- 1 Analysis of anti-Omicron neutralizing antibody titers in different vaccinated and unvaccinated
- 2 convalescent plasma sources.
- 3
- 4 David J Sullivan¹ Massimo Franchini², Michael J. Joyner³, Arturo Casadevall¹, Daniele Focosi^{4,#},

5

- ⁶ ¹Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD 21218, USA;
- 7 <u>dsulliv7@jhmi.edu</u>, <u>acasade1@jhu.edu</u>,
- 8 ²Division of Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy; <u>massimo.franchini@asst-</u>
- 9 <u>mantova.it</u>
- 10 ³Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN 55902, USA
- 11 joyner.michael@mayo.edu;
- ⁴North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy.

13

- 14 [#]corresponding author: via Paradisa 2, 56124 Pisa, Italy. E-mail: daniele.focosi@gmail.com.
- 15 Keywords: COVID19; Omicron; convalescent plasma; vaccine; neutralizing antibodies.
- 16 Word count: abstract 220; body 2979.
- 17 Acknowledgements: none.

Funding Information: The analysis was supported by the U.S. Department of Defense's Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), in collaboration with the Defense Health Agency (DHA) (contract number: W911QY2090012) (D.S), with additional support from Bloomberg Philanthropies, State of Maryland, the National Institutes of Health (NIH) National Institute of Allergy and Infectious Diseases (NIAID) 3R01AI152078-01S1) (A.C).

Author contributions: D.F. and M.J.J. conceived the manuscript; D.F., D.J.S. and M.F. analyzed the literature, curated tables and wrote manuscripts; M.F. provided Figure 1; D.J.S. provided Figures 2 -5.A.C. and M.J.J. revised the manuscript.

- 26 Data availability statement: The datasets generated during and/or analysed during the current study are
- 27 available from the corresponding author on reasonable request

28 Abstract

29 The latest SARS-CoV-2 variant of concern Omicron, with its immune escape from therapeutic anti-Spike 30 monoclonal antibodies and WA-1 vaccine-elicited sera, demonstrates the continued relevance of COVID-31 19 convalescent plasma (CCP) therapies. Lessons learnt from previous usage of CCP suggests focusing on 32 early outpatients and immunocompromised recipients, with high neutralizing antibody (nAb) titer units. 33 In this analysis we systematically reviewed Omicron-neutralizing plasma activity data, and found that 34 approximately 47% (424/902) of CCP from unvaccinated pre-Omicron donors neutralizes Omicron BA.1 35 with a very low geomean of geometric mean titers for 50% neutralization $GM(GMT_{50})$ of about 13, 36 representing a more than 20-fold reduction from WA-1 neutralization. Two doses of mRNA vaccines in 37 nonconvalescent subjects had a similar 50% percent neutralization with Omicron BA.1 neutralization GM(GMT(50)) of about 27. However, plasma from vaccinees recovered from either previous pre-Omicron 38 39 variants of concern infection, Omicron BA.1 infection, or third-dose uninfected vaccinees was nearly 40 100% neutralizing against Omicron BA.1, BA.2 and BA.4/5 with GM(GMT(₅₀)) all over 189, 10 times higher 41 than pre-Omicron CCP. Fully vaccinated and post-BA.1 plasma (Vax-CCP) had GM(GMT₅₀) over 450 for 42 BA.4/5 and over 1500 for BA.1 and BA.2. These findings have implications for both CCP stocks collected in 43 prior pandemic periods and plans to restart CCP collections. Thus, Vax-CCP provides an effective tool to 44 combat ongoing variants that defeat therapeutic monoclonal antibodies.

45 Introduction

The SARS-CoV-2 Omicron variant of concern (VOC) (originally named VUI-21NOV-01 by Public Health England and belonging to GISAID clade GRA(B.1.1.529+BA.*) was first reported on November 8, 2021 in South Africa, and shortly thereafter was also detected all around the world. Omicron mutations impact 27% of T cell epitopes ¹ and 31% of B cell epitopes of the Spike protein, while percentages for other VOC were much lower ². The Omicron variant has further evolved to several sublineages which are named by PANGO phylogeny using the BA alias: the BA.1 wave of Winter 2021-2022 has been suddenly replaced by BA.2 and BA.2.12.1 in Spring 2022, and by the BA.4 and BA.5 waves in Summer 2022.

53

The VOC Omicron is reducing the efficacy of all vaccines approved to date (unless 3 doses are delivered) 54 55 and is initiating an unexpected boost in COVID19 convalescent plasma (CCP) usage, with Omicron being 56 treated as a shifted novel virus instead of a SARS-CoV-2 variant drift. Two years into the pandemics, we 57 are back to the starting line for some therapeutic classes. Specifically, Omicron escapes viral neutralization by most monoclonal antibodies (mAbs) authorized to date with the lone exception of 58 bebtelovimab³. Despite the development of promising oral small-molecule antivirals (molnupiravir and 59 nirmatrelvir), the logistical and economical hurdles for deploying these drugs worldwide has prevented 60 61 their immediate and widespread availability, and concerns remain regarding both molnupiravir (both safety⁴ and efficacy⁵) and nirmatrelvir (efficacy), expecially in immunocompromised subjects. CCP was 62 63 used as a frontline treatment from the very beginning of the pandemic. Efficacy outcomes have been 64 mixed to date, with most failures explained by low dose, late usage, or both, but efficacy of high-titer CCP has been definitively proven in outpatients with mild disease stages ^{6, 7}. Neutralizing antibody (nAb) 65 efficacy against VOC remains a prerequisite to support CCP usage, which can now be collected from 66 vaccinated convalescents, including donors recovered from breakthrough infections (so-called "hybrid 67 plasma" or "Vax-CCP")⁸: pre-Omicron evidence suggest that those nAbs have higher titers and are more 68 effective against VOCs than those from unvaccinated convalescents^{9, 10}. From a regulatory viewpoint, to 69 70 date, plasma from vaccinees that have never been convalescent does not fall within the FDA emergency 71 use authorization

72 There are tens of different vaccine schedules theoretically possible according to EMA and FDA approvals, 73 including a number of homologous or heterologous boosts, but the most commonly delivered schedules 74 in the western hemisphere have been: 1) BNT162b2 or mRNA-1273 for 2 doses eventually followed by a homologous boost; 2) ChAdOx1 for 2 doses eventually followed by a BNT162b2 boost; and 3) 75 Ad26.COV2.S for 1 dose eventually followed by a BNT162b2 boost ¹¹. Many more inactivated vaccines 76 have been in use in low-and-middle income countries (LMIC), which are target regions for CCP therapy: 77 78 this is feasible given the lower number of patients at risk for disease progression there (lower incidences 79 of obesity, diabetes, and hypertension, and lower median age) and the already widespread occurrence of collection and transfusion facilities. Most blood donors there have already received the vaccine schedule 80 before, after or without having been infected, with a nAb titer generally declining over months ¹². Hence 81 identifying the settings where the nAb titer is highest will definitively increase the efficacy of CCP 82 collections. Variations in nAb titers against a given SARS-CoV-2 strain are usually reported as fold-changes 83 in geometric mean titer of antibodies neutralizing 50% of cytopathic effect (GMT₅₀) compared to wild-84 85 type strains: nevertheless, fold-changes for groups that include non-responders can lead to highly 86 artificial results and possibly over-interpretation. Rigorous studies have hence reported the percentage of

responders as primary outcome and provided fold-changes of GMT_{50} where calculation is reasonable (100% responders in both arms)¹³.

To date the most rigorous data repository for SARS-CoV-2 sensitivity to antivirals is the Stanford University Coronavirus Antiviral & Resistance Database, but as of July 24, 2022 the tables there summarizing "Convalescent plasma" and "Vaccinee plasma" (<u>https://covdb.stanford.edu/search-drdb</u>) do not dissect the different heterologous or homologous vaccination schemes, the simultaneous occurrence of vaccination and convalescence, or the time from infection/vaccine to neutralization assay. Consequently, a more in-depth analysis is needed to better stratify CCP types.

95

96 Methods

97 On August 11, 2022, we searched PubMed, medRxiv and bioRxiv for research investigating the efficacy of 98 CCP (either from vaccinated or unvaccinated donors) against SARS-CoV-2 VOC Omicron (pre)published 99 after December 1, 2019, using English language as the only restriction. In PubMed we used the search 100 query "("convalescent plasma" or "convalescent serum") AND ("neutralization" or "neutralizing") AND 101 "SARS-CoV-2"", while in bioRxiv and medRxiv we searched for abstract or title containing "convalescent, 102 SARS-CoV-2, neutralization" (match all words). When a preprint was published, the latter was used for 103 analysis. We also screened the reference lists of reviewed articles for additional studies not captured in 104 our initial literature search. Articles underwent evaluation for inclusion by two assessors (D.F. and D.J.S.) 105 and disagreements were resolved by a third senior assessor (A.C.). We excluded review articles, meta-106 analyses, studies reporting antibody levels by serological assays other than neutralization, as well as 107 studies exclusively analyzing nAbs in vaccine-elicited plasma/serum from non-convalescent subjects. In 108 unvaccinated subjects, convalescence was annotated according to infecting sublineage (pre-VOC Alpha, 109 VOC Alpha, VOC Beta, VOC Delta, or VOC Omicron BA.1 sublineages). Given the heterologous immunity 110 that develops after vaccination in convalescents, the infecting lineage was not annotated in vaccine 111 recipients. In vaccinees, strata were created for 2 homologous doses, 3 homologous doses, or post-112 COVID-19 and post-vaccination (Vax-CCP). The type of viral assay (live or pseudovirus), time interval to 113 blood sample, geometric mean, minimum and maximum neutralizing 50% dilutional titer for WA-1 (pre-114 Alpha wild-type) and Omicron sublineages BA.1, BA.2 and BA.4/5, and number out of total that 115 neutralized Omicron was abstracted from study text, graphs and tables.

Statistical significance between log₁₀ transformed geometric study means was investigated using Tukey's
 test.

