important features that deep learning methods used to 
generate text classification models. [94]–[96] Deep learning models combining CNN with 
attention have been used to identify sequence motifs for functional genomics, e.g., transcription 
factor binding site detection. [97], [98] Another work generated predictive models of adverse 
drug reactions based on chemical structures by combining attention with a CNN for each 
chemical property and structural feature in the model. [99] We have shown that attention in 
combination with a LSTM-based sequence model can be used to obtain insight into taxonomic 
and phenotypic classification of 16s ribosomal RNA sequences of bacteria [100], as well as gene 
ontology classifications of protein sequences [101]. Recently, transformer-based architectures, 
which are built on multiple attention modules, have emerged as being important in NLP. The 
attention within transformers has been proposed as a source of explainability. For example one 
work demonstrated how different attention heads attended to different aspects of a learning task 
to identify nucleotide motifs for promoter sequences. [102] However, attention cannot be 
inherently drawn out of transformer-based architectures, and it has been suggested that further 
processing steps may be required to connect attention to specific linguistic features. [103] It 
should further be noted that attention is not necessarily tied to explanation, in the sense of 
explaining why a prediction took place, but it can highlight features that the model paid attention 
to at the attention layer making a prediction, although those may not have been the important 
features with respect to the ultimate classification problem. [104]  
 
METHODS 
 
Data Collection and Pre-Processing 
 As described further in the Results & Discussion section, the studies shown in this paper 
employ three different kinds of coronavirus spike protein sequences: SARS-CoV-2 spike protein 
sequences submitted to the GISAID database through the course of the pandemic, protein 
sequences which were provided to GISAID with patient metadata information specifically, and 
protein sequences from coronavirus of all genera. The procedures for collecting and processing 
sequence data are outlined for each type below in turn. 
 SARS-CoV-2 Spike Protein Sequences. 
 We downloaded a FASTA file of protein sequences from the GISAID database, 
http://www.gisaid.org.  (See Supplemental File and  for a list of acknowledgments to 
contributing laboratories.) The spike protein sequences are preprocessed by GISAID by multiple 
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sequencing alignment, identifying ORFs, and translating nucleotide sequences to obtain protein 
FASTA files. We then parse the FASTA file to obtain a file with only the Spike protein 
sequences. (GISAID also offers a FASTA file of only Spike protein sequences; however, that 
was not used for this paper.) Unless indicated otherwise, the protein sequences we use for our 
analyses shown are those submitted and preprocessed by GISAID as of October 16, 2021. The 
metadata annotation file from GISAID including sequences collected and processed as of 
October 1, 2021 was also downloaded from the GISAID website. This metadata file included the 
collection date, annotated Pangolin lineage, Nextstrain-identified clade, and geographical 
information. 
 In this paper, we at times refer to “raw” and “aligned” sequences. “Raw” sequences are 
exactly those that were contained in the FASTA file downloaded from GISAID. “Aligned” 
sequences are generated using the local pairwise Striped Smith-Waterman (SSW) method [105], 
[106], with BLOSUM62, in the scikit-bio package in Python 3.8. [106] Following alignment, we 
obtain a protein sequence in which all insertions and deletions are positioned with respect to the 
consensus Spike reference sequence (Wuhan-Hu-1 isolate) which was obtained by multiple 
sequence alignment of early genome sequences. [107] Variant single site polymorphisms can 
then be identified in accord with convention. First, the sites in the aligned data sequence 
corresponding to a gap in the aligned reference sequence were shifted such that any insertion was 
relative to the reference. Aligned sequences are then padded at the beginning and end of the 
aligned region (if it was less than the 1273 residue length of the reference sequence) with a mask 
(“*”) to formulate a 1273-residue long sequence. While we generally did not do so for the 
studies presented in this paper, it is also possible to “filter” aligned sequence data by removing 
any sequences containing any “*” (mask) or “X” (ambiguous amino acid) characters. We provide 
the source code for the alignment and processing of aligned sequences at 
https://github.com/bahrad/Covid. 
 GISAID sequences containing patient (clinical) status metadata. 
 Our analysis considers sequences for which patient metadata were available on GISAID 
as of October 4, 2021. These sequences are downloaded in batches from the GISAID website 
and combined into a single CSV file of patient data. As of that date, there were 155,545 records 
indicated as having “patient metadata” available from GISAID. Patient metadata on GISAID 
consists of a single field, which includes some text provided by the submitter of the sequence. 
We assign raw text in the metadata field of each record to one of the following categories, 
according to the scheme in Supplemental Table 1: Alive, Asymptomatic, Dead, Hospitalized, 
Mild, Moderate, Released, Screening, Severe, Symptomatic, and Unknown (which includes any 
other categories identified in Supplementarl Table 1, such as “Vaccinated”). These categories 
follow the commonly used case classification such as those defined by the United States National 
Institutes for Health (NIH) COVID-19 guidelines. [108] For example, metadata indicating ICU 
admission is categorized as “Severe.” We remove all data that corresponding to categories Alive, 
Symptomatic, and Unknown, as they cannot be further classified as “Mild” or “Severe.” For 
example, a “Symptomatic” or “Alive” patient may have severe symptoms or have been 
hospitalized. We assign the following categories to the classification of “Mild,” or the numerical 
value of 0: Asymptomatic, Mild, Moderate, and Screening. We assume that the last category was 
not identified as a result of reporting symptoms or at least seeking hospitalization due to Covid 
symptoms as opposed to incidental to another condition). We assign the following categories to 
“Severe,” or numerical value of 1: Dead, Severe, Hospitalized, and Released. The last category 
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indicates prior hospitalization. Finally, we also remove all samples which are not explicitly 
identified as being from a human patient, as identified in GISAID’s host metadata field. 
 The resulting metadata records are then merged with the aligned sequence data set 
obtained from GISAID, preprocessed as described above. The training data set is made up of 
samples that were submitted and processed in time to be available as of September 12, 2021, as 
well as having patient metadata available as of that date. The samples used in the training data 
set are those with sequences that were found at least five times overall in the sequence data prior 
to September 12, 2021. The remaining samples that were found in the October 1, 2021 dataset 
from GISAID that had patient metadata available as of October 4, 2021 make up an independent 
validation set. This data set includes that were collected after October 1 and contain sequences 
that were not found at least five times prior to September 12. As a result of the aforementioned 
procedure, there is no exact sequence overlap between training and test samples. 
 As further described in the Results & Discussion, it is necessary to account for potential 
confounders of age, gender, and sample collection date relative to the onset of the pandemic. We 
therefore process the age metadata to remove any unknowns or text entries which cannot be 
identified as an age. We also remove any samples with a clearly incorrect date, i.e., predating the 
onset of the pandemic in late 2019, and any samples with missing or nonreadable date metadata. 
We also convert the dates to days since December 1, 2019, which predates the first sequenced 
samples from COVID-19 patients.  For gender, we convert male and female metadata to integers 
0 and 1 respectively, and we remove all samples with unknown or ambiguous gender metadata. 
Finally, each sample is associated with a vector of three integers, corresponding to age, gender, 
and sample date, which is input to our neural network model at the NH-dimensional embedding 
layer as shown in Fig. 1. We do not remove samples with incomplete dates, instead we assign 
them to the latest possible date. 
 Taxonomic classification of multi-species spike protein sequences.  
 For the study of taxonomic classification of coronaviruses across all genera (Alpha-, 
Beta-, Gamma-, and Deltacoronavirus), we use spike protein sequences downloaded from the 
NCBI Virus website, https://www.ncbi.nlm.nih.gov/labs/virus/vssi/. The spike protein sequences 
used in this study were downloaded on November 21 and 27, 2021 using search terms such as 
“spike,” “S1 protein”, “S2 protein,” and “S protein,” in order to download as many spike protein 
sequences as possible. Sequences that are shorter than 1000 amino acids in length or which did 
not have coronavirus as an identified species are then removed. Additionally, in order to make 
the SARS-CoV-2 classification task less trivial, we removed the sequences that are known to 
have the closest matches to SARS-CoV-2 spike protein, which are SARS-like sequences, such as 
the WIV-1 bat coronavirus, any recombinant viruses that were generated to research SARS-
CoV-2, and sequences identified being from “SARS-like” viruses in the database. In sum, 18,026 
sequences are downloaded from NCBI, and, after removals, the resulting data set consists of 
7,544 sequences. 
 To evaluate the taxonomic classifier, we use three data sets: 1) a random sample of 
100,000 of the over 3 million raw spike sequences obtained from GISAID as described above, 2) 
all of the raw spike sequences with a length shorter than 1000 amino acids, and 3) all raw 
sequences with more than 250 “X” residue sites, where a unique amino acid could not be 
identified. 
 Predicting the Omicron variant’s capacity to escape immune/vaccine response. 
 For Omicron, we develop a training data set based on the reduction in neutralizing 
antibody titers to variant viruses in sera from vaccinated patients as presented in the literature, as 
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shown in Table 1. [109]–[113] As described further in the Results & Discussion section, we 
needed to integrate data from multiple studies, which may involve different experimental 
conditions such as whether they used native virus or pseudovirus (e.g., HIV-1 engineered to 
express spike proteins with a particular variant sequence) and what kinds of vaccinated sera were 
compared. Where possible, we used data based on reductions of neutralizing antibodies for sera 
from patients vaccinated with the Pfizer/BioNTech BNT162b2. We use the aligned data set 
described above to source the training data set. We include sequences that are annotated with the 
lineages for which there is information in Table 1 and assign them as a label the relative 
neutralizing antibody activity from Table 1. We remove all sequences that occur fewer than 3 
times in the database overall, and then compose the training data set based on up to the 300 most 
frequently occurring sequences for each of the labels. The result is a training data set of 2,245 
samples. We then balance classes to account for those labels which have fewer than 300 
representatives using class_weight.compute_class_weight in scikit-learn (sklearn) version 
1.01, which obtains the weights of samples in a class by dividing the average number of samples 
in each of all classes by the number of samples in that class. [114] 
 
