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Methods from causal inference are combined with established epidemiological techniques, to estimate population at-
tribution fractions for the influence of smoking and BMI on the risk of 226 different diseases in UK Biobank. Simple
expressions for population attribution fractions are derived for this purpose, and evaluated using estimates from pro-
portional hazard models. These are compared to the attribution fractions used by the World Health Organisation. A
counterfactual argument is used to determine an individual’s attribution fraction Af in terms of proportional hazard
estimates, finding Af = 1 − 1/R, where R is an individual’s relative risk. It is emphasised that causally meaningful
attribution fractions cannot be constructed for all known risk factors or confounders, but there are important cases
where they can. This includes the causal model that is assumed here to describe the influence of smoking and BMI
on disease risk. The causal attribution of smoking and BMI to incidence of disease is summarised in terms of dis-
ease chapters from the International Classification of Diseases (ICD-10), and the diseases most strongly attributed to
smoking and BMI are identified. The result is a quantitative characterisation of the causal influence of smoking and
BMI on the landscape of disease incidence in the UK Biobank population.

1 Introduction

The aim of this research was to quantify and classify how patterns of disease incidence will be influenced by modifiable fac-
tors such as smoking and body mass index (BMI). Modifiable associations are often quantified with attributable fractions and
relative risks [1, 2], that are estimated using proportional hazard models [2, 3]. However, there are several ways of defining
and estimating attributable fractions [2, 4, 5], and estimates of relative risks do not generally have a causal interpretation [2].

Whereas statistics is the science of finding and describing patterns in data, epidemiology is the science of using statistics
to make correct inferences. Although epidemiologists are careful to describe their results in terms of “associations”, the
purpose of epidemiology is to detect and quantify causal associations, e.g. between lifestyles and health [2, 8]. Recently
the science of causal inference [6, 7, 9], has developed to identify circumstances where causal estimates are possible using
observational data. The Methods show how the “backdoor criteria” and the “do” calculus [6, 7], can be used with estimates
of relative risks from conventional epidemiological studies using proportional hazards [3]. It is shown that conventional
estimates using observational data, will often correspond to estimates of causal associations. Situations that satisfy the
“frontdoor” criteria, and their relationship to results from mediation analyses [9], are considered in the Supplementary
Material. A population attribution fraction is developed to estimate the proportional change in disease incidence caused by
a exposures in a population, that is expressed in terms of conventional proportional hazard estimates. It is valid when the
estimates are of causal associations, in the sense outlined below and in the Methods. It is closely related to the average causal
effect (ACE) [6, 7], and can (in principle), agree with existing expressions when these are combined with estimates of causal
associations [1, 4]. An attribution fraction for an individual is also formulated using a counterfactual argument for the “effect
of treatment on the treated” [6, 7], that gives a simple and well-known expression in terms of an individual’s relative risk.
Unless stated otherwise, the rest of this article will use “attribution fraction” to refer to the population attribution fraction.

The attribution of disease incidence to smoking and BMI was considered for the UK Biobank cohort of over 500,000
UK men and women [10]. Attribution fractions were estimated for 226 diseases with statistically significant associations
after adjusting for multiple testing, using proportional hazards models that are adjusted for known confounding factors. The
results emphasise the heterogeneous influence of risk factors, with protective associations for several diseases, but 11 with
an attributable fraction in excess of 0.5 that should arguably be regarded as pathogenic. Diseases were characterised by their
attribution fractions, that allowed them to be ranked and classified in terms of their risk modifiability in terms of smoking
and BMI. The selection of diseases for study is detailed elsewhere [13], along with further information on the UK Biobank
data that was used [10, 13]. In principle the estimates could be improved by studying each disease individually, but the study
here accounts for the strongest confounding factors, while allowing a broad survey of the overall influence of smoking and
BMI on disease.
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Figure 1: Consider the influence of one or more exposures X , on diseases Y , with confounding variables Z that satisfy
the “backdoor criteria” [6, 7] (figure a). For example, X might include BMI, alcohol, and smoking, with confounders Z of
socio-economic status and education (figure b).

The causal model was assumed to be as in figure 1. The risk factorsX are assumed to include smoking, BMI, and alcohol
consumption, and the confounding factors Z are assumed to include education, socio-economic status, and for women only,
HRT use and parity. The situation is described by the well-known “adjustment” formula [6, 7], that states,

P (Y = y|do(X = x)) =
∑
z

P (Y = y|X = x, Z = z)P (Z = z) (1)

where for continuous variables the sums are treated as integrals, upper case X , Y , Z correspond to specific values of random
variables, and lower case x, y, z can take any allowed value. The formula accounts for the confounding influence of Z
on both X and disease risk, and differs from the equivalent result from conventional probability theory, that would have
P (Z = z|X = x) instead of P (Z = z). The Methods show how Eq. 1 can be used to form an attribution fraction to
estimate the causal influence of smoking and BMI on disease risk. The estimates make use of the observation [12], that the
diseases are rare, in the sense that we can approximate the cumulative distribution function for disease incidence F (t, x, z) as
F (t, x, z) ' H(t, x, z) where H(t, x, z) is the cumulative hazard function [3]. For diseases where the proportional hazards
model can be used, this gives,

F (t, x, z) ' H(t) = eηx+ηzH0(t) with H0(t) =

∫ t

0
h0(s)ds (2)

where x are (a vector) of risk factors, y are (a vector) of confounding factors, t is time or age, and h0 is the baseline hazard
function [3]. An estimate for the (population) attribution fraction is shown to be,

Af ' 1−
∑n

i=1 e
ηwi+ηzi∑n

i=1 e
ηxi+ηwi+ηzi

(3)

where ηx, ηz , ηw are linear predictors for the risk factors, confounders, and any risk factors (w) that we do not want to
include in the attribution fraction, such as smoking and alcohol if we are only interested in BMI. It is also shown that if
eηx , is uncorrelated with eηz and eηw , then an equivalent estimate for the attributable fraction used by the World Health
Organisation [1] is,

Af ' 1− 1∑n
i=1 e

ηxi
(4)

which is smaller (greater) than Eq. 3 when eηx is positively (negatively) correlated with eηz+ηw .