118

119 **Results**

Our literature search identified 31 studies dealing with the original Omicron lineage (BA.1), that were
 then manually mined for relevant details: the PRISMA flowchart for study selection is provided in Figure
 Given the urgency to assess efficacy against the upcoming VOC Omicron, many studies (with a few
 exceptions^{14, 15, 16, 17}) relied on Omicron BA.1 pseudovirus neutralization assays, which, as opposed to live
 authentic virus neutralization assays, are scalable, do not require BSL-3 facilities, and provide results in

less than 1 week. Plasma dilutions were expressed in the studies as GMT₅₀ of nAb, and fold-reduction in
GMT₅₀ compared to wild-type SARS-CoV-2 (e.g., WA-1) was the most common way of reporting changes,
which reduces variability due to differences in the neutralization assays used. In comparing the large
number of diverse studies with more than 100-fold plasma dilutional titers, we took the geometric mean
of the individual study GMT₅₀, deriving a geomean of GMT₅₀ (GM(GMT₅₀)).

130 Figure 2 and Table 1 summarize that neutralizing activity to WA-1 from CCP collected from subjects 131 infected with pre-Alpha SARS-CoV-2 (Supplementary Table 1), Alpha VOC (Supplementary Table 2), Beta 132 VOC (Supplementary Table 3), Delta VOC (Supplementary Table 4) or plasma from nonconvalescent 133 subjects vaccinated with 2 mRNA vaccine doses (Supplementary Tables 5 and 6). The same plasma types 134 computed a geometric mean of multiple GMT₅₀ from many studies with about a 20-fold reduction against 135 BA.1 geomeans compared to wild-type SARS-CoV-2 geomeans. CCP from uninfected vaccinees receiving a 136 third vaccine dose registered a geomean of the GMT(50) of 2,588 (or 10- fold higher nAb geomean of the 137 GMT₅₀) to pre-alpha CCP viral assays. In this group the nAb geomean of the GMT₅₀ fold-reduction against 138 BA.1 was 9, but importantly the geomean of the $GMT(_{50})$ was close to 300, similar to WA-1 inhibition by 139 WA-1 CCP. The approximately 21-fold reduction in geomean of the GMT(50) from wild-type to BA.1 was 140 reversed by the 10-15-fold increase in nAb geomean of the GMT(50) from either boosted (third-dose) 141 vaccination or Vax-CCP.

142 In addition to the nAb GMT₅₀ levels showing potency, the percentage of individuals within a study cohort 143 positive for any level of BA.1 neutralization shows the likelihood of a possible donation having anti-BA.1 144 activity. All studies but one tested a limited number of 20 to 40 individuals. The pre-Alpha CCP showed 145 that most (18 of 27 studies) had fewer than 50% of individuals tested within a study with measurable BA.1 neutralizing activity: only 2 out of 27 studies indicated that 100% of individuals tested showed BA.1 146 147 neutralization (Figure 3). Likewise, most of the studies investigating Alpha and Beta CCP showed similar 148 percent with nAb. Delta CCP had 6 of 7 studies with more than 50% BA.1 neutralization. The plasma from 149 studies of the 2-dose mRNA vaccines indicated a more uniform distributive increase in percent of 150 individual patients with measurable Omicron BA.1 nAb's. The stark contrast is pre-Omicron Vax-CCP, 151 where 14 of 17 studies had 100% of individuals tested with anti-BA.1 nAb. The 3-dose vaccinee studies 152 similarly had 12 of 17 studies with 100% measurable nAb.

Five studies directly compared anti-WA-1 to BA.1 nAb titers in nonvaccinated pre-Alpha, Alpha, Beta, and Delta CCP, and vaccinated plasma with the same nAb assay (Figure 4). nAb GMT₅₀ against WA-1 was higher for Alpha CCP but lower for Beta CCP. nAb geomean of the GMT(₅₀) against BA.1 was actually highest for delta CCP with geomean levels of 6, 6, 10 for pre-Alpha, Alpha and Delta (Figure 4, panel A). In these 5 studies, nAb geomean of the GMT(₅₀) rose from 2-dose vaccinations to Vax-CCP to the 3-dose boosted vaccination. Importantly, for nAb, geomean of the GMT(₅₀) against BA.1 were 14 to 103 to 195, respectively (Figure 4, panel B).

Another set of 9 matched vaccination studies inclusive of plasma collected after 2- and 3-dose schedules,
 as well as Vax-CCP, depicted a 20-fold rise in the geomean of the GMT(₅₀) of anti-BA.1 nAb from the 2 dose vaccine to post COVID-19 vaccinees, and a 21-fold increase after the third vaccine dose. The pattern
 was similar for nAb geomean of the GMT(₅₀) against WA-1 (Figure 4, panel C).

164 The AZD1222, 3-dose mRNA-1273 and Ad26.COV2 vaccines were understudied, with 3 or less 165 independent studies at different time points, reported in Table 10. The GMT₅₀ nAb to BA.1 after 3-

mRNA-1273 doses ranged 60 to 2000, with a 5-to-15-fold reduction compared with WA-1. GMT₅₀ of antiBA.1 nAbs after AZD1222 vaccine was modest (~10 to 20), as with Ad26.COV2 vaccine (~20 to 40). Two
studies reported on post-COVID-19/post-mRNA-1273 with nAb GMT₅₀ against BA.1 of 38 and 272. Studies
with 100% of individual patient samples neutralizing BA.1 included 2 3-dose mRNA-1273 studies, one
AZD1222 study, and one post-COVID-19/post-mRNA-1273 study.

Few data exist for comparisons among different vaccine boosts. For CoronaVac[®] (SinoVac), three doses led to 5.1 fold reduction in anti-BA.1 nAb GMT₅₀ compared to wild-type ¹⁸, while for Sputnik V nAb titer moved from a 12-fold reduction at 6-12 months up to a 7-fold reduction at 2-3 months after a boost with Sputnik Light ^{19, 20}. These *in vitro* findings have been largely confirmed *in vivo*, where prior heterologous SARS-CoV-2 infection, with and without mRNA vaccination, protects against BA.1 re-infection ²¹.

- 176 Eleven studies analyzed the efficacy of CCP and Vax-CCP against Omicron sublineages other than BA.1, 177 i.e. BA.2 and BA.4/5 (summarized in Table 2, Figure 5 and supplement Table 10, 11 and 12). Pre-Omicron 178 (mainly Delta) CCP neutralized less than 40% of BA.1, BA.2 and BA.4/5. Unvaccinated individuals in 3 179 studies only with BA.1 primary infections poorly neutralized WA-1, with about 75% neutralizations of 180 BA.1, BA.2 and BA.4/5. The 3 vaccine doses of BNT162b2 in 8 studies had a 7-, 6- and 16-fold reduction from WA-1 GM(GMT₅₀) of 3,247 with percent of neutralizations all over 95%. Individuals from 11 181 populations with a BA.1 VaxCCP had a 2-, 2- and 8-fold reduction for WA-1 GM(GMT₅₀) of 3578, with 99% 182 183 Omicron neutralizations. Importantly, GM(GMT₅₀) of BA.1 Vax-CCP was more than 1.5 times higher than that of pre-alpha CCP for WA-1. Omicron BA.1, BA.2 and BA.4/5 percent neutralization was over 99% for 184 185 each. In conclusion, BA.1-Vax- CCP was both high-titer and high neutralization percent.
- 186 These studies largely confirm that Omicron CCP per se is poorly effective against the cognate or other Omicron sublineages²² (with the lone exception of cross-reactions among lineages sharing L452 187 mutations²³ and broad-spectrum nAbs elicited by BA.5²⁴). By contrast, both the homologous and the 188 heterologous efficacy of Omicron Vax-CCP is universally preserved ^{15, 25}. Despite evidence that 189 190 concentrated pooled human IgGs from convalescent and vaccinated donors have 5-fold reduced potency against BA.5 compared to wild-type SARS-CoV-2²⁶, such Vax-CCP derivative is devoid of IgA and IgM 191 nAbs. These findings have important implications if a Vax-CCP program is to be re-launched at the time of 192 193 BA.2 and BA.4/5 waves. In particular, the emerging R346X-harboring BA.4.6, BA.4.7, and BA.5.9 194 sublineages show 1.5-1.9-fold reduction in GMT₅₀ by BA.1/2 Vax-CCP and 2.4-2.6 reduction by BA.5 Vax-195 CCP ²⁷. Of interest, Vax-CCP after 2 doses remains superior to 4-dose vaccinee plasma in terms of nAb titers, and Vax-CCP with 3 vaccine doses is not consistently superior to Vax-CCP after 2 vaccines doses²⁸. 196

197 Differences exist among neutralization assay protocols used across studies. These differences are placed 198 in context once fold-reductions and percent neutralizations are used as reporting measures. The relative 199 geometric mean titer with minimum and maximum titer levels is an alternative perspective. The live virus 200 assays can be sorted from the pseudovirus assays along with the minimum and maximum extracted from 201 the graphs or reported in data from the manuscripts. In general, about 80% of the live virus compared to 202 pseudovirus overlap in dilutional titer magnitude with the pseudovirus assays outlier measurement 203 consistently higher in range from a few studies (Figure 6). However, in some cases the minimum reported 204 is not the limit of detection or quantification, but the lowest number in a group of SARS-CoV-2 antibody 205 positive participants. Graphical depiction of the minimum and maximum dilutional titers are shown in 206 Supplementary Figures 1-11.

207

208 Discussion

209 Since nAbs are by definition antiviral, CCP with a high nAb GMT₅₀ is preferable, and there is now strong clinical evidence that nAb titers correlate with clinical benefit in randomized clinical trials^{6, 7}. Although 210 nAb titers correlate with vaccine efficacy^{29, 30}, it is important to keep in mind that SARS-CoV-2-binding 211 non-neutralizing antibodies in CCP can similarly provide protection via Fc-mediated functions ^{31, 32}. 212 213 However, such functions are harder to measure and no automated assay exists for use in clinical 214 laboratories. Hence, whereas the presence of a high nAb GMT_{50} in CCP is evidence for antibody 215 effectiveness in vitro, the absence of nAb titer does not imply lack of protection in vivo where Fc effects 216 mediate protection by other mechanisms such as antibody-dependent cell-mediated cytotoxicity, 217 complement activation and phagocytosis.

