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Abstract:  62 

OBJECTIVES: The relationships between baseline clinical phenotypes and the cytokine milieu of the peak 63 

‘inflammatory’ phase of coronavirus 2019 (COVID-19) are not yet well understood. We used Topological 64 

Data Analysis (TDA), a dimensionality reduction technique to identify patterns of inflammation associated 65 

with COVID-19 severity and clinical characteristics. 66 

DESIGN: Exploratory analysis from a multi-center prospective cohort study. 67 

SETTING: Eight military hospitals across the United States between April 2020 and January 2021. 68 

PATIENTS: Adult (≥18 years of age) SARS-CoV-2 positive inpatient and outpatient participants were 69 

enrolled with plasma samples selected from the putative ‘inflammatory’ phase of COVID-19, defined as 70 

15-28 days post symptom onset.  71 

INTERVENTIONS: None. 72 

MEASUREMENTS AND MAIN RESULTS: Concentrations of 12 inflammatory protein biomarkers were 73 

measured using a broad dynamic range immunoassay. TDA identified 3 distinct inflammatory protein 74 

expression clusters. Peak severity (outpatient, hospitalized, ICU admission or death), Charlson Comorbidity 75 

Index (CCI), and body mass index (BMI) were evaluated with logistic regression for associations with each 76 

cluster. The study population (n=129, 33.3% female, median 41.3 years of age) included 77 outpatient, 31 77 

inpatient, 16 ICU-level, and 5 fatal cases. Three distinct clusters were found that differed by peak disease 78 

severity (p <0.001), age (p <0.001), BMI (p<0.001), and CCI (p=0.001).  79 

CONCLUSIONS: Exploratory clustering methods can stratify heterogeneous patient populations and 80 

identify distinct inflammation patterns associated with comorbid disease, obesity, and severe illness due to 81 

COVID-19.  82 

KEY WORDS: COVID-19; SARS-CoV-2; Topological Data Analysis; Coronavirus Infections / 83 

immunology, Cytokines / analysis 84 

 85 

 86 

 87 
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Background 88 

While clinical risk factors for coronavirus disease 2019 (COVID-19) severity have been described, 89 

mechanisms of inflammation associated with these baseline clinical features are less understood (1). SARS-90 

CoV-2 infections range from asymptomatic to fatal illness. This spectrum is associated with host risk factors 91 

such as age and chronic noncommunicable disease (NCD), including obesity and cardiovascular disease 92 

(2). However, the pathways from host factors to COVID-19 severity and sequelae are largely unknown. 93 

Given the heterogeneity of COVID-19 severity and a growing immunomodulatory treatment 94 

armamentarium (2, 3), pathologic inflammation patterns and their association with comorbidities need to 95 

be identified to optimize treatment selection. 96 

 97 

COVID-19 severity and inflammation occur in three phases: acute, inflammatory, and late phases of illness. 98 

Peak severity and peak inflammatory biomarkers generally occur after two weeks of illness (15 to 28 days 99 

after symptom onset) during the inflammatory phase (4, 5). While inflammation may subside in mild cases, 100 

persistently high proinflammatory cytokines have been noted in more severe cases during this period. This 101 

time window of heightened immune response may be best suited to elucidate the relationship between host 102 

factors and severe COVID-19. In silico stratification of host-biomarker profiles using exploratory clustering 103 

and machine learning analyses has the potential to identify distinct phenotypes associated with disease 104 

severity, which in turn can lead to discovery of personalized treatment approaches.  105 

 106 

Herein we define inflammatory host-biomarker phenotypes of COVID-19 identified by Topological Data 107 

Analysis (TDA) and their associated comorbid conditions and disease severity. TDA is a multivariate 108 

pattern analytical tool that uses an unsupervised approach to dimensionality reduction and data visualization 109 

