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Abstract

Type  2  diabetes,  one  of  the  major  causes  of  death  and  disability  worldwide,  is  characterized  by

problems in the homeostasis of blood glucose. Current preventive policies focus mainly on individual

behaviors  (diet,  exercise,  salt  and  alcohol  consumption).  Recent  hypotheses  state  that  the  higher

incidence of metabolic disease in some human populations may be related to phenotypic decanalization

causing a heightened phenotypic variance in response to unusual or stressful environmental conditions,

although the nature of these conditions is under debate. Our aim was to explore variability patterns of

fasting  blood  glucose  to  test  phenotypic  decanalization  as  a  possible  explanation  of  heightened

prevalence for type 2 diabetes in some groups and to detect variables associated with its variance using

a nation-wide survey of Argentinian adult population.  We found patterns of  higher local variance for

fasting glycemia associated with lower income and educational attainment. We detected no meaningful

association of glycemia or its variability with covariates related to individual behaviors (diet, physical

activity, salt or alcohol consumption). Our results were consistent with the decanalization hypothesis

for fasting glycemia,  which appears associated to socioeconomic disadvantage. We therefore propose

changes in public policy and discuss the implications for data gathering and further analyses.
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Introduction

Diabetes  is  a  health  condition  of  global  concern  that  afflicts  an  estimate  of  422  million  people

worldwide, mostly from low-and middle-income countries [1], and is predicted to become a problem

affecting  one-third  of  the  world  population  in  the  next  generations  [2].  This  chronic  metabolic

condition is characterized by high levels of blood sugar, which can cause heart disease, nerve damage,

kidney failure, vision loss, problems during pregnancy, tissue damage requiring leg amputation, and

generally increase the risk of disease complications and premature death [1, 3]. In addition, in the last

year, a higher  susceptibility to adverse outcomes for COVID-19 has been reported for people with

diabetes or high blood sugar [4, 5]. 

Type 2 diabetes, the most common kind [6], is caused by insulin resistance or a lack of production of

this hormone. Patients usually require medication, changes in the diet, physical activity and regular

checking to maintain their blood sugar levels on a healthy range.

Much work has been done to uncover and describe risk factors for type 2 diabetes or high blood sugar

and most  public  health  approaches  focus  on the  spread of  information about  "healthy habits",  i.e.

adequate consumption of fruits and vegetables, regular physical activity, avoidance of tobacco, alcohol

and  salty  foods,  and  weight  control  [1,  3].  Although  socioeconomic  factors  related  to  increased

prevalence of diabetes have been described, it is assumed that their effect occurs through the lack of

resources (income, time and/or information) to exercise the aforementioned recommendations [3]. 

Decanalization

One of  the hypotheses  seeking to  explain complex diseases  such as  type  2 diabetes  points  to  the

influence  of  environmental  stressors  in  phenotypic  variance.  This  hypothesis  is  based  on  the

phenomenon of  canalization,  a  concept first  coined by Waddington  [7] to  explain  the adoption of

discrete and fixed “fates” by cell populations; it was later extended to groups of individuals, to describe

their  relative phenotypic uniformity despite genetic or minor environmental changes (in this  sense,

canalization is said to comprise both genetic and environmental mechanisms [8]). In populations living

in relatively stable environments, it is expected that stabilizing selection leads to the accumulation of
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epistatic  interactions  that  restrict  the  population’s  phenotypic  variance  for  adaptive  traits  near  the

optima for  the environmental  range  [8].  This reduction of  variance means the trait  would  become

“canalized” around these phenotypic values, and as a consequence a majority of the individuals within

the population would present similar phenotypes spanning a restricted range. However, under stressful

or uncommon environmental conditions, those epistatic interactions may become perturbed; thus, more

individuals are expected present extreme phenotypic values, leading to an augmentation of phenotypic

variance at the level of the population (“decanalization”), a principle first described by Schmalhausen

[9].  Here  we  will  focus  on  this  particular  meaning  of  canalization,  a  term  usually  designing a

population  feature  which  stems from  the  robustness  of  individuals’ developments  in  the  face  of

environmental change.

Figure 1 summarizes the expectations under the decanalization hypothesis for complex diseases. In

stable environments, important physiological variables are tightly regulated in most individuals, so that

most of them present trait values near the phenotypic optimum; i.e. the phenotype is canalized, and few

individuals  present  extreme  (possibly  pathological)  values.  In  populations  subject  to unusual  or

stressful environments, phenotypic decanalization would lead, even possibly in the absence of a change

in the mean value for the trait, to a higher proportion of the individuals presenting extreme phenotypic

values, with possible consequences for their health and life quality.
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Fig. 1 Representation of phenotypic (de)canalization.

Expected distribution for the trait values in a hypothetical population under usual and unusual or stressful environments,

determining  canalized  and  decanalized  phenotypic  distributions.  A heightened  phenotypic  variance  results  in  a  higher

proportion of individuals with extreme phenotypic values at both ends of the distribution.