218 The mechanism by which CCP from vaccinated COVID-19 convalescent individuals better neutralizes 219 Omicron lineages is probably a combination of higher amounts of nAb and broader antibody specificity. Higher amounts of antibody could neutralize antigenically different variants through the law of mass 220 action ³³, whereby even lower affinity antibodies elicited to earlier variants would bind to the Omicron 221 222 variant as mass compensates for reduced binding strength to drive the reaction forward. In addition, 223 vaccinated COVID-19 convalescent individuals would have experienced SARS-CoV-2 protein in two 224 antigenically different forms: as part of intact infective virions generated in vivo during an infectious 225 process and as antigens in vaccine preparations. As the immune system processes the same antigen in 226 different forms, there are numerous opportunities for processing the protein in different ways that can 227 diversify the specificity of the immune response and thus increase the likelihood of eliciting antibodies 228 that react with variant proteins. Structurally, it has been shown that third dose mRNA vaccination induces 229 mostly class 1/2 antibodies encoded by IGHV1-58;IGHJ3-1 and IGHV1-69;IGHJ4-1 germlines, but not the 230 IGHV2-5;IGHJ3-1 germline, i.e. broadly cross-reactive Class 3 antibodies seen after infection ³⁴.

Our analysis provides strong evidence that, unlike what has been observed in Syrian hamster models ³⁵,
 CCP from unvaccinated donors is unlikely (less than 50%) to have any measurable Omicron neutralization.
 Although the nAb GMT₅₀ threshold for clinical utility remains poorly defined, it is noticeable that low BA.1
 nAb GMT₅₀ were generally detected in CCP after infection from pre-Omicron VOCs.

235 However, despite the huge heterogeneity of vaccine schedules, CCP from vaccinated and COVID-19 convalescent individuals (Vax-CCP) consistently harbors high nAb titers against BA.1 and novel 236 237 sublineages if collected up to 6 months since last event (either vaccine dose or infection). These Omicron 238 neutralizing levels are comparable in dilutional titers to that of WA-1 CCP neutralizing WA-1, but their 239 prevalence is much higher at this time, facilitating recruitment of suitable donors. Pre-Omicron CCP 240 boosted with WA-1-type vaccines induces heterologous immunity that effectively neutralizes Omicron in 241 the same assays which rule in or out therapeutic anti-Spike monoclonal antibodies. Consequently, prescreening of Vax-CCP donors for nAb titers is not necessary, and qualification of Vax-CCP units remains 242 advisable only within clinical trials. A more objective way to assess previous infection (convalescence) 243 would be by measuring anti-nucleocapsid (N) antibodies, but unfortunately these vanish quickly ^{36, 37}. 244 245 Previous symptomatic infection and vaccination can be established by collecting past medical history 246 (PMH) during the donor selection visit, which is cheaper, faster, and more reliable than measuring rapidly

declining anti-N antibodies. Although there is no formal evidence for this, it is likely that asymptomatic
 infection (leading to lower nAb levels in pre-Omicron studies) also leads to lower nAb levels after
 vaccination compared to symptomatic infection, given that disease severity correlates with nAb titer ^{38, 39}:
 hence asymptomatically infected donors missed by investigating PMH are also less likely to be useful.

251 The same reasoning applies to uninfected vaccinees receiving third dose boosts, but several authorities, including the FDA, do not currently allow collection from such donors for CCP therapy on the basis that 252 253 the convalescent polyclonal and poly-target response is a prerequisite for efficacy and superior to the 254 polyclonal anti-Spike-only response induced by vaccines. This may be a false premise for recipients of 255 inactivated whole-virus vaccines (e.g., BBIBP-CorV or VLA2001): for BBIBP-CorV, where efficacy against Omicron is largely reduced ^{18, 20, 40}, but the impact of boost doses is still unreported at the time of writing. 256 Table 1 and Table 9 clearly show that 3-doses of BNT162b2 are enough to restore nAb levels against 257 258 Omicron in the absence of SARS-CoV-2 infection.

259 Another point to consider is that information on nAb levels after the third vaccine dose has been almost 260 exclusively investigated for only 1 month of follow-up, while studies on convalescents extend to more 261 than 6 months. At present, it seems hence advisable to start from convalescent vaccinees rather than uninfected 3-dose vaccinees. This is also confirmed by immune escape reported in vivo after usage of 262 vaccine (non-convalescent) plasma⁴¹ despite very high nAb titres, likely due to restricted antigen 263 specificity. Vaccine schedules with a delayed boost seem to elicit higher and broader nAb levels than the 264 approved, short schedules^{42, 43, 44, 45}, but this remain to be confirmed in larger series. The same is true for 265 breakthrough infections from Alpha or Delta VOC in fully BNT162b2 vaccinated subjects⁴⁶, although 266 variation in time from infection due to successive waves is a major confounder. 267

With the increase of Omicron seroprevalence in time, polyclonal intravenous immunoglobulins collected from regular donors could become a more standardized alternative to CCP, but their efficacy to date (at the peak of the vaccination campaign) is still 16-fold reduced against Omicron compared to wild-type SARS-CoV-2⁴⁷, and such preparations include only IgG and not IgM and IgA, which have powerful SARS-CoV-2 activity ^{48, 49}. Nevertheless, the FDA recently reported efficacy of hyperimmune serum against BA.1, BA.2, BA.3, BA.2.12.1, and BA.4/5⁵⁰.

274 CCP collection from vaccinated convalescents (regardless of infecting sublineage, vaccine type and 275 number of doses) is likely to achieve high nAb titer against VOC Omicron, and, on the basis of lessons 276 learnt with CCP usage during the first 2 years of the pandemic. Although in ideal situations one would 277 prefer RCT evidence of efficacy against Omicron before deployment, there is concern that variants are 278 generated so rapidly that by the time such trials commence this variant could be replaced by another. Given the success of CCP in 2 outpatient RCTs in reducing disease progression or hospitalization^{6,7} and 279 280 the loss of major mAb therapies due to Omicron antigenic changes, the high titers in 2022 omicron CCP 281 collected from vaccinated convalescents provides an immediate option for COVID-19, especially in LMIC. Given the reduced hospitalization rate with Omicron compared to Delta⁵¹, it is even more relevant to 282 identify patient subsets at risk of progression in order to minimize the number needed to treat to prevent 283 284 a single hospitalization. Using the same indications for use of mAb therapies while using the same (now 285 unused) in-hospital facilities seems a logical approach.

286 We declare we have no conflict of interest related to this manuscript.

287

References 288

289 290	1.	Ahmed SF, Quadeer AA, McKay M. SARS-CoV-2 T cell responses are expected to remain robust against Omicron. <i>Viruses</i> 14 , 79 (2022).
291 292 293 294 295 296	2.	Bernasconi A, et al. Report on Omicron Spike mutations on epitopes and immunological/epidemiological/kinetics effects from literature. Accessed at <u>https://virological.org/t/report-on-omicron-spike-mutations-on-epitopes-and- immunological-epidemiological-kinetics-effects-from-literature/770</u> on July 23, 2022.) (2021).
297 298 299	3.	Focosi D, McConnell S, Casadevall A, Cappello E, Valdiserra G, Tuccori M. Monoclonal antibody therapies against SARS-CoV-2. <i>Lancet Infect Dis</i> , (2022).
300 301 302	4.	Zhou S <i>, et al.</i> β-d-N4-hydroxycytidine Inhibits SARS-CoV-2 Through Lethal Mutagenesis But Is Also Mutagenic To Mammalian Cells. <i>The Journal of Infectious Diseases</i> 224 , 415-419 (2021).
303 304 305	5.	Jayk Bernal A <i>, et al.</i> Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients. <i>N Engl J Med</i> 386 , 509-520 (2022).
306 307 308	6.	Libster R <i>, et al.</i> Early High-Titer Plasma Therapy to Prevent Severe Covid-19 in Older Adults. <i>N Engl J Med</i> 384 , 610-618 (2021).
309 310 311	7.	Sullivan D <i>, et al.</i> Early Outpatient Treatment for Covid-19 with Convalescent Plasma. <i>N Engl J Med</i> , (2021).
312 313 314	8.	Vickers MA, <i>et al.</i> Exponential increase in neutralizing and spike specific antibodies following vaccination of COVID-19 convalescent plasma donors. <i>Transfusion</i> 61 , 2099-2106 (2021).
315 316 317	9.	Schmidt F <i>, et al.</i> High genetic barrier to SARS-CoV-2 polyclonal neutralizing antibody escape. <i>Nature</i> 600 , 512-516 (2021).
318 319 320 321	10.	Di Germanio C <i>, et al.</i> Vaccination of COVID-19 Convalescent Plasma Donors Increases Binding and Neutralizing Antibodies Against SARS-CoV-2 Variants. <i>Transfusion</i> 62 , 563-569 (2021).
322 323 324 325 326	11.	Munro APS, <i>et al.</i> Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial. <i>The Lancet</i> 398 , 2258-2276 (2021).