(6). TDA can be used to identify biomarker patterns and phenotype-biomarker relationships (7-9). TDA has 110 

been demonstrated to identify patient subgroups that would benefit from personalized interventions for 111 

heterogenous diseases such as cancer care and primary ciliary dyskinesia (6, 8). We hypothesized that the 112 

network approach of TDA clustering would identify unique inflammation phenotype patterns associated 113 
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with severity, demographics, and co-morbid conditions known to predispose patients to worse outcomes 114 

during SARS-CoV-2 infection (4). Our analysis focused on samples collected during the inflammatory 115 

phase from an observational cohort of participants with mild to severe COVID-19 at military treatment 116 

facilities. Inflammatory biomarkers were selected from prior unpublished non-COVID-19 sepsis TDA 117 

analyses (10) and from clinical use (11). We sought to demonstrate that this analytical approach can help 118 

discern inflammatory patterns to find possible treatment targets, as well as serve as a tool to understand 119 

baseline host factors and severe COVID-19.  120 

 121 

Methods 122 

Participants were enrolled in a prospective, multi-center COVID-19 cohort under the Epidemiology, 123 

Immunology, and Clinical Characteristics of Emerging Infectious Diseases with Pandemic Potential 124 

(EPICC) protocol, at 8 military treatment facilities (Brooke Army Medical Center, San Antonio, TX; Fort 125 

Belvoir Community Hospital, Fort Belvoir, VA; Madigan Army Medical Center, Joint Base Lewis-126 

McChord, WA; Naval Medical Center Portsmouth, Portsmouth, VA; Naval Medical Center San Diego, San 127 

Diego, CA; Tripler Army Medical Center, Honolulu, HI; William Beaumont Army Medical Center, El 128 

Paso, TX; Walter Reed National Military Medical Center, Bethesda, MD) between April 2020 and January 129 

2021 (12). The protocol was approved by the Uniformed Services University Institutional Review Board 130 

(IDCRP-085)(13). All patients provided written informed consent. EPICC study enrollment included 131 

subjects ≥18 years of age with laboratory-confirmed or suspected SARS-CoV-2 infection seeking inpatient 132 

or outpatient medical care. Following consent, demographic, comorbidity, and illness data were collected 133 

through participant interviews and a review of the participant’s electronic medical record or using 134 

participant completed surveys implemented in November 2020. Subjects with a positive clinical SARS-135 

CoV-2 RT-PCR result and plasma samples collected were included in this analysis. Results of well-136 

described (14) COVID-19 clinical biomarkers CRP, ferritin, and IL-6, were explored from 249 participants 137 

with plasma collected 0-29 days post symptom onset (dpso) to determine if the longitudinal inflammatory 138 

biomarker LOESS (locally estimated scatterplot smoothing) curve peaked between 14 to 28 days per 139 
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previously published phases of illness framework for studying COVID-19 (Supplementary Figure S1) (4). 140 

These trends were consistent with the literature, and, accordingly, the TDA was restricted to the 129 141 

participants with samples collected during the inflammatory phase defined as 15-28 dpso. Receipt of 142 

baricitinib, tocilizumab, hydroxychloroquine, or systemic steroids (equivalent to prednisone 10mg daily or 143 

above) at the time of blood collection was determined through the electronic medical record or participant 144 

surveys.  145 

 146 

Plasma samples were prospectively collected after enrollment as previously described (13). Venous whole 147 

blood samples were centrifuged for 10 minutes at 1500 g and collected plasma was stored at −80°C. A 148 

panel of 12 inflammatory proteins were measured in the plasma samples using the high dynamic range 149 

automated enzyme-linked immunosorbent assay Ella microfluidic analyzer (ProteinSimple, San Jose, 150 

California, USA). The panel included:  IL-6, CXCL10, IL-1RA, D-dimer, procalcitonin, ferritin, VEGF-A, 151 

IL-5, soluble receptor for advanced glycation end-product (RAGE), TNFR1, IFN-γ, and C-reactive protein 152 

(CRP). This panel was selected to include analytes in clinical use for prognostication (i.e., CRP, 153 

procalcitonin, ferritin, and D-dimer)(11), based on prior COVID-19 literature (i.e., IL-6, IFN-γ and 154 

CXCL10) (15), and identified to be representative of prior TDA-based non-COVID-19 sepsis clusters (i.e., 155 

IL-1RA, VEGF-A, IL-5, RAGE, and TNFR1) (10, 16). All protein concentrations were log10-transformed 156 

and normalized for site-to-site variation using the R package SVA ComBat (17). A small number (1.6%) of 157 

missing values were imputed using a k-nearest neighbor model, and out-of-range values were imputed using 158 

either the lowest or highest measured value within range of the Ella platform. Correlation between analytes 159 

was explored with a principal component analysis and determining the Spearman’s correlation coefficients. 160 