There are two different accounts for the decanalization hypothesis that can be  applied to metabolic

diseases such as diabetes in human populations. Both would  consider the disease prevalence, in this

case type 2 diabetes, as related to the phenotypic decanalization of an otherwise canalized trait (here,

the homeostatic mechanism regulating blood glucose levels) in some groups within the population.

They  differ,  however,  in  terms  of  which  are  the  relevant  environmental  factors  causing this

decanalization.  One  of  the  hypotheses  points  towards  the  introduction  of  industrialized  foods  and

changes in motor activity (i.e. sedentarism) as driving the augmentation of phenotypic variability for

blood sugar  levels  in  human populations  and,  therefore,  leading to  a higher  prevalence of  type  2

diabetes [10]. According to this version, it follows that efforts to tackle diabetes should be focused on

the  promotion  of  healthy  habits  [2,  10].  A second  version  of  the  decanalization  hypothesis  was

formulated by Lewontin and Levins [11, 12]. The basis of this explanation is similar, but the authors,

when  discussing  human  populations,  refer  to  the  poor,  excluded  and  marginalized  communities

suffering from multiple environmental stressors which are not under their control, that depend on the
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historical relationship of the populations with their  environment, including social relations between

individuals. According to this view, inequalities directly impact on physiological processes through a

multitude  of  mechanisms  (including  psychological  stress  derived  from  the  position  within  class

hierarchies)  affecting  health  as  a  whole.  Under  the stressful  conditions  to  which  these  groups  are

subjected, mechanisms buffering the phenotype from environmental variation break down, and latent

differences  between  individuals  become  manifest  [11,  13].  According  to  Himmelstein  et  al.  [13],

homeostatic capacity generally erodes with age through the accumulation of stressors, but differences

can be found when accounting for factors such as race or income, so that underprivileged  people’s

homeostatic  mechanisms deteriorate  faster;  therefore  these  groups  present  greater  phenotypic

variability earlier. These authors, and others focusing on the social determinants of health, argue that

health policies that rely on the spread of information about healthy habits to tackle diabetes are not the

best way to address the problem, and they also shift the responsibility to the individuals when the

causes of disease would be of social origin and therefore outside of their control [12, 14]. This version

of  the  hypothesis  is  not  incompatible  with  other  approaches  like the “psychosocial  stress  theory”,

although it provides for a possible mechanism through which stimuli of very different kinds which are

perceived as stressful (or protective) may affect the susceptibility to suffer from ill health [15].

It is known that physiological levels of fasting blood glucose in humans are tightly regulated; according

to current guidelines the healthy range lies between 70 and 100 mg/dL. However, to our knowledge, the

decanalization hypothesis for this trait in human populations has not been systematically assessed [16].

Evidence from experimental studies carried out in Drosophila melanogaster supports the idea that the

likelihood of extreme metabolic phenotypes can be augmented by dietary changes leading to a higher

phenotypic variance  [17].  There are obvious obstacles to  the testing of this  hypothesis  in humans,

although some observational studies show results consistent with it [13, 18].

A corollary to both decanalization hypotheses is that trying to model individual risk for diabetes would

be fruitless,  as would be looking for a difference in means of blood sugar levels between groups.

Therefore, different statistical approaches and, ideally, surveys designed to this end would be needed to

identify  groups  with  a higher  susceptibility  to diabetes  and  to  design  public  health  strategies  to

counteract this problem, an objective of the utmost importance [3]. 

100

102

104

106

108

110

112

114

116

118

120

122

124

126

128

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 27, 2021. ; https://doi.org/10.1101/2021.12.24.21268333doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.24.21268333
http://creativecommons.org/licenses/by-nc/4.0/


6

Diabetes in Argentina

In Argentina, according to the last National Surveys on Risk Factors for Noncommunicable Diseases

the  prevalence of diabetes and hyperglycemia (by self-report)  has been on the rise in the last  two

decades [19]. Public health campaigns at the national and regional level have focused on the promotion

of healthy habits  [20], and although a heightened  prevalence was detected in the surveys for people

with  lower  educational  attainment  and  public  (vs.  private)  health  insurance,  no  mechanism  was

proposed other than lack of access to or noncompliance with dietary and physical exercise guidelines

[19].

In contrast to previous surveys, in order to assess the possible under-diagnosis of diabetes and high

blood sugar,  the last  National  Survey carried out in 2018 incorporated biochemical  measurements,

including capillary fasting blood glucose. In this work, using these determinations, we tested whether

data  from the Argentinian urban population support  the decanalization hypothesis  for  glycemia,  in

order to explore the determinants of hyperglycemia and diabetes. Moreover, we were able to explore

associations  with  socioeconomic  and  individual  variables  that  could  account  for  the  differences

observed in the patterns of fasting blood glucose.  This setting provides us with a  basis  to discuss

current public preventive  approaches and propose changes in health policy and future survey design

and analysis.