Table 1. Training data used for model prediction of Omicron immune evasion. Sequences 
with the lineages indicated in the table are assigned the label of the reciprocal of the 
corresponding fold decrease in antibody neutralization. (See citations in accompanying 
text.) Where there is a WHO-identified variant of concern, the variant identity is provided. 
B.1 is the first variant to become widespread, arising from the wild type emerging from 
Asia and spreading throughout Europe and North America. It is largely the same as the 
wild type, with the D614G modification as most important. Delta-like lineages B.1.617.1 
and B.1.617.2+ are included as well; B.1.617.2+ is sometimes called “Delta+” (although 
other lineages have been called that as well). [115] In this study, B.1.617.2+ are sequences 
annotated as B.1.617.2 but which also include the E484K mutation. 
 

Lineage (Variant) –Fold decrease in Ab 
neutralization 

B.1 1 
B.1.1.7 (Alpha) 2.3 
B.1.351 (Beta) 8.8 
P.1 (Gamma) 2.9 
B.1.617.2 (Delta) 3.8 
B.1.427 / B.1429 (Epsilon) 2.1 
C.37 (Lambda) 3.4 
B.1.621 (Mu) 13.3 
B.1.617.1 5.35 
B.1.617.2+ (Delta + E484K) 9.5 

 
 To obtain Omicron sequences for immune prediction, we download Spike sequences 
from a composite FASTA file of the whole genome nucleotide sequence of sequences available 
on GISAID and identified with a “B.1.1.529” Pangolin lineage, has been identified as the 
Omicron variant of concern by WHO. (By the time of submission of this paper, additional 
lineages have been differentiated but also identified as Omicron, and it is now possible to 
identify all Omicron sequences in the database.) The Spike gene nucleotide sequence from the 
annotated NCBI Reference Sequence (GenBank record NC-045512) is available for download 
from NCBI at https://www.ncbi.nlm.nih.gov/sars-cov-2/. [116] We perform pairwise alignments 
between each individual Omicron nucleotide sequence with the Spike nucleotide sequence from 
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the reference genome [107] using the local pairwise Striped Smith-Waterman (SSW) method as 
described above (but with nucleotide rather than amino acid sequence). The region of best 
alignment sequence can then be translated. We exclude any alignment that produced degenerate 
sequences (i.e., which would include an “X” or other ambiguous amino acid character upon 
translation). Each resulting Omicron Spike protein sequence is then processed in the same 
manner as the “aligned” sequences described above, resulting in sequence in which all indels are 
positioned with respect to the reference protein. A Python (Google Colab) notebook including 
the preprocessing steps performed for Omicron variant sequence data is available for download 
at https://github.com/bahrad/Covid/blob/main/Covid_Predict_Omicron_Resistance.ipynb. 
 
Model Architecture 
 Fig. 1 shows an overview of our deep neural network model architecture. In this paper, 
the input is a protein sequence of length 1273 where we are analyzing exclusively SARS-CoV-2 
sequences, when we analyze multiple coronavirus species we set the length at 1500 and pad or 
truncate input sequences. We tokenize each amino acid, and the deletion symbol “-”, to a distinct 
nonzero integer. We assign a to a nonzero integer as well. A position with the symbol “*”, which 
was padded as part of the alignment process described above, is assigned a zero token. Likewise, 
ambiguous amino acids with symbols X, B, J, or Z are assigned to zero. All positions with a 
token value of zero are masked. The token sequence is then transformed a matrix of embeddings 
of each token in the input sequence, in which the embedding includes both the token and its 
positional information. The embedding begins with a random initialization, and its parameters 
are then allowed to learn during the learning task. 
 

 
 
Figure 1. Neural network architecture used in this paper. The sequence of length L is given a token and position 
embedding, which is then compressed using a CNN layer with Nc filters prior to going to a multi-head attention 
Transformer encoder. The encoder output is then processed by a self-attention layer, which allows for visualization of 
attention along the L-length sequence. The output of the attention layer is then optionally concatenated with additional 
variables encoded in nonzero integers, i.e., demographic variables as shown here, and input to a densely connected 
layer with NH nodes. A resulting "embedding" of the sequence may be visualized at this stage, which will be a vector 
of (usually) NH << L dimensions. Finally, the prediction is provided by either a clipped linear or sigmoid node (for 
regression), a sigmoid node (for binary classification), or a softmax (for multiclass classification). 
 
 We employ a transformer architecture for sequence encoding, which was first described 
in developing an encoder-decoder architecture for machine translation of text. [117] The 
transformer architecture is a modular multi-head structure, in which each head consists of an 
attention layer and feed forward neural network, wherein the head outputs are added and 
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normalized to provide a sequence encoding. [117] The token and position embedding dimension 
(NE) that we use are large, because the sequence lengths are either 1273 or 1500 and the 
embedding for transformer-based architectures includes positional as well as token information. 
Consequently, we use a convolutional neural network (CNN) layer with a kernel width of 1 and 
NC filters before the transformer as a way to reduce the required size of the transformer heads in 
order to allow us to load our model on a single processing unit for efficient computation.  
 We then use the encoded sequences to do classification or regression, depending on the 
learning task. We add two layers which assist in classification but also allow us to visualize, and 
potentially interpret the models that we train. The first is a self-attention layer following the 
structure inspired by [96] and which we utilized in [100] in conjunction with a Bidirectional 
Long Short Term Memory (Bi-LSTM) encoder. Here, we apply this structure to be able to 
readily access sequence-level classification, since the attention heads cannot individually, nor in 
sum, provide full attention visualization across the sequence (see, e.g., [103]). The second is an 
intermediate NH-dimension densely connected layer, which can project an NH-dimensional 
embedding of the sequence as a whole. In our studies of patient status metadata classification, we 
allow for the input of integer-valued demographic variables to the NH-dimensional embedding 
layer. As explained above, we use integers for age and sample collection date, and a 0/1 value for 
gender. These embeddings are then fed to an output layer. The output layer can be either of the 
following: (1) A single node with sigmoid activation for either binary patient clinical status 
classification or the regression used to predict the Omicron variant’s reduction in neutralizing 
antibody activity. (2) A clipped linear output restricted between 0 and 1 for regression to sample 
date. (3) A softmax layer with four nodes for the coronavirus genus-level taxonomic classifier. 
 For the studies shown herein, we sought to use the same hyperparameters across all 
models, as the input data was of the same form: approximately the same length (1273 or 1500) of 
tokenized amino acids. We employ 8 heads, a feedforward network (FFN) of 64 dimensions, and 
a dropout of 0.1 for the transformer layer. While differences were not substantial, this was the 
optimal combination of values we found for a cross-validation of the training data used for the 
patient metadata study. To confirm, we evaluated combinations of varying the number of heads 
between 4, 6, and 8; the number of nodes in the FFN were set at 32, 64, and 96 nodes; 
transformer dropout between 0.0, 0.1, and 0.2; NC of the CNN at 300, 400, and 500; NH at 64 or 
128; and NE of 1000, 1200, 1500, and 1800. We also found that varying parameters did not result 
in a substantial difference in model predictions in the other classification and regression tasks 
shown in this paper. Model training was done using the standard Adam gradient descent fitting 
algorithm in Tensorflow 2, with binary cross-entropy and mean squared error as the loss 
functions for classification and regression tasks respectively. The learning rate parameter set at 1 
´ 10-4, after evaluating rates of 5 ´ 10-6, 1 ´ 10-5, 1 ´ 10-3, 5 ´ 10-3, 1 ´ 10-2, and 1 ´ 10-1. 
 We select the number of epochs for training based on our observation that, in general,  
the number of epochs required for classification tasks is much lower than that for regression 
tasks. In the case of binary classification for patient metadata, we train for 75 epochs, after 
evaluating epoch ranges from 50 to 200. We do not use early stopping with a validation set, as 
found that reduces the training data and causes underfitting, and instead early stopping is set at 
20 epochs with no net change in the binary cross-entropy loss. For the regression to sample date 
task, we set the limit at 600 epochs, with an early stopping time set at 200 epochs. For the 
taxonomic classification task, we train for 25 epochs, with an early stopping condition set based 
on no change in the loss of a validation set, randomly selected from 20% of the samples in the 
training data, for at least 5 epochs. Finally, for the Omicron immune evasion prediction task, we 
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set the maximum number of epochs at 200, employing early stopping after 10 epochs in which 
the mean squared error loss of a random 10% of training samples no longer declines. For all of 
the neural network training tasks, we used multiple runs to evaluate run-to-run consistency given 
the randomization of initial weights and other inherent randomization of training. 
  As further described in the Results & Discussion, we also benchmarked the transformer-
based model against eXtreme Gradient Boosting (XGBoost), a decision tree-based ensemble 
learning method [118]. For XGBoost, after hypertuning, the following parameter values were 
used for XGBoost: subsample rate of 0.8, lambda regularization of 1.0, maximum depth of 10, 
learning rate of 0.001, gamma of 0.0, column sample by tree of 0.8, and the GPU-optimized 
predictor. XGBoost is implemented using the Python package in xgboost 1.5.1 in the Google 
Colab GPU runtime environment. Because XGBoost results may also change due to 
randomization, we evaluate the run-to-run consistency of XBoost under different random number 
generator seeds. We generally found that the results shown in this paper were consistent with 
negligible standard deviation between runs on the same data and with the same parameters. 
 For the purposes of model analysis and interpretation, we look at two scales: First, 
attention, which shows where the model attends along the sequence (i.e., amino acid position in 
a protein sequence) and can identify patterns at the sequence level. [100], [101] Second, 
embeddings, in which the NH-dimensional encoding of a sequence at the layer shown in Fig. 1 
(see above) is obtained for a trained model, and then the embeddings of a group of sequences 
post-training are visualized or clustered to find patterns at the group level. [119] We have 
previously shown that, for example, we can reveal underlying taxonomic categorization when we 
visualize the embeddings of 16s rRNA sequences from a model that has been trained to identify 
disease status. [100] 
 