Results

UK Biobank data [10] was used to estimate the attribution of smoking and BMI to the incidence of over 400 hospital
diagnosed diseases in men and women. Diseases were characterised by their attribution fractions, allowing them to be
ranked and classified in terms of their risk modifiability in terms of smoking and BMI. Frequency of alcohol consumption
was adjusted for but not studied, because it is a comparatively imprecise measure, and is also found to have inconsistent
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study-dependent associations with disease risk [19]. Information on the selection of diseases for study is detailed elsewhere
[13], as are details of the UK Biobank cohort [10, 13]. Although the survival analyses could be improved by individual study
of each disease, the study here accounts for the strongest confounding factors, while allowing a broad survey of the overall
influence of smoking and BMI on disease.

Plots and tables include diseases with statistically significant associations with current smoking versus never smoked,
or maximum versus middle BMI tertile, after an FDR multiple-testing adjustment. Where results involve both smoking
and BMI then diseases were included if they are included in either of the smoking-only, or BMI-only results. This left
129 diseases associated with BMI, 153 diseases associated with smoking, and 226 diseases that were associated with either
smoking or BMI. To explore the sensitivity of the estimates to the strength of confounding factors, estimates made using
Eqs. 3 and 4 were compared (figure 2 in the Appendix). As expected, the influences of confounding are more noticeable for
smaller attributable fractions, but even in those cases, the estimates rarely differ by more than about 20%. With a handful
of exceptions, such as Parkinson’s disease (G20), estimates with Eq. 3 were larger than with 4, as would be expected if the
influence of smoking and BMI were positively correlated with the influence of the confounding factors in the model.

XVIII Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified (N=27)

XIX Injury, poisoning and certain other consequences of external causes (N=10)

XI Diseases of the digestive system (N=32)

XIII Diseases of the musculoskeletal system and connective tissue (N=26)

VII Diseases of the eye and adnexa (N=9)

XIV Diseases of the genitourinary system (N=17)

I Certain infectious and parasitic diseases (N=7)

IX Diseases of the circulatory system (N=23)

II Neoplasms (N=27)

XII Diseases of the skin and subcutaneous tissue (N=14)

VI Diseases of the nervous system (N=10)
IV Endocrine, nutritional and metabolic diseases (N=5)

X Diseases of the respiratory system (N=14)
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Figure 2: Median attributable fractions for each ICD-10 chapter with at least 5 diseases where Af > 0.2. Bar widths are
proportional to the number of diseases in each chapter.

Figure 2 shows the median attributable fractions for the combined influence of smoking and BMI on the incidence of
disease in each ICD-10 chapter, with the width of the bar plots proportional to the number of diseases in the estimate. Dis-
eases of the respiratory system (X) have the largest median attribution fraction, of about 0.3, closely followed by endocrine,
nutritional, and metabolic diseases, that are both almost double the next largest values. Diseases of the skin and subcutaneous
tissues (XII) and of the nervous system (VI), both have median attribution fractions near 0.15. Neoplasms and circulatory
diseases account for 22% of all the diseases, and have the next largest median attributable fractions. There are seven chapters
with median attribution fractions greater than 0.1, and these include 100 diseases, 50 of which are neoplasms and diseases
of the circulatory system.

The 26% of diseases that hadAf ≥ 0.2 are listed in table 1. There are 11 diseases withAf ≥ 0.5 and 21 withAf ≥ 0.35.
Given the limitations of the analysis and the potential for regression dilution bias, it is possible that more than 11 diseases
could have Af ≥ 0.5. For diseases with more than half the cases attributed to smoking and BMI, it seems reasonable to
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regard smoking and BMI as “pathogenic”, in a similar way that strong genetic risk factors are often described as pathogenic.
One third of the 226 diseases had an attributable fraction with |Af | > 0.17, and two thirds had |Af | > 0.06. Although the
mean attribution fraction for the combined influence of smoking and BMI was ' 15%, the estimated attributable number of
extra cases was only ' 8%, reflecting the fact that the most common diseases (with the most cases), tended to have smaller
attributable fractions.

Diseases were ranked in terms of their attribution fractions for smoking and BMI (figure 3). Figure 3 identifies an
important point, that even established risk factors such as smoking and BMI can have protective associations with some
diseases. The 20 diseases that smoking and BMI have the strongest protective associations with are listed in table 2. There
were 12 diseases whose protective association had an attributable fraction with magnitude greater than 0.1, and 3 with
magnitude greater than 0.2. Melanoma in situ (D03), had the strongest protective association of -0.29, where the sign is
taken to indicate the direction of effect as discussed in “Number of attributed cases”.
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Figure 3: For diseases with a statistically significant association with smoking or BMI after an FDR multiple-testing adjust-
ment, attributable fractions Af were calculated with Eq. 21. Lines indicate Af = 0.5 (red), Af = 0.35 (orange), Af = 0.2
(yellow). Af < 0 indicates a protective association.