327 328 329 330	12.	Franchini M <i>, et al</i> . Neutralizing antibody levels against SARS-CoV-2 variants of concern Delta and Omicron in vaccine breakthrough-infected blood donors. <i>Transfusion</i> 62 , 1171-1176 (2022).
331 332 333	13.	Jacobsen H <i>, et al.</i> Diminished neutralization responses towards SARS-CoV-2 Omicron VoC after mRNA or vector-based COVID-19 vaccinations. 2021.2012.2021.21267898 (2021).
334 335 336	14.	Planas D <i>, et al.</i> Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. <i>Nature 602,</i> 671-675 (2022).
337 338 339 340	15.	Bekliz M <i>, et al</i> . Neutralization of ancestral SARS-CoV-2 and variants Alpha, Beta, Gamma, Delta, Zeta and Omicron by mRNA vaccination and infection-derived immunity through homologous and heterologous variants. 2021.2012.2028.21268491 (2021).
341 342 343 344	16.	Rossler A, Riepler L, Bante D, von Laer D, Kimpel J. SARS-CoV-2 Omicron Variant Neutralization in Serum from Vaccinated and Convalescent Persons. <i>N Engl J Med</i> 386 , 698- 700 (2022).
345 346 347	17.	Muik A <i>, et al</i> . Neutralization of SARS-CoV-2 Omicron by BNT162b2 mRNA vaccine-elicited human sera. <i>Science</i> 375 , 678-680 (2022).
348 349 350	18.	Zhao X, <i>et al.</i> Reduced sera neutralization to Omicron SARS-CoV-2 by both inactivated and protein subunit vaccines and the convalescents. 2021.2012.2016.472391 (2021).
351 352 353 354	19.	Dolzhikova IV <i>, et al.</i> Sputnik Light booster after Sputnik V vaccination induces robust neutralizing antibody response to B.1.1.529 (Omicron) SARS-CoV-2 variant. 2021.2012.2017.21267976 (2021).
355 356 357	20.	Bowen JE <i>, et al</i> . Omicron BA.1 and BA.2 neutralizing activity elicited by a comprehensive panel of human vaccines. 2022.2003.2015.484542 (2022).
358 359 360 361	21.	Carazo S <i>, et al</i> . Protection against Omicron re-infection conferred by prior heterologous SARS-CoV-2 infection, with and without mRNA vaccination. 2022.2004.2029.22274455 (2022).
362 363 364	22.	Turelli P <i>, et al</i> . Omicron infection induces low-level, narrow-range SARS-CoV-2 neutralizing activity. 2022.2005.2002.22274436 (2022).
365 366 367	23.	Qu P <i>, et al</i> . Neutralization of the SARS-CoV-2 Omicron BA.4/5 and BA.2.12.1 Subvariants. <i>N</i> Engl J Med 386 , 2526-2528 (2022).

368 369 370	24.	Richardson SI <i>, et al.</i> SARS-CoV-2 BA.4 infection triggers more cross-reactive neutralizing antibodies than BA.1. 2022.2007.2014.500039 (2022).
371 372 373	25.	Zhou R <i>, et al.</i> Vaccine-breakthrough infection by the SARS-CoV-2 Omicron variant elicits broadly cross-reactive immune responses. <i>Clin Transl Med</i> 2 , e720 (2022).
374 375 376 377	26.	Aggarwal A, et al. SARS-CoV-2 Omicron BA.5: Evolving tropism and evasion of potent humoral responses and resistance to clinical immunotherapeutics relative to viral variants of concern. 2022.2007.2007.22277128 (2022).
378 379 380	27.	Jian F <i>, et al.</i> Further humoral immunity evasion of emerging SARS-CoV-2 BA.4 and BA.5 subvariants. 2022.2008.2009.503384 (2022).
381 382 383	28.	Xie X, Zou J, Kurhade C, Liu M, Ren P, Shi P-Y. Neutralization of SARS-CoV-2 Omicron sublineages by 4 doses of mRNA vaccine. 2022.2007.2029.502055 (2022).
384 385 386	29.	Khoury DS, <i>et al.</i> Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. <i>Nat Med</i> 27 , 1205-1211 (2021).
387 388 389	30.	Feng S, et al. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. <i>Nature Medicine</i> 27 , 2032-2040 (2021).
390 391 392	31.	Gilbert PB <i>, et al.</i> Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. <i>Science,</i> eab3435 (2021).
393 394 395	32.	Earle KA <i>, et al.</i> Evidence for antibody as a protective correlate for COVID-19 vaccines. <i>Vaccine</i> 39 , 4423-4428 (2021).
396 397 398	33.	Tyrrell DA. Neutralization of viruses by homologous immune serum. II. Theoretical study of the equilibrium state. <i>The Journal of experimental medicine</i> 97 , 863-870 (1953).
399 400 401	34.	Andreano E <i>, et al.</i> COVID-19 mRNA third dose induces a unique hybrid immunity-like antibody response. 2022.2005.2009.491201 (2022).
402 403 404	35.	Ryan KA <i>, et al.</i> Convalescence from prototype SARS-CoV-2 protects Syrian hamsters from disease caused by the Omicron variant. 2021.2012.2024.474081 (2021).
405 406 407	36.	Krutikov M, <i>et al.</i> Prevalence and duration of detectable SARS-CoV-2 nucleocapsid antibodies in staff and residents of long-term care facilities over the first year of the

408 409		pandemic (VIVALDI study): prospective cohort study in England. <i>The Lancet Healthy Longevity</i> , (2021).
410 411 412 413	37.	Amjadi MF <i>, et al.</i> Anti-membrane and anti-spike antibodies are long-lasting and together discriminate between past COVID-19 infection and vaccination. 2021.2011.2002.21265750 (2021).
414 415 416	38.	Klein S, <i>et al</i> . Sex, age, and hospitalization drive antibody responses in a COVID-19 convalescent plasma donor population. <i>J Clin Invest</i> 130 , 6141-6150 (2020).
417 418 419 420	39.	Focosi D, Franchini M. Clinical predictors of SARS-CoV-2 neutralizing antibody titers in COVID-19 convalescents: Implications for convalescent plasma donor recruitment. <i>European journal of haematology</i> 107 , 24-28 (2021).
421 422 423 424	40.	Yu X, <i>et al.</i> Pseudotyped SARS-CoV-2 Omicron variant exhibits significant escape from neutralization induced by a third booster dose of vaccination. 2021.2012.2017.21267961 (2021).
425 426 427 428	41.	Gachoud D <i>, et al</i> . Antibody response and intra-host viral evolution after plasma therapy in COVID-19 patients pre-exposed or not to B-cell depleting agents. 2022.2004.2024.22274200 (2022).
429 430 431 432	42.	Chatterjee D <i>, et al.</i> SARS-CoV-2 Omicron Spike recognition by plasma from individuals receiving BNT162b2 mRNA vaccination with a 16-week interval between doses. <i>Cell Rep</i> 38 , 110429 (2022).
433 434 435	43.	Grunau B <i>, et al.</i> Immunogenicity of Extended mRNA SARS-CoV-2 Vaccine Dosing Intervals. JAMA 327 , 279-281 (2022).
436 437 438 439	44.	Tauzin A <i>, et al.</i> A single BNT162b2 mRNA dose elicits antibodies with Fc-mediated effector functions and boost pre-existing humoral and T cell responses. <i>medRxiv [Preprint],</i> 2021.2003.2018.435972 (2021).
440 441 442 443	45.	Skowronski DM, et al. Two-dose SARS-CoV-2 vaccine effectiveness with mixed schedules and extended dosing intervals: test-negative design studies from British Columbia and Quebec, Canada. <i>Clin Infect Dis</i> , ciac290 (2022).
444 445 446 447	46.	Miyamoto S <i>, et al.</i> Vaccination-infection interval determines cross-neutralization potency to SARS-CoV-2 Omicron after breakthrough infection by other variants. 2021.2012.2028.21268481 (2022).
448		

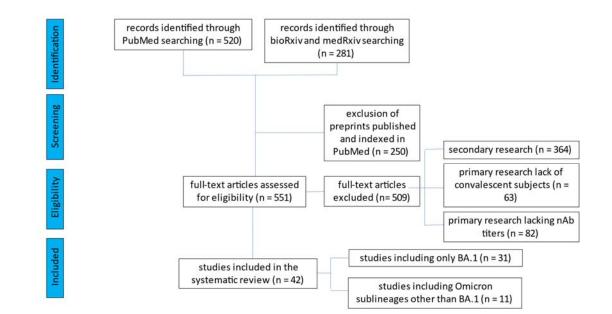
449 450 451	47.	Focosi D, Franchini M. Passive immunotherapies for COVID-19: The subtle line between standard and hyperimmune immunoglobulins is getting invisible. <i>Reviews in medical virology</i> , e2341 (2022).
452 453 454	48.	Klingler J <i>, et al.</i> Role of IgM and IgA Antibodies in the Neutralization of SARS-CoV-2. J Infect Dis 223 , 957-970 (2020).
455 456	49.	Wang Z, et al. Enhanced SARS-CoV-2 neutralization by dimeric IgA. Sci Transl Med, (2020).
457 458 459 460	50.	Awasthi M, Golding H, Khurana S. SARS-CoV-2 hyperimmune intravenous human immunoglobulins neutralizes Omicron subvariants BA.1, BA.2, BA.2.12.1, BA.3 and BA.4/BA.5 for treatment of COVID-19. <i>Clinical Infectious Diseases</i> , (2022).
461 462 463	51.	Wolter N <i>, et al.</i> Early assessment of the clinical severity of the SARS-CoV-2 Omicron variant in South Africa. <i>Lancet</i> 399 , 437-446 (2022).
464 465	52.	Zeng C, et al. Neutralization and Stability of SARS-CoV-2 Omicron Variant. bioRxiv, (2021).
466 467 468	53.	Liu L <i>, et al.</i> Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. <i>Nature</i> 602 , 676-681 (2022).
469 470 471	54.	Schmidt F <i>, et al</i> . Plasma Neutralization of the SARS-CoV-2 Omicron Variant. <i>N Engl J Med</i> 386 , 599-601 (2022).
472 473 474	55.	Arien KK <i>, et al.</i> Three doses of BNT162b2 vaccine confer neutralising antibody capacity against the SARS-CoV-2 Omicron variant. <i>NPJ Vaccines</i> 7 , 35 (2022).
475 476 477 478	56.	Lusvarghi S <i>, et al.</i> SARS-CoV-2 BA.1 variant is neutralized by vaccine booster-elicited serum, but evades most convalescent serum and therapeutic antibodies. <i>Sci Transl Med</i> , eabn8543 (2022).
479 480 481 482	57.	Hoffmann M <i>, et al.</i> The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. <i>Cell</i> 185 , 447-456 e411 (2022).
483 484 485	58.	Zou J <i>, et al.</i> Neutralization against Omicron SARS-CoV-2 from previous non-Omicron infection. <i>Nat Commun</i> 13 , 852 (2022).
486 487 488	59.	Zhang L, <i>et al</i> . The significant immune escape of pseudotyped SARS-CoV-2 variant Omicron. <i>Emerg Microbes Infect</i> 11 , 1-5 (2022).