For some subjects, multiple samples were available. In such cases, the sample with the highest coefficient 161 

of variation across all analytes was retained to incorporate the largest degree of relative variability at that 162 

time point (18). 163 

 164 
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Protein expression networks were generated solely using biomarkers levels with the TDA “Mapper” 165 

algorithm using the EurekaAI platform (SymphonyAI, Los Altos, CA, USA)(7, 19, 20). TDA networks 166 

were generated for a range of resolution settings to examine the persistence of subject clusters and their 167 

interrelatedness. Peaked severity (outpatient, hospitalized, ICU-level or death) color gradients were 168 

overlaid on identified clusters. Levels of the individual proteins in each TDA group were summarized in a 169 

series of boxplots (R package “ggplot2” v3.3.5). Backward selection stepwise logistic regression using a 170 

Bernoulli-adjusted significance level of 0.0042 (i.e., 0.05/12) was used to identify which proteins were up- 171 

or downregulated within each cluster. While TDA clusters will inherently have different biomarker levels, 172 

this was performed to simplify inference about representative biomarkers and for future validation in 173 

external cohorts. A sensitivity analysis was performed adjusting for peak severity to determine the effect 174 

of covariate selection. An additional sensitivity analysis was performed excluding participants receiving 175 

systemic steroids.  176 

 177 

Summary statistics were calculated for the TDA clusters, comparing baseline demographics (e.g., sex, age, 178 

race, ethnicity, selected medical comorbidities), days post symptom onset, peak severity, steroid use, and 179 

the inflammatory biomarkers by clusters using either Chi-square (categorical values), Fisher exact 180 

(categorical values), or Mann-Whitney U tests (continuous values). Charlson Comorbidity Index (CCI) and 181 

body mass index (BMI) values were divided into score-based categories (i.e., CCI: 0, 1-2, 3-4, or 5+; BMI: 182 

<30, 30-39.9, or ≥40 kg/m2) to describe the prevalence of comorbid conditions by cluster on a bar plot but 183 

were otherwise treated as continuous values. BMI values were not available from 6.2% of the cohort. Peak 184 

severity was categorized for each participant (outpatient, non-ICU [intensive care unit] inpatient, and ICU 185 

or death). Multivariable logistic regression adjusting for peak severity was used to identify associations 186 

between each TDA cluster and BMI or CCI at a significance level of 0.05. All statistical analyses were 187 

performed in Stata (version 15.0; StataCorp LLC, College Station, TX, USA) and R version 4.0.2 (21) 188 

 189 

Results  190 
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Biomarkers CRP, IL-6, and ferritin were stratified by severity and explored for the 249 participants in the 191 

EPICC cohort between 0-28 dpso using a scatter plot with LOESS (locally estimated scatterplot smoothing) 192 

curves. This demonstrated average cytokines peaked or remained elevated during the described 193 

inflammatory phase (15-28 dpso) among ICU-level or fatal courses of illness (Supplementary Figure S1). 194 

Based on these findings and the inflammatory phase literature, we restricted our analysis to 129 participants 195 

(66.7% male, median 41.3 years of age) including 77 outpatient, 31 inpatient, 16 ICU-level, and 5 fatal 196 

cases (Table 1) between 15 to 28 days of illness. Correlation along a PCA axis was observed among 197 

procalcitonin, TNFR1, IL-6, CRP, and IL-1RA while RAGE, IFN-γ, IL-5, and VEGF-A were less 198 

correlated with the other analytes. Additionally, variance increased with each level of peak severity 199 

(Supplementary Figure S2). These results supported the additive information provided by the 12 protein 200 

analytes, and TDA was performed. Interestingly, 3 distinct inflammatory proteins clusters, labeled Cluster 201 

1, Cluster 2, and Cluster 3 (Figure 1; Supplementary Figure S3), were consistently identified using TDA. 202 

 203 

Age differed significantly between TDA clusters (p<0.001). Participants from TDA Clusters 2 (median 204 