Materials and methods

Data

The raw database from the 2018 National Survey on Risk Factors for Noncommunicable Diseases,

consisting on several variables from 25,208 adults  from all  provinces randomly selected through a

probabilistic  multi-stage sample design,  was obtained from the  INDEC webpage.  All  raw data  are

available at https://www.indec.gob.ar/indec/web/Institucional-Indec-BasesDeDatos-2.
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Although information on diabetes diagnosis (by self report) was available, it was not used for these

analyses,  as it  did not allow us to  test  the decanalization hypothesis.  Therefore,  we used only the

determinations  of  fasting  blood  sugar;  data  were  filtered  to  exclude  those  cases  where  these

determinations  were  not  performed.  The  relevant  explanatory  variables  were  chosen  according  to

bibliography  and  availability  of  data  on  the  survey.  Those  were  age,  sex,  income,  educational

attainment for the interviewee and head of the household (grouped in three levels;  1 = elementary

school not completed, 2 = completed elementary school, high school not completed, 3 = completed

high school),  density  (ratio  of  inhabitants  /  number  of  rooms on the  household),  utilities  (a  joint

variable combining the information for water, gas and sewage system availability, rescaled between 0

and  1),  paid  working  time  (grouped  in  three  levels,  besides  zero  for  unemployed  or  retired

interviewees, and not including unpaid work; 1 = time < 35 weekly hours, 2 = 35 < time < 45 weekly

hours, 3 = time > 45 weekly hours), average number of daily fruits and vegetables consumed, levels of

alcohol  (0  =  no  problematic  consumption,  1  =  problematic  regular  consumption  or  problematic

episodic consumption, 2 = problematic regular consumption and problematic episodic consumption)

and salt intake (0 = does not use salt, to 3 = always adds salt to meals), levels of physical activity (1 =

low, 2 = intermediate, 3 = high) and sedentarism (daily minutes spent sitting).

Generation of new variables

We generated a categorical variable for levels of fasting blood sugar (in mg/dL) based on the raw

values provided in the survey database. However,  instead of the standard ranges of fasting plasma

glucose used by convention to diagnose diabetes and prediabetes [1], we implemented a more gradual

categorization,  with  its  levels  being  hypoglycemia  (glycemia<70),  normal  (70<=glycemia<110),

borderline (110<=glycemia<140), prediabetes (140<=glycemia<200), diabetes (200<=glycemia<240)

and severe diabetes (glycemia>=240). 

Age is a well described risk factor for hyperglycemia and type 2 diabetes [19, 21, 22]. To account for

its effect on blood sugar levels, we calculated residuals from the linear regression between glycemia

and age , and created a variable grouping absolute residuals in three categories: Normal (residual<40),

Outlier  (40<=residual<80),  roughly  representing  Q1  +  IQR  and  Q3  +  IQR,   and  Extreme

(residual>=80),  approximately  Q1  +  2.5*IQR  and  Q3  +  2.5*IQR.  This  variable  serves  to  group
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individual values that deviate from the estimate in both directions and is therefore useful to detect

decanalization.

Monthly household income was also categorized in four levels:  high or A (income>=40,000 pesos

argentinos), middle or B (20,000<=income<40,000), low or C (10,000<=income<20,000) and very low

or D (income<10,000). At the time the survey was performed, the cutoff for indigence for an average

family (two adults, two children) in Buenos Aires was of 10,122 pesos, approximately corresponding to

280 US Dollars [23]. In this sense an average family in group D would be considered as indigent.

Finally, Coefficients of Variation for glycemia were calculated as s/x̄, being s and x̄ the estimators of

standard deviation and mean for each group.

Statistical analyses

All statistical analyses were performed in Rstudio [24] using R version 3.6.3  [25].

We applied several statistical analyses to test the decanalization and alternative hypotheses. First, we

applied a “traditional” approach, i.e. we tested whether average glycemia values per individual can be

predicted by the explanatory variables, which were detailed above. Contrarily to the decanalization

hypothesis,  which  would  search  for  an  increased  within-group  variance  to  detect  factors  behind

increased susceptibility to diabetes, all of these “traditional” analyses are aimed at modeling individual

risk for diabetes.