489 490 491	60.	Gruell H <i>, et al.</i> mRNA booster immunization elicits potent neutralizing serum activity against the SARS-CoV-2 Omicron variant. <i>Nat Med</i> 28 , 477-480 (2022).
492 493 494	61.	Dejnirattisai W <i>, et al.</i> SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. <i>Cell</i> 185 , 467-484 e415 (2022).
495 496 497	62.	Sheward DJ, et al. Variable loss of antibody potency against SARS-CoV-2 B.1.1.529 (Omicron). <i>bioRxiv</i> , 2021.2012.2019.473354 (2021).
498 499 500	63.	Tada T, <i>et al</i> . Increased resistance of SARS-CoV-2 Omicron variant to neutralization by vaccine-elicited and therapeutic antibodies. <i>EBioMedicine</i> 78 , 103944 (2022).
501 502 503 504	64.	Aggarwal A, <i>et al</i> . SARS-CoV-2 Omicron: evasion of potent humoral responses and resistance to clinical immunotherapeutics relative to viral variants of concern. <i>medRxiv</i> , 2021.2012.2014.21267772 (2021).
505 506 507	65.	Zhao X <i>, et al.</i> Effects of a Prolonged Booster Interval on Neutralization of Omicron Variant. <i>N</i> Engl J Med 386 , 894-896 (2022).
508 509 510	66.	Bowen JE <i>, et al.</i> Omicron BA.1 and BA.2 neutralizing activity elicited by a comprehensive panel of human vaccines. <i>bioRxiv</i> , (2022).
511 512 513	67.	Carreno JM, <i>et al</i> . Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. <i>Nature</i> 602 , 682-688 (2022).
514 515 516	68.	Syed AM <i>, et al.</i> Omicron mutations enhance infectivity and reduce antibody neutralization of SARS-CoV-2 virus-like particles. <i>medRxiv</i> , (2022).
517 518 519	69.	Haveri A, <i>et al.</i> Neutralizing antibodies to SARS-CoV-2 Omicron variant after third mRNA vaccination in health care workers and elderly subjects. <i>Eur J Immunol</i> , (2022).
520 521 522	70.	Li M <i>, et al.</i> Convalescent plasma with a high level of virus-specific antibody effectively neutralizes SARS-CoV-2 variants of concern. <i>Blood Adv</i> , 2022.2003.2001.22271662 (2022).
523 524 525 526	71.	Kurahashi Y, <i>et al.</i> Cross-neutralizing activity against Omicron could be obtained in SARS- CoV-2 convalescent patients who received two doses of mRNA vaccination. <i>medRxiv,</i> 2022.2002.2024.22271262 (2022).
527		

528 529 530	72.	Lechmere T <i>, et al.</i> Broad Neutralization of SARS-CoV-2 Variants, Including Omicron, following Breakthrough Infection with Delta in COVID-19-Vaccinated Individuals. <i>mBio</i> 13 , e0379821 (2022).
531 532 533	73.	Edara VV <i>, et al.</i> mRNA-1273 and BNT162b2 mRNA vaccines have reduced neutralizing activity against the SARS-CoV-2 omicron variant. <i>Cell Rep Med</i> 3 , 100529 (2022).
534 535 536	74.	Cele S <i>, et al.</i> Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. <i>Nature 602,</i> 654-656 (2022).
537 538 539	75.	Wilhelm A <i>, et al.</i> Reduced Neutralization of SARS-CoV-2 Omicron Variant by Vaccine Sera and Monoclonal Antibodies. <i>medRxiv</i> , 2021.2012.2007.21267432 (2021).
540 541 542	76.	Doria-Rose NA <i>, et al.</i> Booster of mRNA-1273 Strengthens SARS-CoV-2 Omicron Neutralization. <i>medRxiv</i> , 2021.2012.2015.21267805 (2021).
543 544 545	77.	Kawaoka Y <i>, et al.</i> Characterization and antiviral susceptibility of SARS-CoV-2 Omicron/BA.2. <i>Res Sq</i> , (2022).
546 547 548	78.	Dejnirattisai W <i>, et al.</i> Reduced neutralisation of SARS-COV-2 Omicron-B.1.1.529 variant by post-immunisation serum. <i>Lancet</i> 399 , 234-236 (2022).
549 550 551	79.	Wang Q, <i>et al.</i> Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. <i>Nature</i> , (2022).
552 553 554	80.	Khan K <i>, et al.</i> Omicron BA.4/BA.5 escape neutralizing immunity elicited by BA.1 infection. <i>Nat Commun</i> 13 , 4686 (2022).
555 556 557	81.	Muik A <i>, et al.</i> Omicron BA.2 breakthrough infection enhances cross-neutralization of BA.2.12.1 and BA.4/BA.5. 2022.2008.2002.502461 (2022).
558 559 560 561	82.	Planas D <i>, et al.</i> Duration of BA.5 neutralization in sera and nasal swabs from SARS-CoV-2 vaccinated individuals, with or without Omicron breakthrough infection. 2022.2007.2022.22277885 (2022).
562 563 564	83.	Yu J <i>, et al.</i> Comparable Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants. 2022.2002.2006.22270533 (2022).
565 566 567	84.	Tuekprakhon A <i>, et al.</i> Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum. <i>Cell</i> 185 , 2422-2433.e2413 (2022).

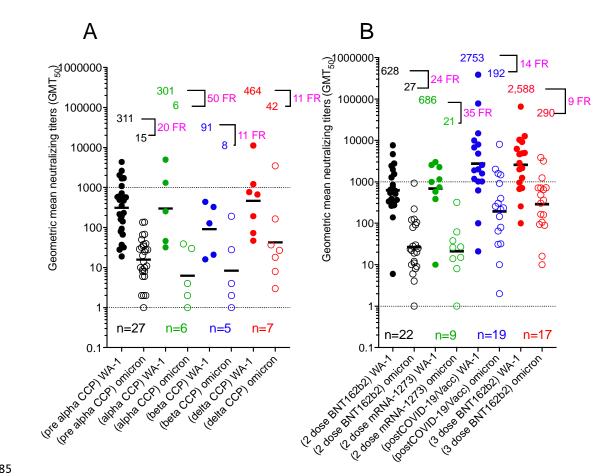
568		
569	85.	Hachmann NP, et al. Neutralization Escape by the SARS-CoV-2 Omicron Variants BA.2.12.1

570 and BA.4/BA.5. *N Engl J Med* **387**, 86-88 (2022).

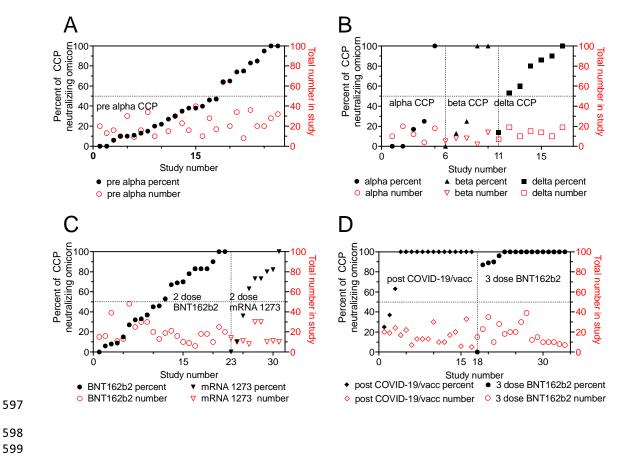

571

572

574 Figure 1


575 PRISMA flowchart for the current study.

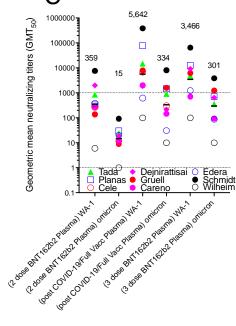
576


Figure 2

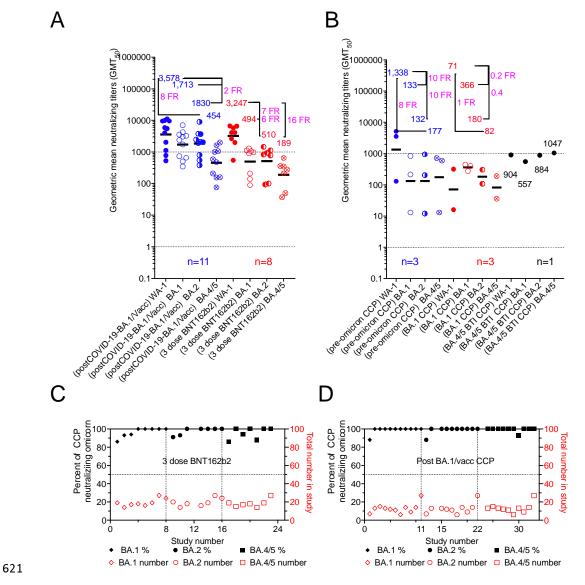
Geometric mean neutralizing titers (GMT₅₀) against WA-1 versus Omicron BA.1 by study for A) unvaccinated convalescent plasma and B) vaccinated plasma with or without COVID-19. Geomeans for entire study groups with neutralization of WA-1 in filled circles and of Omicron BA.1 in empty circles with geomeans, fold reduction (FR) above data, and number of studies above x-axis. All geomeans are not statistically significant in difference by multiple comparison in Tukey's test.