37.1 years of age; IQR, 28.1 to 50.0) and 3 (median 36.3 years of age; IQR, 24.6 to 55.2) were younger 205 

than in Cluster 1 (median 51.8 years of age; IQR, 37.3 to 65.0) (Table 1). The prevalence of male gender 206 

was similar among Cluster 1 (62.0%, n=31), Cluster 2 (64.1%, n=41), and the general cohort (66.7%), but 207 

cluster 3 was predominantly male (93.3%, n=14). The median time from symptom onset to sample 208 

collection was 21 days (IQR 18 to 25) and did not differ between clusters (Table 1). Peak disease severity, 209 

as categorized by hospitalization status, was also found to differ significantly among the TDA clusters 210 

(p<0.001). Cluster 1 had the highest prevalence of severe COVID-19, comprising 66.0% (n=33) 211 

hospitalized participants, compared to 46.7% (n=7) hospitalized participants in Cluster 3, and 18.8% (n=12) 212 

hospitalized participants in Cluster 2 (Figure 2, Table 1). All fatal cases (n=5) were in Cluster 1. No 213 

individuals had received baricitinib or tocilizumab, and hydroxychloroquine use was limited to 2 214 

individuals in Cluster 1. Receipt of systemic steroids at the time of blood collection was limited to 5 215 

participants in Cluster 1 (10.0%; n=5).  216 
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 217 

The median CCI differed (p=0.009) among clusters ranging from 2 (IQR, 2 to 3) in Cluster 1 to 0 (IQR 0 218 

to 0.5) in Cluster 2 and 0 (IQR, 0 to 1) in Cluster 3. Most participants in Cluster 2 (75.0%) and in Cluster 3 219 

(73.3%) had a CCI of 0 compared to 38.0% of individuals in Cluster 1 (Figure 2). Additionally, median 220 

BMI was higher in Cluster 1 (33.5 kg/m2; IQR, 29.0 to 37.0) compared to in Cluster 2 and Cluster 3, which 221 

were the same (28.0 kg/m2; IQR, 25.0 to 31.0)(Table 1). After adjusting for peak severity using logistic 222 

regression, participants with a higher BMI (OR: 1.1 per kg/m2, p=0.002) and a higher CCI (OR: 1.3 for 223 

each score increase, p=0.02) were more common in Cluster 1 compared to participants in Cluster 2 and 3 224 

combined.  225 

 226 

In summary, participants in Cluster 1 were more likely to be older, have higher BMI and more 227 

comorbidities, and have more severe disease, whereas participants in Cluster 2 were more likely to be 228 

younger, have lower BMI and comorbidities, and have mild illness (Figure 2). Cluster 3 was predominantly 229 

composed of younger adult predominantly male participants, without comorbid conditions, among whom 230 

almost half (7 of 15) were hospitalized.  231 

 232 

The distributions of each analyte were different across clusters using a chi-squared test, except for IL-5 and 233 

IFN-γ which had a similar distribution (Table 2). Certain biomarkers including CRP, IL-6, IL-1RA, D-234 

dimer, TNFR1, and VEGF-A were more elevated in Cluster 1 (older participants with higher severity) 235 

compared to Clusters 2 and 3 (Table 2; Figure 3; Supplementary Figure 4). RAGE was lower in Cluster 1 236 

compared to Clusters 2 or 3 and IFN-γ was lower in Cluster 1 compared to Cluster 2 (Figure 3; 237 

Supplementary Figure 4). Cluster 3, a young cluster with moderate severity, was found to have higher 238 

ferritin, procalcitonin, and CXCL10, and lower VEGF-A compared to Cluster 2, a similarly young cluster 239 

with mild illness.  240 

 241 
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Stepwise regression, both unadjusted and adjusted for peak severity, was used to identify which analytes 242 

were most characteristic of each TDA cluster (Supplementary Table S1.). The distinguishing biomarker of 243 

Cluster 1 were relatively high IL-1RA and low RAGE levels; these subjects had a high severity phenotype 244 

compared to other clusters (Figure 3; Supplementary Figure 4; Supplementary Table S1.). Regardless of 245 

peak severity, Cluster 2 was characterized by relatively low procalcitonin and high RAGE levels. Cluster 3 246 

was characterized by low VEGF-A after peak severity adjustment (Figure 3; Supplementary Figure 4; 247 