For this approach, we applied supervised machine learning algorithms such as random forest (RF),

Gradient Boosting Machine (GBM), and regression Support Vector Machine (SVM). These analyses

were performed with randomForest, caret,  and e1071 R packages [26-28]. RF works by repeatedly

subsampling from the data, constructing a decision tree for each subsample (in the case of regression,

the response variable is discretized) and then averaging or combining the resulting trees. GBM also

works with trees, by producing an ensemble of “weak” ones into a “strong” classifier, where each

decision  tree  has  a  different  influence  according  to  performance  [29].  SVM  works  by  finding  a

hyperplane defined by the optimal parameters to explain the response variable (i.e. minimizing the

distance to the maximum number of points) [30, 31]. 
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Second, to test the predictions of the decanalization hypothesis and to inquire the explanatory variables

influencing diabetes susceptibility, we first describe the multivariate space for our data. A Categorical

Principal  Component  Analysis  (PCA) was  performed  using  the  princals  function  from the  Gifi  R

package [32], where all  explanatory variables excepting sex were considered ordinal.  This analysis

combines linear multivariate analysis with optimal transformation of the categorical variables using

alternating least squares [33]. No variables related to blood sugar level were used as active variables in

this  analysis.  Therefore,  the  obtained components  represented  a  multivariate  space  defined by the

explanatory variables. Then, on this multivariate space, we mapped the categorical variable that groups

absolute residuals from the regression between glycemia and age in three categories: Normal, Outlier,

and  Extreme,  as  described  above.  As  we  used  absolute  residuals,  those  categories  represent  the

variability of glycemia in relation to its expected value. Thus, they are an approximation to groups with

different levels of decanalization, each one characterized by broader deviations from expectation. To

test whether individuals from the Normal, Outlier, and Extreme groups occupied distinct sectors of the

socioeconomic multivariate space, the scores for individuals in all PCA components were subjected to

a Permutational Multivariate Analysis of Variance (PERMANOVA [34]) using the adonis function of

the vegan R package [35], having previously checked the assumption of multivariate homogeneity of

variances  (using  functions  betadisper  and  permutest  from the  same  package).  Bonferroni-adjusted

pairwise comparisons were performed with the pairwise.adonis function [36].

In the same multivariate space of socioeconomic explanatory variables, we determined regions of high

and low variance for fasting blood glucose. With this aim, we used a procedure similar to a running

average in two dimensions. The algorithm determines neighborhoods in the multivariate space and then

computes the standard deviation for fasting blood glucose for all the observations within. This function

returns  a  vector  containing  the  running  standard  deviation  for  the  neighborhood  around  each

observation. This analysis was inspired by spatial analysis: imagine a city where diabetes susceptibility

varies among real neighborhoods. Then, following the decanalization hypothesis from Lewontin and

Levins  [11,  12],  marginalized  neighborhoods  should  show higher  values  of  standard  deviation  in

glycemia.  Our  data  sadly  lacked  detailed  geographical  information,  but  through  PCA we  could

construct “neighborhoods” of individuals that share certain socioeconomic characteristics.
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After identifying through the PCA and running standard deviation the variables that better explained

differences in neighborhood variability for glycemia, we tested whether these variables were associated

to different patterns of blood sugar levels. With this aim, we performed a log likelihood ratio test of

independence to explore if the individuals with normal, outlier or extreme glucose residual values were

equally distributed in the different income and educational attainment groups. using the GTest function

from the DescTools package [37]. 

Results

First, data from the National Survey were filtered.  From a total of 4,477 individuals on which blood

glucose was measured, 4,115 individuals were retained for which complete records were available for

all variables (Table 1, Additional File 1).  Given the reported relationship between glycemia and age,

which  was  also  confirmed  by  our  exploratory  analyses,  we  calculated  residuals  from  the  linear

regression between glycemia and age and also created a categorical variable for groups according to

absolute residuals (see Materials and methods).

Covariates Mean ± SD or %

Age (years) 50.2 ± 16.1

Sex Male: 41.55%

Female: 58.45%

Max. Educational attainment: interviewee Incomplete elementary school: 8.41%

Incomplete high school: 33.90%

Complete high school and above: 57.69%

Max. Educational attainment: head of household Incomplete elementary school: 9.28%

Incomplete high school: 35.36%

Complete high school and above: 55.36%

Monthly income for the household (Argentine Pesos) 23,369 ± 18,313

250

252

254

256

258

260

262

264

266

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 27, 2021. ; https://doi.org/10.1101/2021.12.24.21268333doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.24.21268333
http://creativecommons.org/licenses/by-nc/4.0/


11

Working time (weekly hours) No working time: 38.5%

0 to 35: 22.2%

35 to 45: 23.1%

> 45: 16.2%

Density (inhabitants / household rooms) 1.00 ± 0.70

Utilities (from 0 = no access to gas, water or sewage 

system to 1 = access to gas, water and sewage 

system)

0.64 ± 0.17

Level of physical activity Low: 46.2%

Intermediate: 36.8%

High: 17.0%

Sedentarism (daily minutes spent sitting) 261.4 ± 174.0

Daily fruit & vegetable consumption (portions) 2.03 ± 1.62

Salt consumption Does not add salt to meals: 21.6% 

Sometimes adds salt to meals: 50.8%

Frequently adds salt to meals: 17.4%

Always adds salt to meals: 10.2%

Alcohol consumption No problematic consumption: 82.9%

Regular or episodic problematic consumption: 13.2%

Regular and episodic problematic consumption: 3.8%

Table 1. Summary for all covariates used as explanatory variables in the analyses

First,  we performed  the  “traditional”  analyses  to  model  raw values  or  residuals  for fasting  blood

glucose measurements. We found no regression algorithm that could satisfyingly fit our data, as they all

explained a low proportion (<10%) of variance for both variables (Additional File 2). 