Implementation 
 Model training was done using the standard model fitting algorithm provided by the 
Keras API on top of Tensorflow 2, with.  The hardware used for neural network model training 
and evaluation, as well as the data pre-processing described above, consists of Nvidia Tesla P80 
GPUs (primarily) and Google Cloud Tensor Processor Units (TPUs) the Google’s Colab 
environment, running Tensorflow 2.70 and Python 3.7.12, and Nvidia Tesla V100-SXM2 GPUs 
on the Drexel University Research Computing Facility (URCF), running Tensorflow 2.4 and 
Python 3.8. Because model hyperparameters were not varied between tasks, training times per 
epoch are a function of the training data set size across all tasks and whether we used a TPU or 
GPU for training. For example, patient metadata classification trains on 44,003 samples, which 
requires 51 sec/epoch in the Google TPU environment had 51 sec/epoch, while on a GPU unit in 
the URCF, the time per epoch was 480 seconds, representing a 9.2-fold TPU-speedup. By 
contrast, the model to predict Omicron neutralizing antibody activity classification trains on 
2,245 samples, and it requires 4 sec/epoch on the Google TPU.  
 
RESULTS & DISCUSSION 
 
Regression Based on Sample Collection Date 
 To validate the interpretability of our deep sequence modeling approach, we demonstrate 
that embeddings and attention can be used to visualize the results of our model’s training in an 
exemplary machine learning task. Here, we show the results of regression to the sample 
collection date of sequences in a database of raw, unprocessed spike protein sequences available 
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on GISAID as of October 1, 2021. For this task, we analyze the earliest sample collection date 
included in the GISAID database for each distinct sequence in the data set. The training data set 
consists of sequences that are found more than four times in the database. The validation set 
consists of sequences found only two or three times in the database. Notably, some sequences are 
found very frequently, such as certain sequences in the B.1.1.7 (Alpha) and B.1.617.2 (Delta) 
lineages. For the purpose of this task, these sequences are included once and weighted equally to 
other sequences. Trivially, the regression should “predict” that a sequence will have appeared at 
the same time as others within the same lineages, as the lineages are defined based on sequence 
similarities at particular sites with the SARS-CoV-2 genome. In particular, the lineages, 
following the Pango scheme [59] are based in large part on changes in the spike protein 
sequence, which should be reflected in our model, which is trained on spike protein sequence 
data. Accordingly, trends we see in the embedding and attention should reflect the classification. 
 As an initial matter, we confirmed that the trained model’s error in the prediction data set 
were within a reasonable error margin. To do so, we normalized the square root of the mean 
squared prediction error (RMSE) on validation set data by the RMSE of simply predicting each 
label with the overall mean value of all labels. We found that the RMSE of the trained model 
was 0.0962 and normalized RMSE was 0.534. By comparison, the normalized RMSE on the 
training data set was found to be 0.37. Therefore, while the RMSE increased when generalizing 
the model to the validation set, it remained significantly below 1.0, indicating that the model was 
predicting significantly better than chance. 
 

 
Figure 2. Plot of a two-component t-SNE analysis (with perplexity of 50) for the 64-dimensional embeddings 
of raw spike protein sequence data following a prediction task for the date of first sample collection (in days 
since December 1, 2019) of a particular sequence. The training data consisted of sequences found 4 or more 
times in the global data set (all spike protein sequences available on GISAID as of October 1, 2021), and the 
validation data shown here consists only of raw, unprocessed spike sequences found 2 or 3 times in the global 
data set. The lineages shown in this plot are provided in the legend and consist of the ancestral lineage (A), 
as well as as variants of concern and interest including Alpha (B.1.1.7), Beta (B.1.35.1), Iota (B.1.526), 
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Gamma (P.1), Epsilon (B.1.427/429) and Delta (B.1.617.2), and AY.4, a Delta sublineage. Many lineages 
can be clustered with the embeddings; Delta and the AY.4 Delta sublineages cluster into a large but well 
separated group, while Alpha is spread out. 
 
 Fig. 2 further demonstrates the model’s performance by showing that a t-SNE (t-
distributed stochastic neighbor embedding) plot [120] of the NH-dimensional (NH = 64) 
embeddings of sequence samples in the validation data set. Fig. 2 is consistent with the intuition 
described above: A lineage will generally consist of sequences that emerge at a common point in 
time. As such, modeling sequences by the date of their first emergence groups the sequence 
embeddings from the same lineages together and separates them from embeddings of other 
lineages. Notably, these samples are from a validation data set which includes raw sequence 
data, i.e., they include ambiguous residue calls and are of all different sizes. Assuming that all 
sequences between 1270 and 1273 amino acids in length are “normal” (i.e., are the original 
length of 1273 amino acids or contain known common deletions), then 2,619 sequences of the 
58,747 sequences are of nonstandard lengths (634 are fragments with a length less than 500 
amino acids). Moreover, a majority of sequence – 39,008 – include one or more ambiguous 
amino acid calls. These issues may account for instances where the sequence embeddings do not 
group by lineage as expected. The overlap between B.1.617.2 (Delta) and AY.4 is also expected, 
as AY.4 lineages (e.g., AY.4.2) are recognized as Delta sublineages which have emerged during 
the Delta outbreak. [121] In sum, Fig. 2 shows that, without doing 1) further alignment, 2) 
phylogenetic tree-building, or 3) classification based on sequence polymorphisms, we can 
replicate SARS-CoV-2 lineages and predict the date of emergence of a sequence. 
 

 
Figure 3. Mean attention at each amino acid position for sequences in the validation data set (aligned sequences 
occurring 2 or 3 times in the October 1, 2021 global data set) categorized into bins based on the date of first emergence. 
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The intensity of the color attention is log-normalized by the maximum attention for all sequence positions, so that the 
peak values are black and intermediate attention levels are various shades of red. The mean attention values vary over 
time as waves of new viruses emerge. For example, sites between 600 and 1200 become important for the emergence 
of Alpha in the winter of 2020-21. Some specific positions, e.g., 478 and 681, have high attention throughout time 
because of their changes from early in evolution, Alpha, to later, Deltam while other sites, such as 452, which is 
characteristic of Delta, become important as that variant emerges. 
 