Sensitivity analysis

Participants with hospital reports of prior cancers other than non-melanoma skin cancers were excluded from the main study,
but self-reported cancers or other prior diseases were not. It is possible for example, that a heart attack might be followed
by weight loss, and including participants with prior heart attacks could weaken a potential association between BMI and
heart disease. In contrast, smoking might increase the risk of some diseases for which a substantial proportion occur before
entry into the UK Biobank study. In that case, including participants with the prior disease might strengthen the associations.
The question of how best to study sequences of disease is an example where causal understanding is not enough, and new
statistical methods or data are likely to be required. It might be an intractable question, due to the vast possible combinations
of sequences of 100s of diseases, and it is further complicated by the complex time-dependent exposures and accumulation
of genetic mutations that any individual experiences. Therefore a senstivity analysis compared the paper’s main results with a
second analysis that excluded participants who had reported any cancer other than non-melanoma skin cancer, or any serious
cardiovascular disease of heart disease, stroke, arterial or pulmonary embolisms, or subarachnoid haemorrhage.
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Disease Sex N NAf
Rank Af Rank Af

E66 Obesity F 311 306 24 0.98 1

J44.1 Chronic obstructive pulmonary disease with acute exacerbation, unspecified F 209 193 53 0.92 2

J44.0 Chronic obstructive pulmonary disease with acute lower respiratory infection F 416 376 17 0.90 3

J44.0 Chronic obstructive pulmonary disease with acute lower respiratory infection M 417 374 18 0.90 4

J44.1 Chronic obstructive pulmonary disease with acute exacerbation, unspecified M 261 230 41 0.88 5

C34 Malignant neoplasm of bronchus and lung M 1018 833 4 0.82 6

I70 Atherosclerosis M 156 114 86 0.73 7

C34 Malignant neoplasm of bronchus and lung F 996 710 6 0.71 8

E11 Non-insulin-dependent diabetes mellitus M 206 114 86 0.55 9

I71 Aortic aneurysm and dissection M 402 222 44 0.55 10

R04.2 Haemoptysis M 314 162 60 0.52 11

C15 Malignant neoplasm of oesophagus M 473 220 46 0.47 12

R91 Abnormal findings on diagnostic imaging of lung M 358 162 60 0.45 13

C67 Malignant neoplasm of bladder M 1063 438 9 0.41 14

R91 Abnormal findings on diagnostic imaging of lung F 372 151 65 0.41 15

I50 Heart failure F 280 111 88 0.40 16

K42 Umbilical hernia F 297 111 88 0.37 17

G47.3 Sleep apnoea F 381 139 69 0.36 18

J84 Other interstitial pulmonary diseases F 177 63 117 0.35 19

I50 Heart failure M 359 125 75 0.35 20

R04.2 Haemoptysis F 239 83 103 0.35 21

J10 Influenza due to identified influenza virus F 211 69 114 0.33 22

M13 Other arthritis M 215 70 112 0.32 23

R29.6 Tendency to fall, not elsewhere classified M 182 58 123 0.32 24

A41 Other septicaemia F 957 303 25 0.32 25

J18 Pneumonia, organism unspecified M 3011 944 2 0.31 26

C22 Malignant neoplasm of liver and intrahepatic bile ducts M 171 54 126 0.31 27

L72.0 Epidermal cyst M 456 139 69 0.30 28

J18 Pneumonia, organism unspecified F 2777 845 3 0.30 29

G47.3 Sleep apnoea M 776 236 39 0.30 30

N17 Acute renal failure F 333 99 94 0.30 31

G44.2 Tension-type headache F 152 44 135 0.29 32

K43 Ventral hernia F 377 108 90 0.29 33

G62 Other polyneuropathies M 175 50 130 0.29 34

C16 Malignant neoplasm of stomach M 260 70 112 0.27 35

B37 Candidiasis M 173 47 132 0.27 36

R06.0 Dyspnoea M 650 176 58 0.27 37

I26 Pulmonary embolism F 836 225 43 0.27 38

R63.4 Abnormal weight loss F 485 125 75 0.26 39

J84 Other interstitial pulmonary diseases M 234 60 119 0.26 40

J22 Unspecified acute lower respiratory infection F 1506 386 15 0.26 41

E87.1 Hypo-osmolality and hyponatraemia M 234 59 120 0.25 42

I25.9 Chronic ischaemic heart disease, unspecified M 254 63 117 0.25 43

M48 Other spondylopathies F 573 139 69 0.24 44

K62.1 Rectal polyp M 1143 275 32 0.24 45

N17 Acute renal failure M 562 135 71 0.24 46

H02.4 Ptosis of eyelid M 253 59 120 0.23 47

C90 Multiple myeloma and malignant plasma cell neoplasms F 247 58 123 0.23 48

M47 Spondylosis M 338 79 105 0.23 49

L60 Nail disorders F 236 55 125 0.23 50

R13 Dysphagia M 959 218 47 0.23 51

J90 Pleural effusion, not elsewhere classified M 524 119 82 0.23 52

J22 Unspecified acute lower respiratory infection M 1349 300 27 0.22 53

L03 Cellulitis M 2036 450 8 0.22 54

M81 Osteoporosis without pathological fracture F 946 204 50 0.22 55

K92.0 Haematemesis M 156 33 152 0.21 56

L03 Cellulitis F 1602 333 21 0.21 57

K25 Gastric ulcer M 338 70 112 0.21 58

I64 Stroke, not specified as haemorrhage or infarction M 173 35 148 0.20 59

Table 1: Attributable fractions Af for both smoking and BMI are estimated with Eq. 21, ranked, and listed if Af ≥ 0.2.
Colours: Af ≥ 0.5 (red), 0.5 > Af ≥ 0.35 (orange), 0.35 > Af ≥ 0.2 (yellow). Sex: diseases in males (M) or females (F),
N : total cases, NAf