We performed a Categorical Principal Component Analysis and generated a multivariate space of the

explanatory individual and socioeconomic variables; we retained 8 components explained 81.1% of the
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total variance. Loadings for the first 4 components (with a cutoff of 0.1) are shown in Table 2 (for all 8

components retained, see Additional file 3). 

PC1 (20.62%) PC2 (15.12%) PC3 (10.20%) PC4 (8.97%)

Age 0.450 -0.665 0.301

Sex 0.180 -0.283 -0.695 0.130

Education: interviewee -0.814 -0.153 -0.275 0.131

Education: Head Household -0.805 -0.208 -0.234 0.129

Income -0.645 -0.170

Working time -0.547 0.460 0.173

Density (inhabitants/rooms) 0.654 -0.375

Utilities -0.426 -0.519 0.145

Physical activity -0.238 0.178 -0.724

Sedentarism -0.292 -0.196 0.373 0.481

Daily fruit & veg consumption -0.144 -0.407 -0.186 -0.476

Salt consumption -0.151 0.313 0.279

Alcohol consumption -0.225 0.324 0.496 -0.171

Table 2. Loadings for all variables in the four Principal Components and % of explained variance.

The first  principal  component  was negatively  correlated  with  educational  attainment  (both  for  the

interviewee and head of the household) and income, followed by working hours, while the second

component presented higher loadings for density of inhabitants in the household and interviewee’s age

(Table 2). Variables related to the usual lifestyle recommendations (level of physical activity, diet and

alcohol consumption) did not have high loadings for the first two components, although they were the

most  correlated  with  the  fourth  component.  Therefore,  the  first  two  components  were  mainly

determined by socioeconomic variables while lifestyle influenced the third and fourth ones. The fifth

and seventh component were mostly associated with salt and alcohol consumption, respectively, with

the rest of the variables showing lower loadings (Additional File 3).
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Fig. 2 Curves for Normal, Outlier and Extreme glycemia residuals

Biplots for the first  and second components  (a) and third and fourth components (b) of the PCA.

Density curves for Normal, Outlier and Extreme groups (bins=2) are superimposed.

Superimposing smooth  density  estimates  for  Normal,  Outlier  or  Extreme  groups for  fasting  blood

glucose residuals over the PCA biplot allowed us to explore how they differ in their characteristics for

the explanatory variables. Figure 2 (a) shows distinct groups partially separated by the first and second

Principal Components; there was a higher density of individuals with extreme residual values in the

sector corresponding to a low income and low educational attainment (both for the interviewee and the

head of the household). The higher density for the normal group was found in the region of higher
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educational attainment, higher income and lower age. No clear pattern was found regarding lifestyle

variables, and Figure  2 (b) shows that the three groups mostly overlapped for the third and fourth

Principal Components. No clear patterns were found for the rest of the components (Additional File 4).

Similar results were obtained by using residuals of the linear regression between glycemia and age (not

shown).

To analytically determine whether there were distinct regions of higher density of normal, outlier or

extreme values for fasting blood glucose in the space determined by the  Principal Components, we

performed  a  PERMANOVA,  after  confirming  no  significant  departures  from  homogeneity  of

multivariate  dispersion  in  this  multivariate  space  (F2,4112 =  0.729;  p  =  0.47).  The  PERMANOVA

indicated that there were significant differences between Normal, Outlier and Extreme groups of blood

glucose residuals for their position in the multidimensional space regarding all components retained in

the  PCA (F2,4112 =  20.95;  p  =  0.001).  Indeed,  the  three  groups  differed  significantly in  pairwise

comparisons (Table 3). 

F Adjusted p-value

Normal - Extreme 7.22 0.003

Normal - Outlier 4.43 0.003

Extreme - Outlier 3.38 0.009

Table 3. Results of the pairwise comparisons for the PERMANOVA test
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Fig. 3 Running standard deviation for fasting glycemia in the first and second components of the PCA

(a) Biplot for the first and second components of the PCA; point size correlates with fasting blood

glucose levels (mg/dL) and color  scale  indicates levels of running standard deviation (mg/dL).  (b)

GAM smoothed curves for the running standard deviation.
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Fig. 4 Running standard deviation for fasting glycemia in the third and fourth components of the PCA

(a) Biplot for the third and fourth components of the PCA; point size correlates with fasting blood

glucose levels (mg/dL) and color  scale  indicates levels of running standard deviation (mg/dL).  (b)

GAM smoothed curves for the running standard deviation.
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The  calculations  of  the  running  standard  deviations  showed  a  clear  correlation  between  the  first

principal  component  and  heterogeneity  for  fasting  blood  glucose  (Figure  3),  with  the  regions

corresponding with lower income and educational attainment presenting neighborhoods with a higher

variance for the trait. For the third and fourth components, a small region of high variance was found

corresponding to the higher scores for the third component (higher alcohol consumption, older age,

male gender), but no clear tendency was apparent overall (Figure 4). No defined pattern was observed

either for the rest of the components (Additional File 5). These results did not change when correcting

by running average (not shown).