 Visualizing attention further supports our model. To analyze attention, we show the 
results of modeling the aligned data set, in which sequences were aligned to the reference 
sequence and padded with mask characters for an equal length of 1273 amino acids. This was 
done to better show consistent attention values across sequences in the validation data set which 
are of different lengths. We did not correct for mask or noise symbols in the spike sequences. 
The prediction errors were in line with the raw sequence data set, with a RMSE of 0.0970 and 
normalized RMSE of 0.53. Fig. 3 shows the mean attention for each sequence in the validation 
data set (sequences occurring more than 2 or 3 times in the global October 1, 2021 data set) 
binned by date of first emergence. We can see in Fig. 3 that attention values change as the 
pandemic progresses, which corresponds with the introduction of new variations in the spike 
protein sequence over time. Fig. 4A demonstrates how major lineages have emerged and 
retreated during the time periods corresponding to the binned dates in Fig. 3. 
 

 
Figure 4. (A – Left) Relative prevalence of the three most frequently observed lineages (by sequence) in the October 
1, 2021 data set in each time period identified in Figure 3. Because less frequently observed lineages are excluded for 
clarity, the values sum to less than 100%. (B – Right) Mean attention levels for exemplary protein sequence positions 
with date of first emergence in time periods corresponding to Figure 3. The legend shows the amino acid in the 
reference (wild type) sequence for each position. 
 
 Comparing Figs. 3 and 4A, we can see how attention levels in the Winter of 2020 and 
Spring of 2021 at various positions increase relative to earlier time points, and in some cases 
decrease later in 2021. Broadly, the attention patterns correspond to the increase and decrease in 
prevalence of lineages in Fig. 4A, in particular the B.1.1.7 (Alpha) wave, which succeeded 
earlier lineages that originated in China and then spread to Europe and North America, and 
which was followed by a wave of Delta (B.1.617.2) and sublineages. Fig. 4B shows the patterns 
in greater detail for exemplary sequence positions. For example, a characteristic Delta mutation, 
L452R, increases as 2021 continues and Delta emerged. [122] By contrast, the attention at site 
614 is highest earlier in the pandemic. This corresponds to D614G being the first major mutation 
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to emerge after the pandemic began, and then subsequently becoming a ubiquitous aspect of all 
subsequent lineages. [123] Consistent with the rise and fall of the prevalence of B.1.1.7 shown in 
Fig. 4A, Fig. 4B shows that the rise and fall of the attention level at position 69. Positions 69/70 
are where deletions occur in the B.1.1.7 (Alpha) lineage, which have not been found in Delta and 
Delta sublineages which began to dominate later in 2021. We see a more complicated picture for 
position 222, as the A222V mutation emerged late in 2021 in the Delta AY.4.2 sublineage. [121] 
The A222V mutation, however, had also been found in mid-2020, which corresponds to the 
earlier peak in Fig. 4B. [124] The reason why some attention values at certain sites remain 
consistently high over time could be because there consistently has been some substantial level 
mutations at those sites throughout the pandemic. For example, the attention at positions 478 and 
484 track each other at high levels and coincide on the same track on the plot. This may be 
explicable because position 478 is in the receptor binding domain (RBD) of the spike protein, 
and it had a high level of mutations in summer of 2020 [125] continuing through later in 2021 
when the T478K mutation emerged as a characteristic mutation of the Delta lineage. [122] 
Similarly E484Q has been a characteristic mutation in the Delta lineage, but E484K has been an 
aspect of other pre-Delta, such as Beta and some Alpha sublineages. [126]–[128] Similarly, 
P681H was found in the highly prevalent Alpha lineage [129], and P681R was found in the 
Kappa and then later Delta lineage. [130] Accordingly, it may be the case that a consistently high 
attention suggests that the model pays attention to the site because it was not a point of variation 
at early time points. The attention does vary though in subsequent time periods where it is found 
in some important lineages (such as Kappa and then Delta) but no other highly prevalent lineages 
(e.g., Alpha). The model thus needs to use that site to predict the emergence date of sequences 
across all time periods. 
 
Predicting the Severity of Patient Outcomes 
 As detailed in the Methods section, we utilize GISAID samples with patient metadata to 
develop a model for the relationship between severity of COVID-19 disease and the spike 
protein sequence. Approximately 147,000 of the 3.9 million samples available on the October 
2021 cutoff date for inclusion in our study include any patient metadata as well as readable spike 
protein sequence information. Many of the metadata entries are simply “unknown” or not 
applicable to patient status, e.g., include information about sample collection. Additionally, as 
described in the Methods and shown in Supplemental Table 1, many descriptions cannot be used 
together in a coherent classification task. For example, we could compare patients who are alive 
and dead, but the patients who are not listed as being dead would have a wide range of outcomes 
from asymptomatic to ICU admission. Accordingly, we focused on metadata that could be 
assigned to two broad categories, “Mild” (0) or “Severe” (1) following the scheme in 
Supplemental Table 1, based on the NIH Clinical Guidelines for COVID-19. [108] After 
eliminating samples which cannot be classified as Mild or Severe, 54,081 samples remain. 
 Predicting patient outcomes using machine learning models based on both sequence 
and demographic information. 
 When developing a model to link sequence to disease outcomes, we need to also consider 
demographic variables. Throughout the pandemic, there has been consistent epidemiological and 
clinical evidence that age and sex/gender (male) are major risk factors for more severe COVID-
19 symptoms. [131]–[133] Earlier studies have shown that GISAID data also supported a 
correlation between the demographic metadata which are available—age and gender—to clinical 
severity. [76], [77] Figs. 5A and 5B show the relationship between these variables and clinical 
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severity, which show, as expected, a correlation with age (increasing age results in increasing 
mean severity) and sex/gender (male patients have a greater prevalence of severe outcomes). 
Notably, the age data do not show a consistent trend at the extremes of young and old. Extreme 
age values, however, are represented by far fewer samples in the data set, and thus may be 
susceptible to study bias of which samples were sequenced. For example, if more infants (with 
sequenced samples in the GISAID database) were hospitalized, even for incidental reasons, that 
would be reflected as a more severe case. Or, if very old patients were sequenced as part of a 
study of elderly patients who had survived or had a milder course of disease of disease than 
expected for their age, that would skew a small number of samples milder. 
  

 
Figure 5. (A–Upper Left) Mean of clinical severity, where 0 is Mild and 1 is Severe (i.e., probability of a severe 
case) by patient age in the GISAID database, where age metadata are available. The bars show the count of samples 
for each age. (B–Upper Right) Number of mild and severe cases for each sex/gender as identified in the “gender” 
patient metadata field for GISAID samples. (C–Lower Left) Mean clinical severity (probability of severe case) by 
sample collection date recorded in the GISAID data. For clarity, data have been binned over time periods; the number 
of samples in each bin is shown by the bars. (D–Lower Right) Model predictions, including sequence, age, date, and 
gender information, of mean severity over time of patient samples with sequences from Alpha (B.1.1.7) and Delta 
(B.1.617.2) lineages. Three different ages are run, as indicated in the legend, and the gender variable is set to male. 
The predictions shown here are the averages for the 30 most prevalent sequences (frequency found in database) for 
each lineage. We can obtain a prediction over time of variant severity, accounting for time in pandemic and age of 
patient. 
 
 Besides patient demographics, we find a substantial trend in the frequency of severe 
outcomes based on sample collection date. Fig. 5C shows how the number of samples with 
severe disease in the GISAID database drops as a function of time through the pandemic. There 
has been a particularly sharp decrease since approximately February 2021. This trend has been 
consistent even as the prevalent genetic compositions of the virus have changed in many 
different ways over time. We can see this in Table 2, which shows the percentage of severe 
cases, mean age, and percentage of male patients for the patient metadata validation set obtained 
as detailed in the Methods section. For example, the B.1 lineage (D614G) was first detected 
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January 1, 2020 (https://cov-lineages.org/lineage_list.html), and, as Fig. 4A shows, was no 
longer highly prevalent by the mid-2020. In the validation data set, 73% of samples indicated a 
severe outcome for the B.1 variant, the ancestral genome with a D614G mutation. By contrast, 
only 60% of patient outcomes are severe for Alpha (B.1.1.7) sequences, and that drops to 42% 
for Delta (B.1.617.2) and further to 26% for AY.4 Delta sublineages. Although the average age 
is lower for Delta patients, that is insufficient to explain this drop, which is seen across 
sequences with higher ages as well. Overall, the results shown in Table 2 contradict repeated 
studies showing that Alpha resulted in elevated hospitalizations, ICU admissions, and other 
markers of severe outcomes as compared to ancestral lineages, that Delta was yet more severe, 
and that overall other variants of concern emerging later in the pandemic lead to more severe 
outcomes overall. [134]–[140] 
 
Table 2. Mean age, percentage of samples which are from patients with severe COVID-19 
disease, percentage of samples from male populations, and the mean sample collection date 
of samples in the GISAID patient metadata validation data set from the lineages that 
appeared at least 400 times (i.e., frequency > 400). Mean sample collection date is defined 
in terms of days since December 1, 2019. The most recent lineages (highest sample date) 
trend to lower severity. 
 