Supplementary Table S1.). When restricting the analysis to those not receiving steroids, the models were 248 

qualitatively unchanged, and the same covariates were selected.  249 

 250 

Discussion 251 

We demonstrated that a multi-site prospective patient cohort can be stratified into three distinct 252 

inflammatory profiles using 12 protein biomarkers from samples collected during the inflammatory phase 253 

of COVID-19. TDA dimensionality reduction was able to identify biomarker patterns with differences in 254 

both severity and comorbid conditions between cluster phenotypes. Combinations of biomarkers, 255 

independent of clinical information, grouped participants into one of three distinct clusters: high COVID-256 

19 severity, older, with comorbid conditions (Cluster 1); low severity, younger, less comorbid illness 257 

(Cluster 2); and a moderate severity, younger, previously healthy, male-predominant group (Cluster 3). 258 

This proof-of-concept study identifies potential use of TDA as a strategy to identify biomarker clusters 259 

associated with the heterogeneity of COVID-19 clinical presentations. Whilst exploratory, this reveals 260 

potential translational approaches to using host-biomarker stratification with advanced clustering and 261 

network analytical techniques, such as TDA, to better understand what drives phenotypic differences in the 262 

clinical presentation of COVID-19. 263 

 264 

Patterns of inflammation observed for the different TDA clusters could suggest dysregulated pathways 265 

associated with COVID-19 pathology. Cluster 1 was found to be the highest severity cluster with all fatal 266 

cases and most ICU-level cases. This cluster contained distinctly more subjects with baseline comorbid 267 
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conditions and obesity as defined by BMI ≥30. Cluster 1 subjects had higher IL-1RA compared to Cluster 268 

2 and 3, clusters represented by participants with less comorbid conditions. Consistent with this trend, prior 269 

work has identified IL-1RA as a potential mediator between obesity and COVID-19 severity (22). 270 

Interestingly, IFN-γ was lower and IL-6 higher in Cluster 1 compared to the Cluster 2 participants. This 271 

pattern of an aberrant Th1 response has been previously identified to be associated with severe COVID-19 272 

and potentially distinct from influenza infection (22). Cluster 1 aligned with baseline comorbid illnesses 273 

known to be risk factors for severe COVID-19 with potentially distinct inflammatory cascade patterns 274 

demonstrated.  275 

 276 

Cluster 3 was unique in that it had a combination of low VEGF-A but had elevated ferritin and higher 277 

prevalence of severe illness compared to Cluster 2, a mild illness cluster with comparable demographics. 278 

While sample size is limited, 14 of 15 participants in Cluster 3 were male, suggestive of a biologic sex 279 

difference in immune response among these previously healthy young men. Sex differences leading to 280 

severe COVID-19 among men have been previously described with X-linked TLR7 deficiency(23, 24) 281 

and on a larger scale with sex-related differences in innate and T-cell responses (25). A combination of 282 

low VEGF-A and elevated ferritin may identify a unique inflammation subtype and merits further study 283 

with external cohorts.  284 

 285 

RAGE, a biomarker of acute lung injury (26), was found to have different distributions between clusters. 286 

In contrast to prior research (27), RAGE levels appeared to be higher among the younger and relatively 287 

milder COVID-19 severity Cluster 2 compared to Cluster 1. Compared to other clusters, RAGE was 288 

elevated along with IFN-γ in the less symptomatic Cluster 2, but with lower acute phase reactants ferritin 289 

and procalcitonin. The converse was true with Cluster 1 where lower levels of RAGE in individuals were 290 

noted, along with elevated acute phase reactants (i.e., CRP, procalcitonin, and ferritin). This association 291 

of lower RAGE with higher severity Clusters 1 and 3 contrasts with a direct association with COVID-19 292 

mortality (28). However, our results may differ by accounting for biomarker patterns rather than 293 
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evaluating each biomarker in isolation. It is possible that RAGE could be an indicator of severity during 294 

certain disease states but functioning as an adaptive anti-inflammatory protein in Cluster 2 during the 295 

inflammatory phase. Soluble RAGE has been shown to reduce vascular injury in rodent models (29, 30) 296 

and could be protective against vascular inflammation mediated the RAGE receptor (31). The 297 

paradoxically inverse relationship observed between RAGE and these commonly used acute phase 298 

reactants between the clusters could be useful for identification and stratification of individuals with 299 

COVID-19. 300 

 301 

While this study, to our knowledge, is the first to use an advanced dimensionality reduction approach to 302 

understand relationships between biomarker patterns and clinical phenotypes during the inflammatory 303 

phase of COVID-19, there are limitations worth noting. Samples were collected from April 2020 to 304 