: attributed cases.
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Disease Sex N NAf Rank Af Rank Af

D03 Melanoma in situ M 272 −79 14 −0.290 1

K31.7 Polyp of stomach and duodenum F 870 −212 9 −0.240 2

N41 Inflammatory diseases of prostate M 572 −114 10 −0.200 3

N81 Female genital prolapse F 4199 −819 1 −0.190 4
R79 Other abnormal findings of blood chemistry M 1905 −333 5 −0.170 5
S02 Fracture of skull and facial bones M 355 −57 18 −0.160 6
C43 Malignant melanoma of skin M 723 −96 11 −0.130 7
S76.1 Injury of quadriceps muscle and tendon M 215 −24 25 −0.110 8
M20.1 Hallux valgus (acquired) F 2875 −307 6 −0.110 9
C61 Malignant neoplasm of prostate M 5800 −521 2 −0.090 10
B34 Viral infection of unspecified site M 319 −28 23 −0.089 11
N40 Hyperplasia of prostate M 3928 −344 4 −0.088 12
M16 Coxarthrosis [arthrosis of hip] M 3167 −272 7 −0.086 13
J90 Pleural effusion, not elsewhere classified F 327 −28 23 −0.084 14
K40 Inguinal hernia F 493 −39 20 −0.079 15
R19.8 Other specified symptoms and signs involving the digestive system and abdomen F 302 −22 27 −0.072 16
C44 Other malignant neoplasms of skin M 6095 −391 3 −0.064 17
K31.7 Polyp of stomach and duodenum M 300 −17 31 −0.057 18

Table 2: Diseases with the strongest protective associations, ranked by the proportion of disease attributed to a combination
of smoking and BMI (Af ). Sex indicates diseases in males (M) or females (F), N are total cases, NAf

are the number of
cases attributed to smoking and BMI, Af is the attributable fraction.

Disease Sex N NAf Rank Af Rank Af

S00.8 Superficial injury of other parts of head F 171 39 135 0.23 44
S92 Fracture of foot, except ankle M 168 38 138 0.22 46
E21 Hyperparathyroidism and other disorders of parathyroid gland F 296 66 106 0.22 48
I21 Acute myocardial infarction F 1125 243 28 0.22 50
M79.6 Pain in limb F 920 198 41 0.22 51
M17 Gonarthrosis [arthrosis of knee] F 3623 735 3 0.20 57

Table 3: The sensitivity analyses found six additional diseases with Af ≥ 0.2, for the combination of both smoking and
BMI, that would have appeared in table 1. Sex: diseases in males (M) or females (F), N : total cases, NAf

: attributed cases.

Differences between the main study and the sensitivity analysis were small. There were six diseases whose attribution
fractions increased from Af < 0.2, to Af ≥ 0.2, these are listed in table 3. The difference between attribution fractions in
the two studies had a mean and median of -0.006 and -0.005 respectively, and a standard deviation of 0.029. The differences
in magnitude were typically equivalent to about 10%. The attribution fractions of six diseases changed by more than 0.05.
These included increased attributable fractions for: I50 - heart failure in women (0.40 to 0.48), R29.6 - tendency to fall in
men (0.32 to 0.41), and decreases in: C16 - stomach cancer in men (0.27 to 0.21), J10 - influenza in women (0.33 to 0.27),
J22 - lower respiratory infections in men (0.24 to 0.17), and N17 - acute renal failure (0.24 to 0.17).

Discussion

Effect of treatment on the treated (ETT)

An alternative attribution fraction, that is of more interest to clinicians or an individual, is the chance of having avoided
a disease if you had not been exposed, but were subjected to the same confounding factors that you would have otherwise
experienced. This situation is equivalent to estimating the “effect of treatment on the treated” (ETT) [6, 7], but the “treatment”
is an exposure to smoking or BMI. For the situation considered here of figure 1, this counterfactual question can be formulated
and expressed in terms of observational quantities in a similar way to before. The argument below considers the simpler
situation of smokers versus never smoked, or max BMI tertile versus a lower BMI tertile, denoting exposed by X = x1 and
unexposed by X = x0. Using counterfactual notation where Yx1 indicates the disease status of (e.g.) smokers, and Yx0 the
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disease status of non-smokers, then the ETT is defined as [6, 7],

ETT = E [Yx1 − Yx0 |X = x1] (5)

that can be thought of as estimating the difference between disease risk in smokers and non-smokers, when subjected to the
same correlated confounding influences as smokers would experience. Following a previous derivation [7], and incorporating
the same proportional hazards assumptions as before, this can be written as,

ETT = P (Yx1 = 1|X = x1)− P (Yx0 = 1|X = x1)
=
∫
P (Y = 1|W = w,Z = z,X = x1)P (W = w,Z = z|X = x1)dwdz

−
∫
P (Y = 1|W = w,Z = z,X = x0)P (W = w,Z = z|X = x1)dwdz

= H0(t)e
ηx1
∫
eηw+ηzP (W = w,Z = z|X = x1)dwdz −H0(t)e

ηx0
∫
eηw+ηzP (W = w,Z = z|X = x1)dwdz

(6)
where the second term on the second line is usually justified with the backdoor adjustment formula Eq. 8, but corresponds to
estimating the probability of disease when X = x0 but all other exposures are as they would have been if X = x1, and the
third line uses the approximation of sufficiently rare diseases that the cumulative distribution function can be approximated
by the cumulative hazard. Continuing to take the baseline value eηx0 = 1, and dividing by the first term to get an attribution
fraction, then gives,

AETT =
eηx1 − 1

eηx1
(7)

which solely involves the relative risk R = eηx1 for e.g. smoking status, and is the simplest attribution fraction that occurs
in the literature.