Lineage Age % Severe % Male Sample Date Frequency 

AY.4 39.4 26% 53% 631 817 
B.1 49.8 73% 42% 314 994 
B.1.1 50.3 70% 49% 314 696 
B.1.1.519 49.9 68% 47% 485 1583 
B.1.1.7 48.3 60% 50% 509 3298 
B.1.351 45.7 52% 50% 481 849 
B.1.617.2 40.0 42% 48% 604 3901 
P.1 48.3 64% 48% 548 877 

 
 Our model, however, cannot account for changes in how COVID-19 is treated and can be 
prevented. In particular, we are unable to control GISAID data for vaccination, as there is still 
very limited information about vaccination for samples in GISAID metadata (at least as of 
November 2021). The early decline in 2020 in average case severity is consistent from a 
Canadian study showing that the case fatality rate (CFR) decreased between the first and second 
waves in Ontario prior to any vaccination, even when controlling for age and increased testing. 
[141] The latter decline may be accounted for by better understanding of how to treat COVID-
19, and, later in 2020, the emergence of monoclonal antibody therapies. The accelerated decline 
in case severity starting in early 2021 is likely attributable to vaccination, particularly of older 
populations, which would also be consistent with the lower mean ages of Delta and its 
sublineages as indicated in Table 2. Countries in which vaccines were widely available among 
the elderly in early 2021 and general population through 2021 are highly overrepresented in 
GISAID sequence data: of all sequences in GISAID through our October 2021 cutoff, 55% were 
in Europe and 34% were from North America. The overrepresentation is less acute in the subset 
with patient metadata, but still 69% of the GISAID sequences with metadata for patient status 
were from Europe and North America combined. 
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 In addition to treatment and vaccination effects, the sequence data are also impacted by 
artifacts arising from the context of where sequences are obtained. Early in the pandemic, we 
observe that every sample is from a hospitalized patient, which is consistent with limited testing 
and a bias towards hospitalizing COVID-19 patients to isolate and treat them. Later sequence 
samples are likelier to come from population screening studies, where subjects could be 
asymptomatic or only mildly symptomatic. It may even be that the “real” average disease 
severity has decreased even faster than our analysis reflects. We categorize hospitalizations as 
“severe” cases, acknowledging that some fraction of those cases will not be in fact severe in 
those cases where GISAID metadata cannot distinguish whether the patients was admitted for 
other reasons but are not severely ill from COVID-19 itself. There is evidence that the fraction of 
incidentally hospitalized cases may be increasing over time due to vaccination in the United 
States and other countries. [142]–[145] The reason proposed for why vaccination would increase 
incidental hospitalization of non-severe cases is that more patients being admitted for other 
reasons will test positive as they have asymptomatic or barely symptomatic (paucisymptomatic) 
cases. Moreover, the foregoing biases could explain why we observe an overall high proportion 
of severe cases in our analysis. 
 Accordingly, we include sample collection date as a demographic variable in training the 
neural network, along with age and gender. As shown in Fig. 1, these variables are fed into the 
neural network model at the NH-dimensional densely connected layer. A sample’s demographic 
variables are thus embedded along with the spike protein sequence in the NH-dimensional 
embedding vectors obtained from that layer. Table 3 shows the classification metrics of the 
Transformer-based neural network model and XGBoost on the validation data set. The training 
and validation sets are constructed to avoid sequence overlaps, as detailed in the Methods 
section. We compare the results of our neural network model to XGBoost, as it is a decision tree-
based ensemble learning approach that has proven to be useful in biological sequence machine 
learning applications as it is 1) fast, 2) highly effective at classification, 3) robust to missing 
values (which frequently arise in GISAID data due to missing or ambiguous amino acid codes), 
and 4) can provide a ranking of feature importance, which we use to validate the interpretability 
of our neural network model below. [146], [147] 
 
Table 3. Classification metrics for the patient metadata validation set for the neural 
network model of Figure 1 and XGBoost model trained on individual samples (rather than 
sequences). Prediction results shown are based on training on age, gender, and date as the 
only independent variables, sequence alone, and the sequence combined with other 
variables. There 8,948 and 12,965 samples of Mild (Class 0) and Severe (Class 0) patient 
outcomes; shown here are average metrics weighted to account for the class imbalance. 
Classification accuracy of the Transformer-based neural network model approaches 70% 
and is only somewhat lower than XGBoost. 
 

 Precision Recall F1 score Accuracy 
XGBoost     
No Sequence 0.66 0.64 0.66 0.65 
Sequence Only 0.65 0.66 0.65 0.72 
Sequence + Age, Gender, Date 0.72 0.72 0.72 0.72 
Transformer     
No Sequence 0.66 0.63 0.63 0.63 
Sequence Only 0.65 0.65 0.65 0.65 
Sequence + Age, Gender, Date 0.69 0.69 0.69 0.69 
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 Overall, as Table 3 shows, both our neural network and XGBoost are able to correctly 
predict a substantial majority of both the mild and severe cases. We also found that the XGBoost 
does outperform the neural network model. This was as expected, since most of the differences 
between spike protein sequences, particularly at early time points in the pandemic are at specific 
sequence positions where XGBoost should perform best. The neural network model was found to 
be able to consistently make nearly as accurate predictions. Moreover, for both methods, 
including sequence as well as the demographic variables led to a superior performance than 
considering each alone. 
 The combined sequence and demographic model can also be qualitatively validated. Fig. 
5D shows predictions made by training the Transformer-based neural network model that using 
sequence as well as age, gender, and sample collection date. We simulated the trained model for 
dates starting in March 2020, well before either Alpha (early 2021) and then later Delta (mid-
2021) were prevalent and their sequences had emerged (September 2020 and December 2020 
respectively). [148], [149] As expected, the model predicts that Alpha and Delta cases would 
have been more severe had they occurred earlier in the pandemic. Moreover, the model predicts 
that, overall, Delta cases would be more severe than Alpha, in agreement with the above-cited 
clinical and epidemiological literature. In sum, once we incorporate sample date in our model, 
we are able to produce predictions that are validated both quantitatively and qualitatively. 
 We note that we are limited in the demographic information that we can include given 
that the sequence data on GISAID does not have additional information. As a result, our model 
cannot account in other important factors that increase the risk of severe COVID-19, including 
comorbidities and racial disparities. [150] Also, patient metadata may be snapshots in time. For 
example, a mild case may evolve into a severe case without updating its annotation. We also do 
not consider the geographic origin of cases. The severity of cases may be related to different 
countries and regions’ enforcement of non-pharmaceutical interventions (NPI), the differences 
within a country in who has a large number of contacts, which may itself change over time, level 
of circulating virus, and differences in hospital capacity and standards of care. [151]–[153]. 
However, there is a strong confounding effect between sequences and countries. [65] As a result, 
the relationship between sequence and severity will in fact reflect regional-specific factors to 
some extent, particularly for sequences that do not become widespread in multiple regions. 
However, given the small fraction of sequences for which patient metadata are available, there 
are too few sequenced samples in individual countries or regions to enable machine learning 
based on geographic variables. 
 