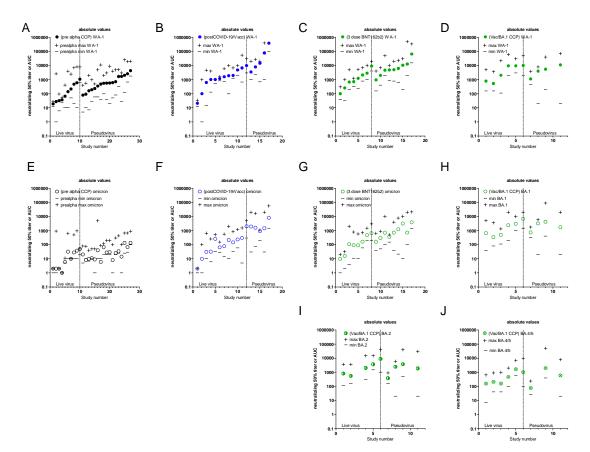
Figure 3

Percent of individual plasma samples in each study showing any titer of Omicron BA.1 neutralization. The percent of samples within a study condition which neutralized Omicron BA.1 graphed in increasing percentages with the number of samples tested on the right y axis. A) pre-Alpha CCP neutralization of Omicron BA.1; B) Alpha, Beta and Delta CCP neutralization of Omicron BA.1 C) 2 dose mRNA vaccines neutralization of Omicron BA.1 D) post-COVID-19/post-vaccine (Vax-CCP) and uninfected 3-dose vaccine neutralization of Omicron BA.1.



604 Figure 4


605 Geometric mean neutralizing titers (GMT₅₀) of anti-WA.1 or anti-Omicron BA.1 neutralizing antibodies in 606 plasma samples from 5 studies investigating diverse SARS-CoV-2 infecting lineage or vaccination status. 5 607 studies characterized A) pre-Alpha, Alpha, Beta and Delta CCP for Omicron BA.1 nAb compared to WA-1, 608 and also B) 2 or 3 doses BNT162b plasma, as well as post-COVID-19 plus BNT162b vaccine (Vax-CCP). C) 9 609 additional studies looked at the same vaccine conditions in the first 5 comparing WA-1 nAb to Omicron 610 BA.1 nAb.


612 Figure 5

- 613 Geometric mean neutralizing titers (GMT₅₀) against WA-1 versus Omicron BA.1, BA.2 or BA.4/5 for A)
- 614 boosted vaccinated plasma with or without BA.1 COVID-19 and B) unvaccinated preomicron or BA.1 CCP.
- 615 Geomeans for entire study groups with neutralization of WA-1 in filled circles with Omicron in empty
- 616 circles with geomeans and fold reduction (FR) above data and number of studies above x-axis. All
- 617 geomeans are not statistically significant in difference by multiple comparison in Tukey's test. The
- 618 percent of samples within a study condition which neutralized Omicron graphed in increasing
- 619 percentages with the number of samples tested on the right y axis. C) uninfected 3-dose vaccine
- 620 neutralization of Omicron BA.1, BA.2 and BA.4/5.; D) post-COVID-19-BA.1/post-vaccine (Vax-CCP).

⁶²³ Figure 6

- 624 GMT₅₀ from each study with minimum and maximum dilution titer also shown. Live virus assays are on
- the left and pseudoviral assays on the right. A) pre-alpha CCP against WA-1, B) post COVID-19/Vax
- against WA-1. C) 3 dose BNT 162b2 against WA-1, D) post COVID-19 BA.1/Vac against WA-1, E) pre-alpha
- 627 CCP against omicron BA.1, F) post COVID-19/Vax against Omicron BA.1. G) 3 dose BNT 162b2 against
- 628 Omicron BA.1, H) post COVID-19 BA.1/Vac against Omicron BA.1, I) post COVID-19 BA.1/Vac against
- 629 Omicron BA.2 J) post COVID-19 BA.1/Vac against BA.4/5.

630

632 Table 1

633 Comparison of WA-1 to Omicron BA.1 nAb and percent with any Omicron BA.1 nAb amongst VOC CCP634 and vaccination status.

				fold			
				reduction			
				in nAb	total	total	
				GMT ₅₀	number	Omicron	Omicron
	number		Omicron	VS.	individuals	BA.1	BA.1
plasma	of	WA-1 nAb	BA1 nAb	Omicron	inall	neutralizing	neutralizing
type	studies	GMT ₅₀	GMT ₅₀	BA.1	studies	number	percent
pre-Alpha	27	311	15	20	707	315	45
Alpha	6	301	6	50	64	21	33
Beta	5	91	8	11	37	19	51
Delta	7	464	42	11	94	69	73
2 dose BNT162b2							
plasma	22	628	27	24	432	202	47
2 dose mRNA- 1273 plasma	9	686	20	35	134	81	60
post- COVID- 19/full vacc							
plasma	19	2753	192	14	279	243	87
3 dose BNT162b2							
plasma	17	2588	290	9	310	286	92

636 Table 2

637 Efficacy of CCP, vaccinee plasma and Vax-CCP expressed as GMT₅₀ against Omicron sublineages.

plasma type	number of studies	WA-1 nAb GMT ₅₀	Omicron BA.1 nAb GMT ₅₀ (Fold reduction from WA- 1)	Omicron BA.2 nAb GMT ₅₀ (Fold reduction from WA- 1)	Omicron BA.14/5 nAb GMT ₅₀ (Fold reduction from WA- 1)	total number individuals in all studies	Omicron BA.1; BA.2; BA.4/5 neutralizing percent
Pre- omicron CCP	3	1338	133 (10 FR)	132 (10 FR)	177 (8 FR)	50	35; 37;40
BA.1 CCP	3	71	366 (0.16 FR)	180 (0.4 FR)	82 (1 FR)	74	66; 80; 76
BA.4/5 CCP	1	904	557 (2 FR)	884 (1 FR)	1047 (1 FR)	13	100; 100; 100
3 dose BNT162b2 plasma	8	3247	494 (7 FR)	511 (6 FR)	189 (16 FR)	159	97; 98; 96
post- COVID-19- BA.1/full vacc plasma	11	3578	1713 (2 FR)	1830 (2 FR)	454 (8 FR)	142	99; 99; 99

639 Supplementary table 1

640 641

Synopsis of 27 in vitro studies investigating the efficacy of pre-Alpha CCP against Omicron

	Assay							
	type							
	(live	time				(pre-		
	virus =1	mean or			(pre-Alpha	Alpha	(pre-Alpha	(pre-Alph
	Pseudovi	median	(pre-Alpha	(pre-Alpha	CCP) fold	CCP)	CCP) BA.1	CCP) BA.
	rus=2)	(min-	CCP) WA-	CCP) BA.1	drop vs.	number	neutralizin	neutralizii
reference		max)	1 GMT ₅₀	GMT ₅₀	BA.1	in study	g number	g percen
Zeng ⁵²	2	(1-2) mo	1712	14	122	9	1	11
	2	(9-120)	4344	135		10	2	20
Liu ⁵³		days			32			
Schmidt ⁵⁴	2	1.2 mo	2616	68	38	20	19	9.
Schmidt ⁵⁴	2	12 mo	2037	136	15	20	17	8
Schmidt ⁵⁴	2	6 mo	1678	34	49	20	13	6.
Arien ⁵⁵	1	1 mo	1086	50	22	10	1	10
	2	30(14-	715	25		16	2	13
Lusvarg hi ⁵⁶		51) days			29			
Hoffman ⁵⁷	2	< 2 mo	614	8	77	17	8	47
Zou ⁵⁸	1	1 mo	601	38	16	64	41	64
Planas ¹⁴	2	6 mo	569	28	20	16	6	38
Planas ¹⁴	2	12 mo	580	29	20	23	8	3!
Zhang ⁵⁹	2	(1-3) mo	556	66	8	28	28	100
Gruell ⁶⁰	2	1.5 mo	494	6	82	30	3	10
Gruell ⁶⁰	2	12 mo	93	8	12	30	9	30
Dejnirattisai	1		475	28		32	32	100
61		42 med						
		days			17			
Sheward ⁶²	2	1 mo	350	40	9	34	25	74
Tada ⁶³	2	(32-57)	233	9	26	10	4	40
Aggerwal ⁶⁴	1	1+ mo	215	10	22	20	0	(
	2	18(11-	193	11		16	1	
Zhao ⁶⁵		51) days			17			
	2	(28-78)	162	10		28	13	46
Bowen		days			16			
Zou ⁵⁸	1	6 mo	142	32	4	36	30	83
	1	58 (23-	67	6		15	4	27
Carreno ⁶⁷		87) days			11			
Syed ⁶⁸	2	<1 mo	80	20	4	8	6	75
	1	(3-137)	37	1		34	5	1!
Bekliz ¹⁵		days			45			
Haveri ⁶⁹	1	1 mo	32	2	16	13	0	(
LI ⁷⁰	1	<1 mo	28	2	14	108	22	22
Kurahashi ⁷¹	1	(1-3) mo	19	2	13	40	15	3
GM (GMT ₅₀)			1712	15	20			
Tota								
(AVG%)						707	315	(45%

643 Supplementary table 2

644 Synopsis of 5 *in vitro* studies investigating the efficacy of Alpha CCP against Omicron

		time						
	Assay type	mean	(Alph	(Alph	(Alpha			
	(live virus =1	or	a CCP)	a CCP)	CCP) fold	(Alpha	(Alpha	(Alpha
	Pseudovirus=2	media	WA-1	BA.1	reductio	CCP)	CCP) BA.1	CCP) BA.1
)	n (min-	GMT₅	GMT₅	n vs.	numbe	neutralizin	neutralizin
reference		max)	0	0	BA.1	r	g number	g percent
		30 (14-	4978					
		51)						
Lusvarghi ⁵⁶	2	days		30	166	4	1	25
		19	1313					
Dejnirattisai ⁶		med						
1	1	days		39	34	18	18	100
Rossler ¹⁶	1		256	4	63	10	0	0
Haveri ⁶⁹	1	1 mo	32	2	16	20	0	0
		3-137	46					
Bekliz ¹⁵	1	days		1	57	12	2	17
GM (GMT ₅₀)			301	6	50			
Total (AVG%)						64	21	(33%)