Because survival analyses are designed to estimate the influence of risk on an individual, with hindsight, perhaps Eq.
7 should not have been a surprise? Within the proportional hazards model, smoking will modify your risk of disease,
independently of whether any other factors also do. From a population perspective, disease risk is determined by the overall
combination of exposures, that will usually be correlated. This is why the attribution fraction for the population needs a more
careful estimation that accounts for correlations between the exposures and confounding variables.

Attribution fractions for causal estimates

Attribution formulae similar to those used here have existed in published literature since at least 1998 [4]. One aim of this
paper is to emphasise that for a given causal model such as that in figure 1, the attribution fractions can only be used with a
restricted range of potential risk modifiers, whose associations have a causal interpretation. If the causal model is incorrect,
then the adjustment for confounding, and resulting estimates, are also likely to be incorrect. Alternately, if the measurement
is too imprecise e.g. socio-economic status is likely to capture the influence of several factors that may include exposure to
pollution, poor quality diet, poor living and working conditions, etc, then it may not be possible to estimate a meaningful
causal association - for example, someone with an equivalent socio-economic status in a different country would experience
different exposures and have different causal factors that influence their health. Another observation is that it may not be
possible to obtain estimates of causal associations from a single analysis, but it might be possible to use the causal diagram
to design an analysis that can estimate the parameters you are interested in. For example, changes in systolic blood pressure
(SBP) can be caused by smoking or BMI, and therefore SBP should not be adjusted for if we are interested in the influence
of smoking and BMI on disease risk. In contrast, if our interest was in SBP, then we would need to adjust for BMI and
smoking if they can modify disease risk in any way other than through changes in SBP.

Attribution of disease to smoking and BMI

The attribution fractions for smoking, and BMI, are very heterogeneous, and can involve a reduction in risk (table 2). This
highlights a difficulty in optimising lifestyle and drug treatments - changes in lifestyle or medication are likely to have a
very heterogeneous influence on disease risk, with some risks lowered but others potentially increased. Another observation
was that some of the associations were extremely strong, for example with Af > 0.5. Strong germline genetic risk factors
are often described as pathogenic when they substantially increase your risk of disease, and it seems reasonable to describe
the influence of risk factors as pathogenic when Af is large, such as Af > 0.5. For diseases estimated to have Af > 0.5,
eliminating the risk factors would be estimated to prevent the majority of those diseases in an equivalent population.
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Attribution fractions can identify diseases for which lifestyle changes are likely to have the greatest impact. From a
population perspective, eliminating smoking and controlling BMI in an equivalent population would be expected to avoid:
the majority of diseases with Af > 0.5 (red in table 1), between one third and one half of diseases with 0.35 > Af > 0.5
(orange in table 1), between one fifth and one third of diseases with 0.2 > Af > 0.35 (yellow in table 1). This slightly
ad-hoc categorisation provides an indication of how the patterns of disease would be expected to change if smoking were
eliminated and BMI were controlled in a population that was otherwise similar to that in UK Biobank.

Attributable fractions for a population will be larger if more of the population are exposed to a harmful risk factor. The
Supplementary Material considers an example with a binary exposure X that is uncorrelated with W and confounders Z, and
shows that provided p(R−1)� 1, whereR is the relative risk and p is the proportion of the population that are exposed, then
Af ' p(R−1). In that case, if the exposed proportion p were halved, then so would the attributable fraction. This highlights
an important characteristic of Eqs. 3 and 4 - they measure the proportion of disease in a population that is attributed to an
exposure. However, a clinician might be more interested in the proportion of disease in smokers is attributable to smoking,
and an individual might be more interested in whether smoking substantially changes their risk of serious disease or death.
Questions that refer to individuals can be tackled with counterfactual arguments and Eq. 7. An alternative approach is to
consider the “probability of necessity” [6, 7], that is intended to assess whether it is more probable than not, that the disease
would not have occurred if you had not been exposed to e.g. smoking. Such approaches allow specific individual cases to be
assessed, but do not provide an overall characterisation of an exposure’s influence on population health.

When considering attribution fractions for smoking and BMI together, the study included diseases with statistically
significant associations with either smoking or BMI. In this situation, especially when the number of cases are few, estimates
for one of the two parameters can in principle be large and imprecise. This could produce misleading estimates for the joint
attribution fraction of both smoking and BMI. An example is the strong protective association of smoking with Parkinson’s
disease (table 4 in the Supplementary Material), that was substantially weakened by the association with BMI (table 2), even
though the association with BMI was not statistically significant. This appears to be an isolated example, and the potential
problem is less likely with more cases, but it highlights the importance of also considering the attribution fractions for each
separate exposure.

Meta analyses

If estimates form observational data are to be used in meta-analyses, then it is essential to ensure that estimates are of causal
associations. Some reported estimates will measure the causal influence of a potential risk factor, such as BMI, alcohol, and
smoking in the first example considered here, but this is unlikely to be true for all variables that are adjusted for. If a study
has inappropriately adjusted for potential confounding variables, then the data should not be included in the meta-analysis.
To assess this, a sufficiently good causal understanding is needed of how risk factors and confounders modify disease risk.
Disagreement between studies may indicate incomplete understanding of the underlying causal model, with inappropriate or
insufficient adjustment for confounding factors. In the common situation where uncertainty of the causal processes linking
exposure X to disease risk remain, then the standard methods and cautious reporting of conventional epidemiology must
remain [2, 8], and data from these observational studies cannot reliably be used in meta-analyses.