 Interpreting the disease severity model by visualizing embeddings and attention. 
 To visualize sequence embeddings, we select a random equal sampling of the 45 most 
prevalent lineages. Sampling allows the visualization to be more tractable while retaining the 
structure of the data, i.e., to avoid having lineages that have many more sequences in the 
database, particularly those from Alpha and Delta lineages, swamp the signal from other 
sequences. In Fig. 6, we show how the different input variables, sequence, age, gender, and 
sample collection date, influence the embedded structure of the validation data set. To visualize 
the effect of sequence on a sample’s embedding, we quantify the distance between the sample’s 
spike sequence and the spike reference sequence, which is the consensus of ancestral genomes. 
We use the mismatch frequency divided by length of the spike reference sequence as a per cent 
mismatch to measure sequence distance. 
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 We expect that the t-SNE plots of the embeddings in Fig. 6 should reflect how the model 
performs its ultimate regression. The NH-dimensional embedding layer is the layer immediately 
before the final sigmoid-activated node that outputs the class probability (i.e., probability of that 
a sample is from a severe case) with is rounded to the mild/severe (0/1) prediction. Therefore, at 
the NH-dimensional layer, embedded samples will be separated in the embedding space in such a 
manner that they can be most accurately classified based on the trained model parameters. The t-
SNE plots should thus accentuate similarities and distances, the visualization should reflect the 
separation and clustering of the embeddings according to how they will be classified. 
 Fig. 6 shows, as expected, consistent patterns within the relative positions of sample 
embeddings according to age, sample date, and sequence distance. The exception is gender, 
which fails to show separation between male and female samples. The lack of a pattern for 
gender in Fig. 6 is consistent with Fig. 5B, which shows that the effect of gender on disease 
severity is not as significant as that for age or sample date. Severe cases account for 58% of 
samples from male patients, as opposed to 53% from female patients. (As noted above, the 
overall likelihood of severe cases in our GISAID-sourced data set is much higher than would be 
expected in the general population.) By contrast, age and sample date do play an important role. 
As Fig. 6 shows, the patterns of age and sample date are orthogonal to each other. The 
relationship between age and sample date patterns is consistent with Figs. 5A and 5C, which 
show that as age increases, severity increases, but as sample date increases, severity decreases. 
Fig. 6 also shows that sequence is playing a role in the model prediction. We represent the effect 
of sequence by categorizing samples according to their degree of difference (distance) from the 
reference sequence that was used for alignment, as described in the Methods. The sequence 
distance is measured by mismatch frequency normalized by the length of the reference sequence 
(1,273 amino acids). Fig. 6 shows a pattern of separation and clustering among samples by 
sequence distance that is clockwise similar to sample date as the two will be correlated as 
discussed above. In sum, we can visualize how the neural network model utilizes the input 
variables to train the model. 
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Figure 6. Sequence embeddings obtained from the trained neural network model and visualized based on a 2-
component t-SNE (perplexity of 30). The plots all show the same t-SNE visualization of a random sampling of 150 
samples each of the 45 most prevalent lineages in order to achieve sequence and sample date diversity. Clockwise 
starting with the upper left, the graphs show the t-SNE distribution labeled by sample collection date, patient age, 
sequence distance, and gender respectively. Variables are binned as indicated in the legend. Sequence distance is the 
number of mismatches between the sequence of the sample to the reference protein sequence divided by the reference 
protein sequence length, disregarding any padding or ambiguous amino acids in the sample sequence. The embeddings 
are heavily influenced by variant emergence and thus time, in addition to age.  Gender has little effect. 
 
 We can also gain insight into the model through attention. To demonstrate that the 
attention of a sequence position in our model can correspond to the importance of that position to 
classification, we compare the attention values that we found at different positions in the spike 
protein sequence to XGBoost feature importance scores. A trained XGBoost model can be 
analyzed to identify feature importance through various scores that are based on characteristics 
of boosted tree models, such as the number of times a feature is used to split trees, or the gain in 
score towards the objective function obtained by splitting trees based on a feature. [154], [155] 
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Table 4. Amino acid positions with the highest mean attention score, comparing the 
XGBoost feature importance ranking and score (obtained from the gain measure of feature 
importance). This table includes the 10 highest-scoring features identified by XGBoost, 
which appear within the 22 highest attention values. 
 

Attention 
Rank 

Amino Acid 
Position 

Mean Attention 
Score 

XGBoost 
Rank 

XGBoost 
Score 

1 1258 5.42 73 163 
2 732 5.1 10 2090 
3 142 4.96 1 6421 
4 501 3.79 8 2272 
5 69 2.14 5 2813 
6 70 2.13 31 573 
7 716 2.08 25 756 
8 570 2.06 27 709 
9 19 1.99 26 720 
10 950 1.92 17 1352 
11 144 1.34 6 2306 
12 95 1.25 2 4698 
13 222 1.07 4 3474 
14 417 1.06 24 757 
15 655 1.01 62 225 
16 614 0.94 7 2288 
17 1104 0.91 9 2240 
18 241 0.87 134 78 
19 243 0.86 335 7 
20 242 0.86 250 23 
21 477 0.86 14 1488 
22 681 0.84 3 3559 
23 1074 0.83 22 962 
24 97 0.81 18 1168 

 
 Table 4 shows a comparison of the XGBoost feature score (gain) and attention score for 
the highest attention sequence positions. The ranking of the XGBoost feature score is related to 
the rank of the highest attention sequence features. The highest-scoring features in the XGBoost 
model, however, were age, sample date, and gender. This is likely because XGBoost uses a 
greedy approach to branch decision trees in variables that will most rapidly lead to the optimal 
classification. [118] Therefore, we expect that XGBoost will consider gender as an important 
variable as it is varies consistently in the training samples, while samples may have very similar 
or even identical sequences. By contrast, as Fig. 6 shows, it is less important to our Transformer-
based neural network model. The XGBoost feature scores in Table 4 are likewise much more 
skewed towards a smaller number of variants than the attention scores from the neural network 
model. Despite these differences, as Table 4 indicates, the 10 most important sequence features 
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per XGBoost were found among the 22 highest mean attention positions, showing a concordance 
between the attention and XGBoost scores. 
 Many of the high attention positions coincide with sites that have been identified as 
having a potential significance for virulence, infectivity, and/or immune evasion. For example, at 
the third-highest position, protein structure analysis suggests that G142D, which is present in 
some Delta and Delta sub-lineage sequences, may be linked to higher infectivity and immune 
evasion. [156] In the GISAID data, sequences containing G142D are in fact generally associated 
with lower severity, although that is partly a function of its more recent emergence which would 
result in a lower apparent severity for the reasons discussed above. The highly ranked sites also 
include locations known to be significant for differentiating SARS-CoV-2 variants, such as 
positions 69 (corresponding to the 68-69 deletion), 501 (where the N501Y mutation occurs, 
which is characteristic of B.1.1.7/Alpha) and 681 (P681R and P681H) as shown in Fig. 4B and 
discussed in the accompanying text. 
 The site with the highest mean attention, position 1258, however, has not been as well 
characterized. The most common mutation found in our training and validation data at that site 
was E1258D, although we also found E1258H. E1258Q has been observed before as well, and 
the site has been linked to coincident mutations that may result in a spike protein missing its 
terminal region. [157] It appears that these spike mutants would cause the spike protein to 
accumulate in the plasma membrane, which would result in syncytia, large multinuclear cellular 
masses, which may result in heightened virulence. [157] We did not observe such truncated spike 
proteins in our patient data set. However, we do see that E1258D is associated with much higher 
disease severity. Among the 2.6% of samples with an E1258D mutation, 99% were categorized 
as severe cases. (Our model correctly predicted that 92% of them would be severe.) Another 
report indicated that E1258D had been found in Delta sublineages, but without additional 
analysis of its potential impact on patient outcomes or transmissibility. [158] 
 Importantly, E1258D is not lineage specific: 38.7% of the E1258 in the patient data set 
were from B.1.1.519, 18.1% were P.1 (Gamma), 14.8% B.1.1.7 (Alpha), and 11.9% were 
B.1.617.2 (Delta) and Delta sublineages (primarily AY.3 and AY.20). As a result, the 
conventional way of analyzing virulence by studying specific lineages would not pick up on a 
difference that is due to the presence of E1258D. This demonstrates how sequence modeling can 
be a crucial compliment to phylogenetic and other lineage-based classifications. E1258D is an 
example of a mutation that can be adopted, and sometimes can revert, within multiple clades, and 
different times, and along with different combinations of other mutations. While it is possible 
that the E1258D mutation’s apparent importance from our deep analysis of the GISAID patient 
data set may be an artifact of the limited data we analyzed, the strong signal suggests that it may 
warrant further investigation. 
 
Genus-Level Coronavirus Classification 
 The preceding two tasks demonstrate the capabilities of our deep modeling approach to 
analyze classification and regression problems in the SARS-CoV-2 context. While in these tasks, 
deep learning can focus on individual sites within the spike protein sequence, our model can be 
flexibly extended to problems that require deeper sequence analysis. Here, we apply our model, 
without any changes to structure or hyperparameters, to genus-level classification of coronavirus 
spike protein sequences. While spike proteins are a ubiquitous feature of coronaviruses, different 
species in different genera will have spike proteins that bind to different host cell receptors and 
which have significantly dissimilar structures and sequences. [159], [160] A higher level 
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taxonomic classification task presents, therefore, a qualitative different classification task than 
one which can succeed by using combinations of single site features. 
 As a proof of concept, we trained a genus-level Transformer-based neural network 
classifier for spike protein sequences. We employ the same architecture (from Fig. 1) and the 
same hyperparameters as in the other studies in this paper, aside from using a softmax function 
instead of a sigmoid at the output to allow for multiple classes. Because we sought to test our 
genus-level classifier using SARS-CoV-2 as a validation sample, we removed SARS-CoV-2 and 
any closely related sequences, i.e., “SARS-like” viruses, recombinant viruses based on SARS-
CoV-2, and viruses that were discovered subsequent to the emergence of SARS-CoV-2 
specifically to find SARS-CoV-2’s origins (e.g., [161]) from the training data. We then assessed 
the ability of the trained model to correctly predict that SARS-CoV-2 as Betacoronavirus. In a 
random sample of 100,000 raw, unprocessed sequences, we found that over 10 runs, our model 
was able to correctly predict 98.4 ± 0.3%. 
 