January 2021 and treatment practices and epidemiologic changes over time may have affected 305 

inflammation patterns. Hence, we incorporated a sensitivity analysis excluding those that received 306 

systemic steroids in Cluster 1 to aid in interpreting the findings. In addition, the sample size may limit our 307 

ability to identify uncommon biomarker patterns and external validation is needed of patterns identified. 308 

Additionally, regression was used to adjust for peak severity to identify biomarker and comorbid 309 

condition associations with TDA clusters distinct from severity trajectory differences. While this is a 310 

novel feature of this biomarker study, residual confounding related to peak severity remains possible. 311 

Despite limitations, results presented here are hypothesis generating and should be evaluated further in 312 

additional cohorts. 313 

 314 

This approach constitutes an early exploratory step in identifying host biomarker patterns that may be 315 

leveraged for personalized interventions, and offers new insights for COVID19 prognosis, therapy, and 316 

prevention with techniques that could be extended to understanding other severe infections. Using analytes 317 

identified from our international sepsis cohort research(10), 3 biomarker clusters with different phenotypic 318 

associations were identified among those with heterogenous COVID-19 presentations. The application of 319 
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these biomarkers derived from non-COVID-19 severe infection research suggests that pathogen-agnostic 320 

sepsis biomarkers could be identified for personalized approaches to triage of care or immunomodulation 321 

strategies. Further validation of these markers and clustering algorithms with external cohorts could inform 322 

point-of-care biomarker assay development to guide more individualized approaches to COVID-19 care.  323 

 324 
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 476 

Figure legends.  477 

Figure 1. Topological data analysis (TDA) network of protein expression during the middle-phase of 478 

COVID-19. Distinct protein expression phenotypes (Clusters 1, 2, and 3) were identified based on density 479 

and break points in the network and persistence of the clusters. Each node represents a combination of 12 480 

plasma protein analyte levels and its size increases with the number of participants that are included. 481 

Edges (lines between nodes) indicate that patients are represented in more than one node. The network is 482 

colored by the average score on the disease severity scale (from outpatients without limitations [green] to 483 

death [red]) in each node. Analysis was performed on the EurekaAI Workbench (SymphonyAI, Los 484 

Altos, CA, USA). 485 

 486 

Figure 2. Cluster differences with bar plots (% [n]) of comorbid diseases and severity by cluster. A: BMI 487 

(body mass index) category (range in kg/m2) prevalence by cluster; B: Charlson Comorbidity Index (CCI) 488 

category prevalence by cluster; C: peak levels of severity by cluster. Total (n) presented in the center of 489 

each category.  490 

 491 

Figure 3. Box plots of markers selected in stepwise regression to identify characteristic biomarkers of 492 

each cluster: Ferritin (A), IL1RA (B), RAGE (C), and VEGFA (D) by cluster. Kruskal-Wallis test 493 

performed comparing analyte levels between clusters. **: p ≤ 0.01; ***: p ≤ 0.001; ****: p ≤ 0.0001 494 

 495 

  496 









Table 1. Baseline demographics across TDA clusters. 
 

Characteristic 
Total 

(N=129) 
Cluster 1 (N=50) Cluster 2 (N=64) Cluster 3 (N=15) p-value 

Male gender — no. 
(%)  

86(66.7%) 31(62%) 41(64.1%) 14(93.3%) 0.06† 

Age — years, median 

(IQR) 
41.3 (30.1, 

56) 
51.8 (37.3, 65) 37.1 (28.05, 49.55) 36.3 (24.6, 55.2) <0.001ǂ 

Race or ethnic group 
— no. (%) 

    0.01† 

White 81 (62.8) 30 (60.0) 43 (67.2) 8 (53.3)  

Black 31 (24.0) 16 (32.0) 12 (18.8) 3 (20.0)  

Other 6 (4.7) 1 (2.0) 5 (7.8) 2 (13.3)  

Asian 5 (3.9) 0 (0) 3 (4.7) 2 (13.3)  

Native American 3 (2.3) 0 (0) 1 (1.6) 0 (0)  

Native Hawaiian  3 (2.3) 3 (6.0) 0 (0) 0 (0)  