Fig. 5 Fasting glycemia and Coefficients of Variation by income group

Above: boxplots for values of glycemia (mg/dL) for the four income groups. Below: Coefficients of

Variation for glycemia for the four income groups and the three levels of educational attainment.
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As income and educational attainment appear as highly correlated relevant explanatory variables, we

formed four income categories (see Materials and Methods) and estimated Coefficients of Variation of

blood glycemia for all income and educational level combinations. Figure 5 shows the expected results:

a trend for higher variability in low income groups. Also a reverse relationship between variability of

glycemia and educational attainment can be found, although the latter is not clear in the higher and

lower income groups, probably due to the scarcity of interviewees in the highest income – lowest

educational attainment and lower income – higher educational attainment groups.

Fig. 6 Results of the frequency analysis for categorized glycemia residuals 

Residuals relative to G-statistic value for all combinations of income and educational attainment. Red

color indicates that the frequency of individuals in the group is higher than expected if blood glucose

residual  levels  were  independent  of  income  and  educational  groups,  while  blue  denotes a  lower

frequency than expected under the assumption of independence.

Finally,  to  analytically  test  if  the  distribution  within  Normal,  Outlier  and Extreme groups  for  the

residuals from the linear regression between glycemia and age is independent of these socioeconomic

variables, we formed groups by combining categorized income with individual educational attainment

and performed a G-test  for independence.  We found significant  deviations from independence (G-

testdf=22 = 68.69; p = 1.06e-06), indicating that the proportion of individuals within the Normal, Outlier

or  Extreme  groups depends  on  the  income-educational  attainment  combination.  The  relative
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contributions to the statistic for each category can be found in Figure 6. For the high income and high

education group, individuals in the Normal category for the regression between glycemia and age were

more frequent than expected,  while there was an excess of individuals at  the Extreme and Outlier

categories in the lower income and lower education groups. Interestingly, this trend was reversed in the

low income and high education (C-3) group. However, we could not evaluate if this effect held for the

higher and lower income groups, where lower and higher educational attainment, respectively, were not

frequent.

Finally, we wanted to analyze whether these statistical trends also had a clinical significance, meaning

whether the distribution of blood glycemia values in the different income-education groups represented

particular  patterns  of  outcomes  with  impact  on  life  quality.  As  expected,  a  higher  proportion  of

individuals in the lower income and lower educational attainment groups presented levels of glycemia

that can be categorized as prediabetes, diabetes or severe diabetes (Figure  7). It may be noted that

hypoglycemia is also more prevalent in the lower income groups. 

Fig. 7 Levels of fasting glycemia per income and educational attainment

Relative  frequency  of  individuals  presenting  each  glucose  level  at  each  income  and educational

attainment combination
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Discussion

Here we have shown how data from an Argentinian National  Health Survey fit  the hypothesis  of

phenotypic decanalization (in this case, of fasting blood glucose values) in response to socioeconomic

variables, with a gradient in which the most disadvantaged groups show a greater variance than those in

the  best  position  as  defined  by  income and  educational  attainment.  Our  results  contrast  with  the

dominant conception according to which socioeconomic situation acts through making the adoption of

healthy habits not feasible [1, 3]. The data here analyzed show little to no evident relationship between

lifestyle  variables  and  variability  for blood  sugar  values.  It  should  be  noted,  however,  that

socioeconomic  variables  surely  condition  the  adoption  of  healthy  habits  to  some  extent,  as  some

answers to the survey indicate [19].

These results are relevant for several different reasons. First, they are important in the statistical sense

because of the issues they raise as a corollary: predicting individual risk would be highly ineffective, as

the augmentation of variance constitutes a group property. This is consistent with our inability to find

any “traditional” model that would help explain or predict individual blood sugar values reliably. In

fact,  a  higher   group  variance  implies  a  heightened  individual  probability  of  both  hyper  and

hypoglycemia. Therefore, if the decanalization hypothesis is true, a higher incidence of diabetes or high

blood sugar could be found even without a change in means of glycemia by group, and this fact has

important implications regarding statistical methods to search for factors affecting health and the design

of population surveys.

But this finding is not only relevant in the statistical sense; these higher variances determine groups in

which a higher proportion of individuals suffer from levels of blood glucose that are associated with

pathology, or significant  susceptibility to develop a health condition, as we have shown in Figure  7.