 
Figure 7. The 2-component t-SNE plot (perplexity of 30) for selected variants in 20,000 raw SARS-CoV-2 spike 
protein sequences after being classified by the pre-trained genus-level model (with SARS-CoV-2 removed). The 
selected variants are listed in the legend. (B.1 is ancestral virus with D614G). Despite never seeing SARS-CoV-2, 
some SARS-CoV-2 sequence embeddings can be clustered by variant, albeit not as well as when classified by time of 
emergence (Fig. 2). 
 
 We also evaluated the model’s ability to classify incomplete and noisy sequences. We 
found that the model was robust to noise. Of the 36,636 raw sequences in the overall October 1, 
2021 data set that contain at least 300 ambiguous amino acid codes, we obtained a correct 
prediction rate of 90.0 ± 3.8%. The most challenging data set for our model was 14,226 sequence 
fragments of less than 1000 amino acids in length, where we found a correct rate of 47.7 ± 2.8%. 
By comparison, BLAST was unable to find hits for 4% of sequences, and in a few cases 
identified sequences as coming from the wrong genus, and, overall, could correctly identify 95% 
of short fragment sequences. We do expect that particularly short fragments will challenge our 
Transformer-based model. Employing a Transformer architecture relies on token and position 
embedding, since the fragment may be displaced in position in an unpredictable way that cannot 
be addressed by simple end-padding. However, our results do show that our model can provide 
robust analysis of sequence patterns even in the presence of a high degree of sequencing noise 
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that results in erroneous or ambiguous amino acid encoding, and it can tolerate shorter lengths of 
“missing” sequence, such as indels. 
 The sequence embeddings generated by the genus-level classification model demonstrate 
how deep sequence modeling can reveal sequence patterns and information at different scales. 
Fig. 7 shows a t-SNE plot of the embeddings of selected common variants. We can see 
sequences of certain variants, such as Alpha, Beta, and Delta forming groups. Notably, the 
patterns that we seem among lineages of SARS-CoV-2 have been found without alignment. 
Moreover, the only classifier that has been trained is one that classifies at the genus level, 
without training on any SARS-CoV-2 or closely similar sequences.  
 
Predicting Properties of the Emerging Omicron Variant of Concern 
 Predicting neutralizing antibody reduction (potential immune evasion) 
 To predict the Omicron variant’s ability to evade the immune responses from vaccination 
or natural infection, we relied a training data set based on experimental data for the reduction of 
neutralizing antibody titers due to variants obtained before Omicron. We focus on neutralizing 
antibody titers, as they have been shown to be a good correlate of immune protection with 
respect to an infection for vaccines. [162] Table 1 shows the assumptions that we made, which 
integrate from multiple sources [109]–[113], although we sought to base our training on as few 
studies as possible to minimize variability. While it may have been better to use data from a 
single trial, most trials only consider a subset of variants and cannot be used to develop enough 
training data. 
 Moreover, our model is fundamentally limited by the very high degree of variability in 
the source data. Basing a predictive model on neutralizing antibody studies requires contending 
with noisy measurement methods, substantial inter-individual differences in immune responses 
reflected in their sera, systematic effects due to using actual virus or pseudovirus (i.e., another 
virus engineered to express SARS-CoV-2 spike variants), differences arising from whether 
vaccinated or convalescent sera were used, and differences in antibody reduction due to different 
vaccines and numbers of doses. [110], [113], [163] For example, in one study, it was found that 
sera from patients vaccinated with AstraZeneca or Pfizer’s vaccines had on average 8-9 fold 
lower neutralization, but convalescent sera from patients infected by the ancestral virus (A 
lineage) had 13.5 fold lower neutralization [164]  In sum, our prediction of the reduction of 
neutralizing antibody activity of Omicron should not be interpreted as an absolute quantitative 
prediction, rather it will be relative to our starting assumptions in Table 1. 
 Our initial test set collection consisted of samples annotated as B.1.529 and available on 
GISAID on December 9, 2021, which, after pre-processing, consists of 295 sequences. We note 
that while we refer to Omicron and B.1.529 interchangeably, the B.1.529 lineage has more 
recently supplanted with BA.1, BA.2, and BA.3 designations (described in https://cov-
lineages.org/lineage_list.html). We then train our model to perform a regression to the reciprocal 
of the values in Table 1, as described in the Methods section. Table 5 shows the results for 10 
trained models and overall average predictions. There is a high degree of variability between 
runs, because the predicted neutralizing antibody activity levels are very small: small 
quantitative differences in predictions due to randomization in the machine learning algorithm 
result in large variations in the reciprocal prediction of fold-decrease in neutralizing antibodies. 
Within each run, the model’s predictions also vary between sequences. The relative 
intersequence variance is consistent within runs, reflecting differences between sequences that 
are designated as being from the Omicron lineage. Indeed, after these results were obtained, 
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distinct sublineages have been designated within Omicron, i.e., BA.1 and BA.2 sublineages 
which differ in that BA.2 lacks a deletion at positions 69-70. [165] 
 
Table 5. Predicted fold decrease in neutralizing antibody activity for Omicron sequences 
across multiple runs of the deep learning model. The results show the minimum, maximum, 
and average predictions across all Omicron sequences, as well as the prediction that was 
made for the most sequences in the data set. Most runs identified significant decreases in 
neutralizing antibody activity, even greater than Beta and other variants of concern 
previously identified as being immune evasive (see Table 1). 
 

Run Most Frequent Maximum Minimum Average 

1 15.3 37.5 5.3 16.8 
2 15.4 32.3 4.0 16.5 
3 14.2 23.6 3.5 15.3 
4 19.2 50.7 6.0 21.3 
5 11.9 36.1 3.9 13.2 
6 18.8 39.2 4.2 19.5 
7 20.4 43.3 5.6 22.2 
8 16.0 26.2 5.1 16.8 
9 15.1 25.2 4.6 15.5 
10 22.0 37.9 5.3 22.7 

Average for 
all runs 

16.8 ± 3.1 35.2 ± 8.6 4.7 ± 0.8 18.0 ± 3.2 

 
 Notwithstanding the variability in the predictions shown in Table 5, the trends are clear. 
For certain sequences and runs, the model predicts as high as a 50-fold reduction of neutralizing 
antibody activity. On average, and for the most frequently observed sequences, Omicron is 
predicted to have a greater decrease in antibody neutralization than all of the variants previously 
seen. These results are broadly consistent with both a) predictions that the Omicron spike protein 
structure can evade antibodies and b) experiments measuring significantly lower neutralization 
by vaccinated and convalescent sera as compared to previous variants—including Beta, which, 
as Table 1 indicates, is significantly immune evasive itself. [166]–[171] This demonstrates the 
ability of the neural network model to generalize, as it predicts a reduction in neutralizing 
antibody titers of Omicron much greater than any other previously characterized variant 
considered individually.  By contrast, when tested XGBoost an alternative methodology, it 
consistently overfit to the training data and predicted no more than a 2 or 3-fold reduction for 
any combination of maximum tree depth, regularization, and other hyperparameters. 
 We also found that between runs, certain Omicron sequences consistently result in a 
higher predicted degree of antibody invasion than others. To analyze the mutations that are 
associated with particularly high levels of immune escape, we determined the difference in the 
attention scores between the sequence with the largest and smallest predicted fold-decreases in 
antibody neutralization activity. Fig. 8 shows a plot of the differential attention between 
maximum and minimum predictions, which shows spikes at positions that are likely to be 
determinative of the prediction. Certain sites with large differential attention have been 
characterized as being important for antibody evasion. For example, Fig. 8 shows a spike at 
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position 484, which is where the E484K mutation has been found to lead to substantial antibody 
escape. [126] Other positions, such as 417, 501, and 681 have also been associated with potential 
immune-evasive mutations (i.e., N501Y, K417N/T, L452R) [172]. Interestingly, focusing on site 
346, we found that a relatively greater reduction in predicted activity was associated with 
Omicron sequences which include of the R346K mutation. The R346K mutation was found in 
B.1.621 / Mu variant of concern. [173] Subsequent studies showed reduced neutralizing antibody 
activity of vaccinated and convalescent sera to the Mu variant. [110] The model’s prediction is 
consistent with early evidence that an Omicron sublineage with the R346K mutation has 
substantially less binding affinity to monoclonal antibodies. [169] Other mutations in Omicron 
sequences that greater neutralizing antibody activity are found at sites 156-158 with an E156G 
and F157/R158-d substitution and deletion, which has been linked to a higher level of immune 
escape in Delta. [174] 
 

 
Figure 8. Differential attention plot showing the log (base 10) of the attention difference between the sequence with 
the maximum and minimum predicted fold-decreases in neutralizing antibody activity (which was the same across all 
runs shown in Table 5). The spikes show sites that are relevant for predicted increased immune escape, many of which 
are consistent with sites found to be significant in previous studies. 
 