Conclusions

The aim was to characterise and classify the causal influence of established risk factors on common diseases, using ob-
servational data from UK Biobank. Assuming a simple causal model (figure 1), the theory of causal inference allows the
estimation of causal associations from observational data, for some but not all factors that are usually included in epidemi-
ological studies. These included smoking and BMI. The “backdoor criteria” from causal inference was used to derive a
population attribution fraction, and it was shown how proportional hazards estimates can be used for its evaluation. Conven-
tional epidemiological methods using proportional hazards were used to estimate (adjusted) associations between established
risk factors and common diseases in UK Biobank data. The estimates were used to evaluate attribution fractions for smoking
and BMI on the incidence of 226 diseases, identifying the diseases and ICD-10 chapter disease classifications whose risks
were the most modifiable. The results indicate which diseases and classes of diseases in the UK Biobank cohort are the most
strongly influenced by smoking and BMI, and provides a template for more comprehensive future studies.
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Methods

Relative risks and the “backdoor criteria”

Adjustment was made for associations with smoking, BMI, alcohol consumption, education, socio-economic status, and for
women only, for HRT use and whether they have given birth. Figure 1 shows the assumed causal relationships. The risk
factors X are assumed to include smoking, BMI, and alcohol consumption, and the confounding factors Z are assumed to
include education, socio-economic status, and for women only, HRT use and parity. The presence or absence of disease is
indicated by Y = 1 or Y = 0. For this causal model (figure 1), it is possible to estimate the consequences of setting BMI,
alcohol, and smoking to a specific value X = x, corresponding to do(X = x) using the “do” notation of Pearl [6, 7]. The
situation is described by the well-known “adjustment” formula [6, 7], that states,

P (Y = y|do(X = x)) =
∑
z

P (Y = y|X = x, Z = z)P (Z = z) (8)

where for continuous variables the sums are treated as integrals, upper case X , Y , Z correspond to specific values of random
variables, and lower case x, y, z can take any allowed value. The formula accounts for the confounding influence of Z
on both X and disease risk, and differs from the equivalent result from conventional probability theory, that would have
P (Z = z|X = x) instead of P (Z = z). Take Y = 1 to denote presence of disease, and Y = 0 its absence, so that,

P (Y = 1, T < t|X = x, Z = z) = F (t, x, z) (9)

where F (t, x, z) is the distribution function (with covariates x, z), so that,

F (t, x, z) = 1− S(t, x, z)
= 1− exp(−H(t, x, z))
' H(t, x, z)

= eηx+ηzH0(t) with H0(t) =
∫ t
0 h0(s)ds

(10)

where in going from the 2nd to 3rd line we assume sufficiently rare diseases that exp(−H(t, x, z)) ' 1 −H(t, x, z), as is
the case for the first diagnosis of most diseases in UK Biobank [10, 12], and in going from the 3rd to the 4th lines we assume
that the proportional hazards assumption [3] is valid for the disease being studied, with ηx and ηz being the linear predictor
functions1 for the (possibly) multivariate variables x and z. For a probability density f = dF/dt and hazard function
h = f/S,H(t) =

∫ t
0 h(t) is the cumulative hazard, and a proportional hazards model assumes that h(t, x, z) = h0(t)e

ηx+ηz .
Now using Eq. 8,

P (Y = 1, T < t|do(X = x))
=
∑

z P (Y = y, T < t|X = X,Z = z)P (Z = z)
'
∑

z e
ηx+ηzH0(t)P (Z = z)

= eηxH0(t)AZ

(11)

with AZ ≡
∑

z e
ηzP (Z = z). This allows the incidence rates to be calculated for a (possibly hypothetical) situation where

we have intervened in some way to set X = x, in terms of a baseline hazard function that is estimated in the usual way,
using observational data in which Z can be correlated with both X and disease risk. Note that P (Z = z) and P (X = x) are
implicitly the population values at the study’s start.

At the baseline values of x = x0 and z = z0, by definition ηx(x0) = 0 and ηz(z0) = 0, so Eq. 11 gives P (Y = 1, T <
t|X = x0, Z = z0) = H0(t). Then using the same approximations used to derive Eq. 11, it can be written in several ways,
for example,

P (Y = 1, T < t|do(X = x))
= eηxAZH0(t)
= eηxAZP (Y = 1, T < t|X = x0, Z = z0)
= AZP (Y = 1, T < t|X,Z = z0)

(12)

When education and socio-economic factors are represented by Z, then the factor AZ accounts for changes in risk due to
both socio-economic factors and education, and the influence of setting X = x is calculated through the factor eηx . If we

1For a particular X = x, the linear predictor function is sometimes referred to as the “linear component”, “risk score”, or “prognostic index” [3].
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could setX equal to the baseline values x0, the probability distribution would be proportional to the baseline hazard function
H0(t), amplified or shrunk by the factor AZ . If the baseline values corresponded to the lowest disease risk, then AZH0(t)
would be the lowest possible disease incidence rate that could have been achieved through lifestyle changes. Eq. 12 can be
written as,

P (Y = 1, T < t|do(X = x))

P (Y = 1, T < t|do(X = x0))
= eηx (13)

This gives a relative risk of disease within time t for a population with X = x, compared with a population with baseline
values of X = x0, in terms of estimates from a relative risk from observational studies, that have,

eηx =
h(t|X = x, Z = z0)

h(t|X = x0, Z = z0)
(14)

The analysis above applies more generally to other examples, and to studies other than those involving disease or health.
Similar results will apply whenever F (t, x, z) can be factored as H0(t)g(x)q(z), for some functions g(x) and q(z), as was
possible here because we consider a proportional hazards model and situations whose the incidence is sufficiently rare that
we can approximate F (t, x, z) ' H(t, x, z).