These high fasting blood sugar values lower quality of life, increase the risk of short and long-term

complications, some even life-threatening [1], and worsen the prognosis for several other conditions [4,

5, 38].
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There is a number of advantages of this kind of analysis. First, it overcomes some of the most frequent

critiques to  traditional  epidemiological  research  [39] such as that  it  does not  propose mechanisms

behind increased prevalence, and therefore the real causes of ill health may become invisibilized. Also,

that it tends to disregard, minimize or simplify social and economic variables [40]. This is particularly

troubling in the case of diseases affected by social or economic factors that may become masked by

other variables more consistent with the idea of health as determined by individual (lifestyle or genetic)

factors, therefore making the individuals responsible for their ill health, and promoting constant self-

surveillance  [41, 42]. In contrast, our approach includes a possible mechanism behind the increased

prevalence of complex disease in vulnerable (or vulnerated [43]) populations that can accommodate a

more  holistic  understanding  of  health  and  pathology  processes,  including the  shifting  social  and

economic relationships in the explanation of phenotypic changes [40], and also would lead to concrete

strategies and public policy recommendations, without focusing on individual behaviors.

It should be noted that this approach is also not contingent on guidelines and rigid categorizations on

healthy and ill individuals, which may be debatable, given the many interests and perspectives behind

these  discussions  and  the  notions  of  health  and  disease  themselves,  and  therefore  result  in

heterogeneously adopted or changing criteria. In this sense, that this hypothesis does not rely in fixed

boundaries between health and disease can be seen as an advantage and an opportunity to leave open

the discussion on such boundaries.

in this sense, blood glucose determinations are an inestimable tool, as previous surveys only accounted

for high blood glucose or diabetes by self-report as a categorical variable. Also, as they were performed

in a probabilistic fashion, they provide a sample that is representative of the adult urban population of

Argentina. Should this methodology be retained for future surveys, it will also allow for a follow-up of

patterns of diabetes in the Argentinian population.

However, our analysis has some disadvantages and limitations. First of all, biochemical determinations

were  only  carried  out  in  interviewees  from districts  with  a  population  higher  than  150.000  [19].

Therefore, our conclusions can only apply to an urban population, as previously mentioned. Another

limitation on the survey concerns age, since all interviewees were adults (age >= 18 years),  although
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this could in fact be advantageous because it weakens the weight of type 1 diabetes as a confounding

factor, as it is usually detected at an earlier age (see below).

Also, the survey lacked detailed information on the geographical location of interviewees. Even as we

could  detect  groups  defined  by  their  multivariate  socioeconomic  space,  geographical  information

would have allowed us to find “natural” groups, clusters of interviewees that, we would expect, shared

a more similar environment. This data would probably condense the information on general quality of

life that is not available in the survey in its present form (type of neighborhood, exposure to pollutants,

or other stressful environmental conditions not covered by the questionnaire).

Other modifications that could be suggested to better characterize the individuals’ situation include

gathering more detailed information on housing conditions, employment stability, unpaid workload and

also subjective assessments on life quality.

 

Another downside of this approach is the inability to distinguish between type 1, type 2, and gestational

diabetes. However, as mentioned above, type 1 diabetes is usually detected in childhood or adolescence

[44] and  has a low prevalence, with an estimate for Argentinian children and adolescents of 8.6 per

100,000 people [45] and of 15 per 100,000 people worldwide [46], and is also more likely to depend on

genetic factors [47]. Therefore it is safe to assume that it should not affect our results to a great extent.

On the other hand, since the Risk Factor Survey does not account for a possible pregnancy, a high

blood sugar level caused by gestational diabetes cannot be ruled out. According to the survey, from the

total  of  women  with  a self-reported  history  of  diabetes,  21.6%  were  pregnant  when  diagnosed.

However, it would probably not change our present results, as a low percentage of women would have

been pregnant at the time of the survey, when measurements were taken. In fact, it has been estimated

that type 2 diabetes represents up to 95% of the cases in developing countries [6], and therefore it is

expected to account for the majority of the cases recorded in the survey.

Finally, our design does not allow us to determine causality, although the similar results seen by other

researchers  in  different  countries  are  suggestive  that  the  effect  of  these  particular  factors  in  the

distribution of health outcomes can be pervasive in different groups  [14,  48].  Here, in the case of

educational attainment and its apparent interaction with family income, we cannot differentiate between

two  possibilities:  i)  that  lower  educational  attainment  is  indicative  of  a  situation  of  long-term

446

448

450

452

454

456

458

460

462

464

466

468

470

472

474

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 27, 2021. ; https://doi.org/10.1101/2021.12.24.21268333doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.24.21268333
http://creativecommons.org/licenses/by-nc/4.0/


23

vulneration so that the relatively higher  prevalence we have seen in middle-income individuals with

lower educational attainment compared to those with higher education relates to this long-term effects;

and/or  ii)  that  higher  educational  attainment  acts  as  a  “protective”  factor  (for  example,  through

increased social bonding, favoring autonomy and empowerment, and/or making it feasible to secure a

steady  job  and  therefore  more  stable  living  conditions).  Indeed, other  researchers  have  already

proposed  that  access  to  higher  education  may  counterbalance  to  some  extent  the  heightened

susceptibility to ill health due to low income ([14] and references). Our results are consistent with both

explanations, although the pattern is less clear in the lower-income group, possibly because of the low

number  of  individuals  in  the  high  educational  attainment  category,  or  else  because  even  higher

education cannot offset the stresses related to a family income below indigence threshold.