645

647 Supplementary table 3

648 Synopsis of 5 *in vitro* studies investigating the efficacy of Beta CCP against Omicron.

		time						
	Assay type	mean	(beta	(beta	(beta			
	(live virus =1	or	CCP)	CCP)	CCP) fold	(beta	(beta CCP)	(beta CCP)
	Pseudovirus=2	media	WA-1	BA.1	reductio	CCP)	BA.1	BA.1
)	n (min-	GMT₅	GMT₅	n vs.	numbe	neutralizin	neutralizin
reference		max)	0	0	BA.1	r	g number	g percent
		30 (14-	439					
		51)						
Lusvarg hi ⁵⁶	2	days		191	2	2	2	100
Dejnirattisai ⁶		61	327					
1		med						
	1	days		28	12	14	14	100
Rossler ¹⁶	1		128	4	32	8	1	13
Haveri ⁶⁹	1	1 mo	16	2	8	5	0	0
		3-137	21					
Bekliz ¹⁵	1	days		1	23	8	2	25
GM (GMT ₅₀)			140	8	11			
Total (AVG%)						37	19	(51%)

650 Supplementary table 4

651 Synopsis of 7 *in vitro* studies investigating the efficacy of Delta CCP against Omicron.

		time			(Delta			
	Assay type	mean or	(Delta	(Delta	CCP) fold		(Delta CCP)	(Delta CCP)
	(live virus =1	median	CCP)	CCP)	drop	(Delta	BA.1	BA.1
	Pseudovirus=2)	(min-	WA-1	BA.1	VS.	CCP)	neutralizing	neutralizing
reference	,	, max)	GMT ₅₀	GMT ₅₀	BA.1	number	number	percent
		(1-2)						
Zeng ⁵²	2	mo	11200	3476	3	19	10	53
		(13-22)						
Lechmere ⁷²	2	days	668	164	4	14	12	86
		30 (14-						
		51)						
Lusvarg hi ⁵⁶	2	days	1211	18	66	15	12	80
Aggerwal ⁶⁴	1		770	37	21	10	9	90
Rossler ¹⁶	1		192	8	25	7	1	14
		3-137						
Bekliz ¹⁵	1	days	73	3	24	10	6	60
		38						
Dejnirattisai ⁶¹		med						
	1	dayas	47	27	2	19	19	100
GM (GMT ₅₀)			167	10	17			
Total (AVG%)						94	69	(73%)

653 Supplementary table 5

654 Synopsis of 22 *in vitro* studies investigating the efficacy of plasma from uninfected recipients of 2

655 BNT162b2 doses against Omicron.

					(2 dose]
	Assay				(2 dose BNT162		(2 dose	(2 dose
	type		(2 dose	(2 dose	b2		BNT162b	BNT162b
	(live		BNT162	BNT162	plasma)	(2 dose	2 plasma)	2 plasma)
	, virus =1		b2	b2	fold	BNT162	BA.1	BA.1
	Pseudo	time mean	plasma)	plasma)	reductio	b2	neutralizi	neutralizi
	virus=2)	or median	WA-1	BA.1	n vs.	plasma)	ng	ng
reference		(min-max)	GMT ₅₀	GMT ₅₀	BA.1	number	number	percent
Sch midt ⁵⁴	2	1 mo	7627	92	83	18	15	83
		(16-213)						
Liu ⁵³	2	days	4669	222	21	13	6	46
Zeng ⁵² Schmidt ⁵⁴	2	(21-28) days	2769	121	23	48	13	27
Sch midt ⁵⁴	2	5 mo	2435	126	19	18	15	83
Dejnirattis								
ai ⁶¹								
	1	1 mo	1993	19	105	20	20	100
Chatterjee								
42	2	4 mo	1544	935	2	25	25	100
Syed ⁶⁸	2	1-1.5 mo	1280	80	16	21	14	67
Tada ⁶³	2	90 days	859	25	34	9	7	78
Bowen ⁶⁶	2	9-20 days	764	28	27	10	9	90
Chatterjee								
42	2	1 mo	641	105	6	19	10	53
Hoffman ⁵⁷	2	<3 mo	604	10	60	11	1	9
Lusvarg hi ⁵		30 (28-34)						
6	2	days	562	22	26	39	3	8
Gruell ⁶⁰	2	1 mo	546	8	68	30	10	33
Rossler ¹⁶	1	1 mo	512	24	21	20	9	45
Edara ⁷³	1	(14-28) days	384	20	19	13	2	15
Muik ¹⁷	1	1 mo	368	6	61	25	8	32
Cele ⁷⁴	1	(10-48) days	263	12	22	8	5	83
Bekliz ¹⁵	1	1 mo	338	4	86	16	11	69
		161 (138-						
Planas ¹⁴	2	176) days	329	30	11	16	1	6
		18 (14-21)						
Carreno ⁶⁷	1	days	274	11	25	10	7	70
Gruell ⁶⁰	2	5 mo	139	9	15	30	11	37
Wilheim ⁷⁵	1	6 mo	6	1	6	15	0	0
GM								
(GMT ₅₀)			628	27	24			
Total								
(AVG%)						432	202	(47%)

657 Supplementary table 6

658 Synopsis of 9 in vitro studies investigating the efficacy of plasma from uninfected recipients of 2 mRNA-

659 1273 doses against Omicron.

					(2 dose		(2 dose	(2 dose
			(2 dose	(2 dose	mRNA-		mRNA-	mRNA-
		time	mRNA-	mRNA-	1273	(2 dose	1273	1273
	Assay type	mean or	1273	1273	plasma)	mRNA-	plasma)	plasma)
	(live virus =1	median	plasma)	plasma)	fold	1273	BA.1	BA.1
	Pseudovirus=2)	(min-	WA-1	BA.1	drop	plasma)	neutralizing	neutralizing
reference		max)	GMT ₅₀	GMT ₅₀	vs. BA.1	number	number	percent
Doria-								
Rose ⁷⁶	2	1 mo	3016	62	49	30	22	73
Syed ⁶⁸	2	1-1.5 mo	2560	320	8	10	8	80
Doria-								
Rose ⁷⁶	2	1 mo	2269	27	84	30	22	73
		6-15						
Bowen ⁶⁶	2	days	1155	26	44	11	9	82
Tada ⁶³	2	80 days	999	38	26	8	5	63
Edara ⁷³	1	1 mo	745	15	50	11	4	36
		26 (14-						
Carreno ⁶⁷	1	36) days	581	14	42	10	10	100
Rossler ¹⁶	1	5 mo	384	8	48	10	1	10
Wilheim ⁷⁵	1	6 mo	10	1	20	14	0	0
GM								
(GMT ₅₀)			644	21	31			
Tota								
(AVG%)						134	81	(60%)

661 Supplementary table 7

662 Synopsis of 17 in vitro studies investigating the efficacy of plasma from infected and vaccinated (2

663 BNT162b2 doses) subjects (Vax-CCP) against Omicron.

					(post-			
	Assay		(post-	(post-	COVID-		(post-	(post-
	type	time	COVID-	COVID-	19/full	(post-	COVID-	COVID-
	(live virus	mean	19/full	19/full	vacc	COVID-	19/full vacc	19/full vacc
	=1	or	vacc	vacc	plasma)	19/full	plasma)	plasma)
	Pseudovi	median	plasma)	plasma)	fold	vacc	BA.1	BA.1
	rus=2)	(min-	WA-1	BA.1	drop	plasma)	neutralizing	neutralizing
reference		max)	GMT ₅₀	GMT₅0	vs. BA.1	number	number	percent
Schmidt ⁵⁴	2	1 mo	388872	8106	48	17	17	100
		32 (21-						
		48)						
Planas ¹⁴	2	days	78162	1475	53	22	22	100
Tada ⁶³	2	1 mo	14868	921	16	7	7	100
Cele ⁷⁴	1	(18-63)	6763	305	22	13	13	100
Kawoaka ⁷⁷	1	1 mo	10002	2029	5	13	13	100
Kawoaka ⁷⁷	1	3 mo	2251	399	6	13	13	100
Gruell ⁶⁰	2	1.5 mo	7997	1599	5	30	30	100
Arien ⁵⁵	1		4822	236	20	10	10	100
		26 (15-						
		39)						
Carreno ⁶⁷	1	days	2000	146	14	10	10	100
Dejnirattisai ⁶¹								
	1	1 mo	1899	215	9	17	17	100
LI ⁷⁰	1	< 1 mo	1598	80	20	20	20	100
Bekliz ¹⁵	1	1 mo	1190	65	18	6	6	100
Haveri ⁶⁹	1	1 mo	1024	32	32	33	33	100
Rossler ¹⁶	1		1024	256	4	5	5	100
Edara ⁷³	1	6 mo	625	31	20	24	15	63
Kurahashi ⁷¹	1	1 mo	21	2	14	19	7	37
		(.07-						
Wilheim ⁷⁵	1	7.6) mo	100	10	10	20	5	25
GM (GMT ₅₀)			2753	192	14			
Total (AVG%)						279	243	(87%)

665 Supplementary table 8

666 Synopsis of 17 *in vitro* studies investigating the efficacy of plasma from uninfected subjects vaccinated

667 with 3 BNT162b2 doses against Omicron.