Attributable fractions

Attributable fractions are intended to describe the proportion of disease incidence that is caused by an exposure, or can be
avoided by an intervention. They can be defined in several related but distinct ways [2, 5]. Here the attributable fraction for
the situation described by figure 1 is considered. To allow exploration of the causal influence of a subset X , of risk factors X
and W , the risk factors are considered to be composed of both X and W . If P (Y = 1, T < t) is the probability of observing
a disease at a time T , less than t, then the average causal effect of risk factors on disease risk in a population compared with
baseline risk factors is, P (Y = 1, T < t)− P (Y = 1, T < t|do(X = x0)), and the excess fraction is,

Af =
P (Y = 1, T < t)− P (Y = 1, T < t|do(X = x0))

P (Y = 1, T < t)
(15)

The numerator of 15 is the average causal effect (ACE) [6] of the risk factors X on the population’s disease risk, compared
with the baseline values X = x0. It is divided by the probability of risk in the population, giving an excess risk fraction, that
is referred to here as an attributable fraction. To evaluate this, firstly note that,

P (Y = 1, T < t) =
∫
dxdwdz P (Y = 1, T < t,X = x,W = w,Z = z)

=
∫
dxdwdz P (Y = 1, T < t|X = x,W = w,Z = z)P (X = x,W = w,Z = z)

' H0(t)
∫
dxdwdz eηx+ηw+ηzP (X = x,W = w,Z = z)

(16)

where we assumed the data could be described by a proportional hazards model, and has sufficiently rare diseases to allow
the approximation F (t) ' H(t) = H0(t)e

ηx+ηw+ηz , where ηx, ηw, ηz are linear predictors respectively involving x, w, and
z. Integrals should be replaced by sums for non-continuous variables. P (Y = 1, T < t|do(X = x0)) can be evaluated
similarly, and for the example of figure 1 considered here, we can use the backdoor adjustment formula in the second line
below,

P (Y = 1, T < t|do(X = x0)) =
∫
dwdz P (Y = 1, T < t,W = w,Z = z|do(X = x0))

=
∫
dwdz P (Y = 1, T < t|X = x0,W = w,Z = z)P (W = w,Z = z)

' H0(t)e
ηx0
∫
dwdz eηw+ηzP (W = w,Z = z)

(17)

Therefore, using Eqs. 16 and 17, the excess fraction is given by,

Af =

∫
dxdwdz eηx+ηw+ηzP (X = x,W = w,Z = z)− eηx0

∫
dxdwdz eηw+ηzP (W = w,Z = z)∫

dxdwdz eηx+ηw+ηzP (X = x,W = w,Z = z)
(18)

where eηx0 = 1 for the baseline variables x0. The equation is very similar to conventional expressions for attributable
fractions that use relative risks [5], that would give an attributable fraction of 1−1/R = 1−e−ηx , whereR is the relative risk.
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However the expression now involves averages over the population, that include potential correlations with the confounding
variables. The WHO uses an attributable fraction that is defined as [1],

AW =

∫
dx eηxP (X = x)−

∫
dx eηxP ′(X = x)∫

dx eηxP (X = x)
(19)

where P ′(X = x) is an alternative probability distribution for X . If we take P ′(X = x) to be a delta function centred on
X = x0, with ex0 = 1, so that we are comparing the population with one where X = x0, then,

AW = 1− 1∫
dx eηxP (X = x)

(20)

which is the same as would be obtained by assuming that eηx and eηw+ηz are uncorrelated in Eq. 18. Appendix A.1 shows
that the AW provides a lower (upper) bound on Af if eηx is positively (negatively) correlated with eηw+ηz . In general Eqs.
18 and 19 will differ, and neither should have a causal interpretation unless the causal model satisfies suitable conditions
such as those in figure 1 that ensure that causal associations are being estimated.

To estimate the integrals in 18, note thatE[f(X)] = E[(1/n)
∑n

i=1 f(Xi)] and that the variance Var[(1/n)
∑n

i=1 f(Xi)] =
(1/n)Var(f(X)) → 0 as n → ∞. This allows the integrals to be approximated by a sum over the observed data, which is
reasonable if the number of data points is sufficiently large in each level of categorical data considered. For example, in the
study of UK Biobank described later with nearly 500,000 participants, the smallest category was for current smokers, but
this included over 50,000 smokers. With this approximation,

Af ' 1−
∑n

i=1 e
ηwi+ηzi∑n

i=1 e
ηxi+ηwi+ηzi

(21)

That might alternately be written as,

Af = 1− 1∑n
i=1wie

ηxi
(22)

with,

wi =
eηwi+ηzi∑n
i=1 e

ηwi+ηzi
(23)

which shows that the relative risk is weighted by the influence of confounders and other risk factors, but is similar to
conventional expressions attributable fractions with A = 1 − e−ηxi . When there are no confounders or other risk factors
than x, then the terms in Eq. 23 become 1, and wi = 1/n, so that

∑n
i=1wie

ηxi is then just the average of eηxi across the
population. The expression makes it clear that if the relative risk e−ηxi is positively correlated with the relative risks from the
confounding and other potential risk factors eηwi+ηzi , then

∑n
i=1wie

ηxi >
∑n

i=1 e
ηxi , and the attribution fraction is greater

when accounting for the confounding and other potential risk factors.