Ethnicity — no. (%)     0.88† 

Hispanic or Latinx 31(24) 13(26) 15(23.4) 3(20)   

Charlson 
Comorbidity Index 
(CCI) — median 
(IQR) 

0 (0, 2) 2 (2, 3) 0 (0, 0.5) 0 (0, 1) 0.009ǂ 

Body mass index — 
kg/m2, median (IQR) 

30 (27, 34) 33.5 (29, 37) 28 (25, 31) 28 (25, 31) <0.001ǂ 

Days post-symptom 
onset — median 
(IQR) 

21.0 (18.0, 
25.0) 

20 (17.0, 25.0) 21.0 (19.0, 25.5) 22.0 (21.0, 25.0) 0.16ǂ 

Hospitalization at 
Timepoint — no. (%) 

    <0.001ǁ 

ICU 10(7.8) 9(18) 1(1.6) 0  

Inpatient 28(21.7) 16(32) 7(10.9) 5(33.3)  

Outpatient 91(70.5) 25(50) 56(87.5) 10(66.7)  

Peak severity — no. 
(%) 

    <0.001ǁ 

Death 5 (3.9) 5 (10.0) 0 (0) 0 (0)  

ICU 16 (12.4) 10 (20.0) 3 (4.7) 3 (20.0)  

Inpatient 31 (24.0) 18 (36.0) 9 (14.1) 4 (26.7)  

Outpatient 77 (59.7) 17 (34.0) 52 (81.3) 8 (53.3)  

Systemic Steroid use 
— no. (%) 

5 (3.9) 5 (10.0) 0 (0) 0 (0)  

 *All categorical variables are presented as N (%) and continuous variable  

 † Chi-square test  

 ǂ Mann Whitney U test  

 ǁ Fischer’s Exact test  



 

Table 2. Comparison of the Ella biomarkers across TDA clusters. For each subject, one sample 

was selected based on highest coefficient of variation. 

 

 

 Plasma log10 pg/mg, median (IQR)   

Variable Total Cluster 1 Cluster 2 Cluster 3 p-value* 

CRP 6.75 (6.09, 7.62) 7.33 (6.67, 7.98) 6.43 (5.89, 7.11) 6.29 (5.68, 7.13) <0.001 

CXCL10 2.17 (1.95, 2.37) 2.28 (1.94, 2.53) 2.1 (1.88, 2.28) 2.19 (2.09, 2.51) 0.02 

D-dimer 5.69 (5.34, 6.23) 6.06 (5.68, 6.85) 5.49 (5.27, 5.87) 5.68 (5.3, 6.52) <0.001 

Ferritin 5.3 (4.98, 5.65) 5.46 (5.07, 5.87) 5.17 (4.82, 5.37) 5.51 (5.31, 5.9) <0.001 

IFNγ -0.25 (-0.45, 0) -0.3 (-0.58, 0) -0.21 (-0.39, 0) -0.27 (-0.46, 0.02) 0.11 

IL1Ra 2.85 (2.56, 3.11) 3.01 (2.84, 3.37) 2.67 (2.5, 2.97) 2.69 (2.4, 2.92) <0.001 

IL5 -0.56 (-0.86, 0.34) -0.57 (-0.95, -0.4) 
-0.57 (-0.81, -

0.31) 
-0.51 (-0.85, -0.24) 0.69 

IL6 0.26 (0.01, 0.63) 0.52 (0.24, 1.1) 0.07 (-0.13, 0.43) 0.26 (0.05, 0.6) <0.001 

Procalcitonin 
 

1.78 (1.63, 2) 1.92 (1.7, 2.25) 1.69 (1.59, 1.86) 1.92 (1.77, 2.1) <0.001 

RAGE 2.93 (2.78, 3.04) 2.76 (2.58, 2.87) 3.02 (2.92, 3.09) 3 (2.8, 3.07) <0.001 

TNFR1 3.03 (2.95, 3.18) 3.15 (3.01, 3.3) 2.98 (2.91, 3.08) 3.04 (2.97, 3.16) <0.001 

VEGFA 1.64 (1.43, 1.92) 1.9 (1.57, 2.12) 1.58 (1.43, 1.76) 1.25 (0.8, 1.52) <0.001 

*Distributions among all clusters compared using a Kruskal-Wallis test. 

 

 

 

 

 

 

 

 