 The model’s results should not be taken as a complete prediction of immune escape, 
however, because the model does not consider the role of cellular immunity mediated by T cells. 
Cellular immunity has been shown to likely have a significant role in the immune response to 
COVID-19 infection and the ability of vaccines to prevent severe disease. [175] For example, 
patient studies have shown that reduction in neutralizing antibodies, even to the extent of 
complete elimination of antibodies against the Beta variant, do not necessarily correspond to a 
drop in real world effectiveness of vaccines with respect to symptomatic and severe disease. 
[176], [177] Accordingly, vaccines may retain a high degree of protection against severe disease 
caused by Omicron, even if there were to be a real-world reduction in neutralizing antibody 
activity to the extent that both the model predicts and recent studies suggest.  
 
 Predicting Omicron disease severity 
 As discussed above and shown in Fig. 4C, since Omicron has emerged at a later date in 
the pandemic than other variants, we expect it to be less severe than if the same variant had 
emerged earlier in the pandemic. We must therefore control for age and date, as shown Fig. 5D, 
to compare Omicron’s relative severity to other variants. Fig. 9A shows how the mean predicted 
disease severity of Omicron sequences would vary over time through the pandemic. Predicted 
disease severity varies less between sequences than predicted immune evasion; however, there is 
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still some variability as Fig. 9A shows. The maximum standard deviation in the probability of a 
severe case was found to be less than 0.01 for all time periods, and the largest peak to peak 
variation is ± 15%. As Fig. 9A illustrates, even the worst-case scenario which would still result 
in a significantly lower severity than Delta, accounting for the variability of predictions between 
Delta sequences. 
 Fig. 9B shows a differential attention plot, which (similarly to Fig. 8) indicates the spike 
protein sequence locations that have the greatest difference in attention score between the most 
prevalent Delta and Omicron sequences. The model found mutations at these sites to be most 
relevant in predicting that Omicron would likely be less severe than Delta (controlling for patient 
age, sex, and case date). Further study is required to determine the potential effect of the spike 
protein sites and mutations identified in Fig. 9B on biological mechanisms that could affect 
infectivity or cell-cell fusion in ways that would impact the risk of severe outcomes. 
 

 
Figure 9. (A – Left) Model prediction of the average time-dependent disease severity, assuming a 50-year-old male 
patient, for samples with known sequences from Beta, Delta, and Omicron lineages. Omicron is predicted to have, on 
average, a 35-40% reduced risk of severe disease as compared to Delta, and to have reduced risk relative to Beta as 
well. (B – Right) Differential attention plot showing the spike protein sequence positions that have the greatest 
difference in attention score between most commonly found Delta and Omicron sequences. Sites with a greatest 
positive attention difference are 69-70 (where Omicron has a deletion also present in Alpha but not Delta), 95 (the 
most common Omicron sequence type, shown here, lacks Delta’s T95I mutation), 143-144 (Omicron has a deletion), 
211 (Omicron has a deletion), 417 (Delta lacks the K417N found in many but not all Delta lineages), and 477 (Omicron 
lacks S477N). Sites with the greatest negative attention difference are 19 (T19R found in some but not all Delta 
sequences), 142 (Omicron lacks Delta’s D142G), 501 (N501Y also found in Alpha) and 950 (Omicron lacks N950D). 
 
 The reduced severity of Omicron as compared to Delta is consistent with early laboratory 
evidence that there is a reduction in lower lung infectivity, deficient cell entry, and a reduction in 
syncytium formation due to reduced ability of the spike protein to mediate plasma membrane 
fusion. [178], [179] A decrease in severe disease is also consistent with preliminary clinical and 
epidemiological evidence that had emerged by the time of this manuscript’s preparation, 
suggesting that patients had less severe disease in South Africa. [180] Reduced severe disease in 
South Africa may be due to a particularly high degree of seroprevalence in South Africa as a 
result of prior infection and vaccination of the vulnerable population. However, early data from 
the United Kingdom also suggest a 20-25% reduced level of hospitalization of any kind and 40-
45% reduction in hospitalizations of greater than one day. [181] 
 Fig. 9A further shows a reduction in predicted Omicron severity as compared to the Beta 
variant that had been prevalent in Southern Africa pre-Delta and which also has a high degree of 
immune evasion. [2] As discussed above, it is difficult to compare clinical and epidemiological 
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evidence of severity for variants earlier in time, because of the effect of vaccination, previous 
infections, and improved therapies. However, the model’s predictions are consistent with the 
preliminary data showing that Omicron may have deficient cell entry and less induction of cell-
cell fusion as compared to wild type (ancestral genome) as well as Delta. [178] It has also been 
suggested based on free energy calculations that the Omicron spike protein has deficient ACE2 
binding as compared to wild type or Omicron. [182] Even if these and other preliminary results 
and predictions of lower severity on an individual basis bear out, epidemiological evidence 
clearly shows that Omicron is highly transmissible, significantly more so than Delta. [183] 
 Critically, our current model’s predictions of Omicron’s decreased severity depend on 
accounting for time-dependent factors—in particular, vaccination of the population, improved 
therapies, and potentially increased opportunities for infection-acquired immunity as well. Fig. 
9A shows that had Omicron emerged earlier in the pandemic, absent the protection conferred by 
vaccination and improved therapeutics, the variant’s apparent severity would have been much 
greater. Moreover, given the apparently dramatic increased infectivity of Omicron, it may still 
result in widespread severe disease even at this point in the pandemic.   
 
CONCLUSIONS 
 In this paper, we show that a deep sequence model that incorporates a multi-attention 
Transformer as well as sequence-wide self-attention and embedding layers for multiscale 
interpretation can successfully perform classification and regression tasks on SARS-CoV-2 spike 
protein sequence data. Our results demonstrate that our modeling approach can identify attention 
values that correspond to sequence positions of interest and embeddings that can be visualized to 
show relationships between sequences. We show that modeling the relationship between disease 
severity and sequencing variants sets requires accounting for not only patient age but also sample 
collection date, particularly due to time-dependent increases in vaccination rates. Accounting for 
these differences by combining demographic variables with sequence input to our model allows 
us to predict patient severity from GISAID data at nearly 70% accuracy. We can also 
qualitatively predict that Delta is more severe than Alpha when controlling for time. The same 
model architecture and parameters used to predict patient severity can be applied to do genus-
level classification of coronavirus spike proteins, and embeddings resulting from genus-level 
classification can be used to visualize lower scale distinctions between SARS-CoV-2 variants. 
 We have also been able to make predictions about the recently emerged Omicron 
variant’s immune evasive properties and risk of causing severe disease without using any 
training data for Omicron. We predict that Omicron will be highly immune evasive, but that it 
may have substantially less risk of causing severe disease than the Delta variant. Both 
predictions have so far proven to be consistent with emerging empirical reports. The ability of 
the model to make validated predictions for Omicron, despite Omicron’s novelty and distance 
from previously observed SARS-CoV-2 sequences shows that our deep neural network 
framework is generalizable. We therefore provide the proof of concept for a computational 
modeling framework that can provide predictive insight on the properties of SARS-CoV-2 
variants that may emerge in the future, before empirical data for that variant become available.  
 Finally, we note that while there is an unprecedented amount of sequencing data available 
for SARS-CoV-2, the tasks demonstrated here in large part only used thousands of the millions 
of available samples. This was due to the lack of metadata beyond geographic origin and simple 
demographic variables for the vast majority of sequences. An important objective of sequencing 
work should be to collect and curate important information about the sample and to meet 
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minimum information about a sequence standards. [186] However, the fact that we have been 
able to gain insight to SARS-CoV-2 even with limited data sets shows the potentially for deep 
modeling approach shown here to be extended to other biological problems. 
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