It should be noted, also, that even if income, and to some extent educational attainment, are recognized

widely  as  affecting  health  in  different  contexts,  our  approach  does  not  search  for  universal  laws

governing health.  However, we argue that  this methodology can be  useful to detect local patterns of

health outcomes, and  that these insights should be integrated into a  pluralistic framework including

research  at  different  levels,  combining  these  more  general  quantitative  analyses with  in-depth,

qualitative  studies,  to  better  understand  the  processes  behind health  disparities  and how these  are

experienced by individuals and communities in different contexts [49].

To  our  knowledge,  this  is  the  first  work  that  addresses  a  possible  relationship  between  these

socioeconomic variables and the decanalization hypothesis for fasting blood glucose. It is worth noting

that the conclusions reached regarding public policy are very similar to the ones proposed by Marmot

[14]: adequate living standards in the broad sense should be granted, which means reinforcing support

to vulnerated groups. If the stresses related to lack of stability (of housing, working conditions, etc.)

and a subordinate social position are responsible for the heightened incidence of diabetes, policies that

focus  on  healthy  habits  and/or  access  to  health  care  will  not  suffice  to  prevent  further  cases.

Himmelstein et  al.  [13],  who found results consistent with the decanalization hypothesis  for blood

pressure,  suggest  reducing  the  exposure  to these  stressors  and  protecting  at-risk  populations  from

environmental fluctuations. According to them, the strengthening of social networks and the access to

behavioral “buffering” pathways would partly unload the burden posed on the physiological subsystem.

Marmot  [14] similarly argues that empowerment acts as a protecting factor and suggests policies to
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improve  income,  education,  housing  stability,  working  conditions,  etc.  Our  results  support  these

suggestions.  Although these policies  would imply an increase in  spending not  directly  focused on

health care, such measures may have more meaningful impacts than current health policies for diseases

like type 2 diabetes,  which  constitute  a  growing economic burden both for individuals  and health

systems [50].

We believe  the  decanalization  hypothesis is  a  promising  model for  the  study of  the  complex and

historically  changing  patterns  of  susceptibility to  ill  health,  particularly  to chronic  multi-factorial

ailments  related  to  homeostasis,  which  can  incorporate  biological  (ecological,  developmental,

evolutionary) and socioeconomic determinants.  We believe our approach, however, can be improved.

Changes in data gathering methodology may benefit from interdisciplinary work to incorporate useful

variables to further test this hypothesis, as current survey designs and statistical methods are not well-

tailored to this end. However, this is not the only reason why we want to highlight the importance of

the dialogue between social, biological, and health sciences. The limitations generated by disciplinary

fragmentation on epidemiology have already been described, and different counter-strategies proposed

[12, 39, 40, 49]. The notion of human populations as immersed in their socio-ecosystems, constrained

by social and material conditions that are affected by a myriad of factors with a particular history and

contexts, is necessary to understand the processes behind health and disease through the incorporation

of different approaches and methodologies. This requires avoiding the social-biological dichotomy and

overcoming disciplinary fragmentation. This issue has been raised for several subdisciplines of biology

[51] including those involved in human health  [12, 40, 52, 53].  But moreover,  our own notions and

concepts of health and disease and the frameworks used to understand the complexity of the processes

behind them also require problematizing and rethinking, and interdisciplinary work may fuel constant

revisions of our approaches and substantiate a more pluralistic take on these issues [49]. 
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Additional file captions

Additional File 1. Data from the National Health Survey for all individuals retained.

Additional  File  2.  Summary of  the  regressions  performed to model  blood glycemia  data.  Method,

proportion of variance explained and the detailed models (in R language) are provided

Additional File 3. Loadings for all the variables in the 8 principal components generated

Additional  File  4.  Curves  for  Normal,  Outlier  and  Extreme  glycemia  residuals.  Biplots  for  the

components 5, 6, 7 and 8 of the PCA. Density curves for Normal, Outlier and Extreme groups (bins=2)

are superimposed.

Additional File 5. Running standard deviation for fasting glycemia. Biplots for the components 5, 6, 7

and 8 of the PCA; point size correlates with fasting blood glucose levels (mg/dL) and color scale

indicates levels of running standard deviation (mg/dL). GAM smoothed curves for the running standard

deviation are also provided.

654

656

658

660

662

664

666

668

670

672

674

676

678

680

682

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 27, 2021. ; https://doi.org/10.1101/2021.12.24.21268333doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.24.21268333
http://creativecommons.org/licenses/by-nc/4.0/