To compare the attributable risk between setting X = x1 and X = x2, the equivalent expression to Eq. 21 is,

P (Y = 1, T < t|do(X = x2))− P (Y = 1, T < t|do(X = x1))

P (Y = 1, T < t|do(X = x2))
= 1−

eηx1
∑n

i=1 e
ηwi+ηzi

eηx2
∑n

i=1 e
ηwi+ηzi

= 1− eηx1−ηx2 (24)

which is just the conventional result for attributable fraction in terms of the relative risk.

Number of attributed cases

The proportion of disease cases that are attributed to a risk factor is only important if the disease is sufficiently common.
The change in the number of cases of disease can be estimated using the estimated attributable fraction and the number of
observed cases of disease. If N is the population size under consideration, and P ≡ P (Y = 1, T < t), P0 ≡ P (Y = 1, T <
t|do(X = x0)), then,

Af =
N(P − P0)

NP
(25)

If we approximate NP as the observed number of cases in the population being studied Nobs, then we can estimate the
number of extra (or fewer) cases from the attributable fraction Af , with,

NAf
≡ N(P − P0) = AfNP ' AfNobs (26)
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This gives a simple estimate for the number of cases that are attributable to a risk factor. However, this is the number of
attributable cases of hospital admissions, for diseases included by the study’s selection criterion - first admissions in an
ICD-10 chapter in this paper. This latter estimate could substantially differ from our perception of the number of hospital
admissions caused by a specific disease, that could be dominated by sequences of hospital visits, or result from a different
original underlying cause. For that reason, attributable fractions are generally a better measure of the causal influence of risk
factors on the risk of disease.

If the attributable fraction given by Eq. 21 were negative, then instead of considering (P − P0)/P , an alternative would
be to consider (P0−P )/P0. However, providedAf is reasonably small, then the two estimates have approximately the same
magnitude, with a change in sign to indicate the direction of effect. Expanding (P0−P )/P0 in terms of Af = (P −P0)/P ,
gives,

P0 − P
P0

= −
(
P − P0

P

)
1

1−
(
P−P0
P

) ' −(P − P0

P

)
(1 +Af ) (27)

Showing that both expressions are approximately equal in magnitude if Af is small.

Survival analysis

To minimise the potential for confounding by prior disease, only the first incidence of disease in each ICD-10 chapter was
considered for each individual. Diagnoses that were the primary cause of hospital admission were considered. These will
have passed a threshold of severity to trigger hospital admission, and are recorded with an ICD-10 code in hospital episode
statistics (HES). Individuals who reported diabetes at entry to the study were excluded, to ensure that any new cases of
diabetes would almost entirely involve type II diabetes. For each disease, the participant’s data were excluded if onset
occurred before they entered the study, or if they had a prior hospital diagnosis of cancer other than non-melanoma skin
cancer. The incidence rates of the diseases considered are “rare” in the approximate sense needed to estimate attribution
fractions [12]. A survival analysis using age as the time variable was left-truncated at a participant’s entry to the study,
right-censored if there was: death, cancer other than non-melanoma skin cancer, or the study period ended. All diagnoses
recorded between entering the study and 31st January 2020 were included, as recorded in UK Biobank HES data on 8th
December 2021. Data beyond 31st January 2021 were likely to be influenced by the COVID-19 pandemic and were omitted.
Analyses were multiply adjusted using a proportional hazards model, with men and women studied separately, and a causal
model assumed as in figure 1. Adjustment considered the established risk factors of: smoking status (never, previous, or
current), alcohol consumption (rarely - less than 3 times per month, sometimes - less than 3 times a week but more than 3 per
month, regularly - 3 or more times each week), education (degree level, post-16 but below degree, to age 16 or unspecified),
socio-economic status (tertiles), height (sex-specific tertiles), BMI (sex-specific tertiles), and for women we also adjusted
for: HRT use ever (yes, no), and one or more children (yes,no). Baseline was taken as: never smoker, rarely drink, brisk
walking pace, degree-level education, minimum deprivation tertile, minimum height tertile in men (or women), middle BMI
tertile in men (or women), and women with no children or HRT use. Only diseases with at least 140 cases were considered.
This ensured there were at least 10 cases per parameter to adjust from baseline, even if a parametric e.g. Weibull model with
an extra two parameters to fit the baseline hazard function were considered [12]. Sensitivity analyses excluded participants
with a broader range of prior diseases, leading to fewer total cases and fewer diseases included in the study. Analyses were
multiply adjusted. There were less than 1% missing values, allowing a complete case analysis. Numerical work and plots
used R [15], and packages used here included: survival[16] and grr[17].

Attribution fractions for the UK Biobank population were considered for three situations: observed population verus
never-smoked, observed population versus middle BMI tertile, and observed population versus never-smoked and middle
BMI tertile. The latter case is comparing the correlated exposures of BMI and smoking status in the observed population,
to a situation where BMI and smoking are set to their baseline values of never-smoked and middle BMI tertile. Because
the baseline BMI tertile is the middle tertile, current smokers could be correlated with either the top or bottom BMI tertile.
Frequency of alcohol consumption was adjusted for but not studied, because it is a less precise measure than smoking status
or BMI, and it is known to have inconsistent associations with disease risk in different studies [19].
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Data availability

UK Biobank data can be accessed by application through www.ukbiobank.ac.uk, and summary data produced during this
study will become available from: osf.io/. UK Biobank has approval by the Research Ethics Committee (REC) under
approval number 16/NW/0274. UK Biobank obtained participant’s consent for the data to be used for health-related research,
and all methods were performed in accordance with the relevant guidelines and regulations.

Code availability

R code used to produce figures from summary data will become available from: osf.io/. The full code for use with non-
summary data will be returned with other results to UK Biobank (see www.ukbiobank.ac.uk).
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