	Assay	1						
	type	time	(3 dose	(3 dose	(3 dose		(3 dose	(3 dose
	(live	mean	BNT162b	BNT162b	BNT162b	(3 dose	BNT162b2	BNT162b2
	virus =1	or	2	2	2	BNT162b	plasma)	plasma)
	Pseudovi	median	plasma)	plasma)	plasma)	2	BA.1	BA.1
referenc	rus=2)	(min-	WA-1	BA.1	fold drop	plasma)	neutralizin	neutralizin
e	103-27	max)	GMT ₅₀	GMT ₅₀	vs. BA.1	number	g number	g percent
e Schmidt⁵		max)	GIVIT ₅₀	GIVI150	V3. DA.1	number	gnunber	gpercent
4	2	1 mo	65617	3871	17	18	18	100
	2	33 (8-	05017	5071	17	10	10	100
		61)						
Planas ¹⁴	2	days	12739	722	18	20	20	100
Fiallas	2	(21-28)	12755	122	10	20	20	100
Zeng ⁵²	2	(21-28) days	10412	3179	3	23	20	87
Dejniratti	2	uays	10412	5175	5	23	20	87
sai ⁶¹								
201	1	1 mo	9219	649	14	20	20	100
Grue ⁶⁰	2				5	30	30	
Grueil	2	1 mo	6241	1248	2	30	30	100
Luava na bi		43 (7-						
Lusvarghi 56	2	93) dava	5029	718	7	39	39	100
Tada ⁶³		days			-			100
Tada	2	1 mo	4892	360	14	12	12	100
Liu ⁵³	2	(14-90)	4670	74 5	_	1 5	4 5	100
	2	days	4673	715	7	15	15	100
Kawoaka			2000	105		10	10	100
	1	1 mo	2866	485	6	10	10	100
Arien55	1		2157	165	13	10	10	100
Hoffman 57	_				_		_	
57	2	<1 mo	2006	305	7	10	9	90
73		(]7-28)						
Edara ⁷³	1	days	1247	89	14	35	31	89
6		19 (14-						
Carreno ⁶		28)			-			
,	1	days	710	94	8	10	10	100
- 168	_	1-1.5					_	
Syed ⁶⁸	2	mo	960	160	6	8	8	100
Muik ¹⁷	1	1 mo	673	106	6	28	27	96
60		(21–42)						
Haveri	1	days	256	16	16	7	7	100
Wilheim ⁷								
5	1	3 mo	100	10	10	15	0	0
		time						
		mean						
		or						
		median						
GM		(min-						
(GMT ₅₀)		max)	2588	290	9			
Total								
(AVG%)						310	286	(92%)

668 Supplementary table 9

- 669 Synopsis of *in vitro* studies investigating the efficacy of plasma from uninfected subjects vaccinated with
- 670 3 doses of mRNA-1273, AZD-1222 or Ad26.COV2 against BA.1. Because of diversity of vaccines the
- 671 geomeans and sums were not computed.
- 672

	vaccine	WA-1	fold drop	BA.1		BA.1 neutralizing	BA.1 neutralizing
reference	type	GMT ₅₀	vs. BA.1	GMT ₅₀	number	number	percent
	COVID19 +						
	mRNA-						
Careno ⁶⁷	1273	3000	11	272	10	10	100
	COVID19 +						
70	mRNA-						
Edara ⁷³	1273 6 mo	931	25	38	13	9	69
	3 dose						
	mRNA-						
Careno ⁶⁷	1273	1000	17	60	10	10	100
	3 dose						
76	mRNA-						
Doria-Rose ⁷⁶	1273	8457	4	2002	30	30	100
	3 dose						
76	mRNA-						
Doria-Rose ⁷⁶	1273	4216	6	650	30	30	100
	3 dose						
70	mRNA-						
Edara ⁷³	1273	1395	15	96	17	16	94
Dejnirattisai ⁷⁸	AZD1222	390	19	21	41	41	100
Rossler ¹⁶	AZD1222	250	25	10.0	20	0	0
	AZD1222 5						
Planas ¹⁴	mo	187	18	10	18	2	10
Syed ⁶⁸	Ad26.COV2	28	1	20.0	9	2	22
	Ad26.COV2						
Schmidt ⁵⁴	1 mo	588	24	25	19	2	11
	Ad26.COV2						
Sch midt ⁵⁴	6 mo	982	23	43	19	11	58

674 Supplementary table 10

675 Synopsis of *in vitro* studies investigating the efficacy of plasma from (pre-omicron, BA.1 and BA.4/5 CCP)

676 subjects against Omicron BA.1, BA.2 and BA.4/5.

	Assay	time mean			Omicron	Omicron			
	type	or median			BA.2 nAb	BA.14/5			
	(live	(min-max)		Omicron	GMT ₅₀	nAb			
	virus			BA.1 nAb	(Fold	GMT ₅₀		BA.1;	BA.1;
	=1			GMT ₅₀	reduction	(Fold		BA.2;	BA.2;
	Pseud			(Fold	from WA-	reduction		BA.4/5	BA.4/5
	ovirus			reduction	1)	from WA-	Numb	neutralizi	neutrali
referenc	=2)		WA-1 nAb	from WA-		1)	erin	ng	zing
е			GMT ₅₀	1)			study	number	percent
preomicr									
on									
Wang ⁷⁹		(7-213)					22	22; 22;22	100;100
		days							;100
	1		5185	845 (6 FR)	939 (6 FR)	596 (9 FR)			
Awasthi⁵		>1 mo					10	1; 1; 1	10; 10;
0	2		130	13 (10 FR)	12 (11 FR)	13 (13 FR)			10
Qu ²³		3 day post					18	12; 14;	67; 78;
		hosp.		214 (17				17	94
	2		3554	FR)	205	717 (5 FR)			
GM			1338	133	132	177			
(GMT ₅₀)				(10 FR)	(10 FR)	(8 FR)			
Tota							50	35; 37;4	(70;74;
(AVG%)								0	80)
BA.1									
Khan ⁸⁰	1	23 (19-						24; nd;	100;nd;
		27iqr)	Not done	275	Not done	36	24	18	75
Zou ⁵⁸	1	25 (13-62)		445 (0.04	107 (0.15			20; 19;	100;95;
		days	16	FR)	FR	Not done	20	nd	nd
Qu ²³	2	1-8 days		399 (0.8	304 (1.04			22; 21;	73;70;7
		post hosp.	317	FR)	FR)	189 (2 FR)	30	23	7
GM			71	366 (0.16	180 (0.4	82 (1 FR)	74		
(GMT ₅₀)				FR)	FR)				
Tota								66;40;41	89;80;9
(AVG%)									3
BA.4/5									
Richards	2	< 9 days	904	557 (2 FR)	884 (1 FR)	1047 (1	13	13;13;13	100;100
on ²⁴		into hosp.				FR)			; 100

678 Supplementary table 11

679 Synopsis of *in vitro* studies investigating the efficacy of plasma from (post-COVID-19-BA.1/full vacc

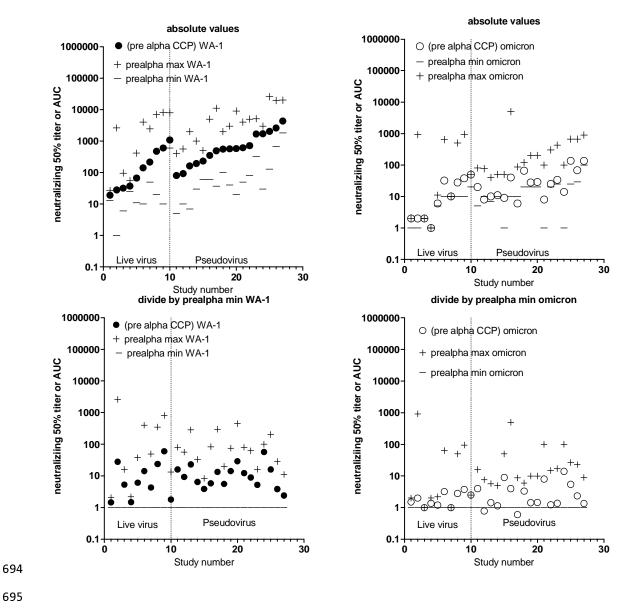
680 plasma) subjects (Vax-CCP) against Omicron BA.1, BA.2 and BA.4/5.

				Omicron	Omicron	Omicron			
		time		BA.1	BA.2	BA.14/5			
		mean		nAb	nAb	nAb			
	Assay type	or		GMT ₅₀	GMT ₅₀	GMT ₅₀		BA.1;	BA.1;
	(live virus =1	media	WA-1	(Fold	(Fold	(Fold		BA.2;	BA.2;
	Pseudovirus=	n	nAb	reductio	reductio	reductio	Numbe	BA.4/5	BA.4/5
	2)	(min-	GMT ₅	n from	n from	n from	r in	neutralizin	neutralizin
reference		max)	0	WA-1)	WA-1)	WA-1)	study	g number	g percent
		43							100; 100; 9
01		(25-		656 (1	800 (1	156 (5			3
Muik ⁸¹ (BA.1)	1	55)	780	FR)	FR)	FR)	14	14;14;13	
		39							100; 100;
01		(30-		347 (2	545 (1	209 (3			100
Muik ⁸¹ (BA.2)	1	99)	531	FR)	FR)	FR)	13	13;13;13	
00				507 (4		158 (13			100; nd;
Khan ⁸⁰	1		2038	FR)		FR)	15	15; nd; 15	100
70		(14-							100; 100;
Wang ⁷⁹		135)		2406 (4	2052 (5	473 (20			100
(BA.1)	1	days	9500	FR)	FR)	FR)	13	13;13;13	
70		(14-							100; 100;
Wang ⁷⁹		36)		3054 (3	3679 (3	1627 (6			100
(BA.2)	1	days	9527	FR)	FR)	FR)	12	12;12;12	
		80							100; 100;
		med	1000	7000 (1	9000 (1	1000 (10			100
Planas ⁸²	1	days	0	FR)	FR)	R)	11	11;11;11	
50				733 (2	380 (3	76 (15			100;100;
Awasthi ⁵⁰	2	>1 mo	1120	FR)	FR)	FR)	6	6;6;6	100
		14							88;88;nd
		med		3249 (1	2448 (2				
Yu ⁸³	2	days	4046	FR)	FR)		8	7;7;nd	
		< 9							100; 100;
		days							100
		into		4244 (1	3779 (1	1984 (3			
Richardson ²⁴	2	hosp.	5484	FR)	FR)	FR)	9	9;9;9	
		45							100; 100;
Tuekprakhon		med		3563 (2	2119 (3	1064 (6			100
84	2	days	5861	FR)	FR)	FR)	14	14;14;14	
		29 (2-							100; 100;
		113)	1105	1740 (6	1910 (6	590 (19			100
Hach man ⁸⁵	2	days	0	FR)	FR)	(FR)	27	27;27;27	
			3578	1713 (2	1830 (2	454 (8			
GM (GMT ₅₀)				FR)	FR)	FR)			
							142	141; 126;	99;99;99
Total (AVG%)		1	1	1		1	1	133	1

682 Supplementary table 12

683 Synopsis of *in vitro* studies investigating the efficacy of plasma from (3 dose BNT162b2 plasma) subjects

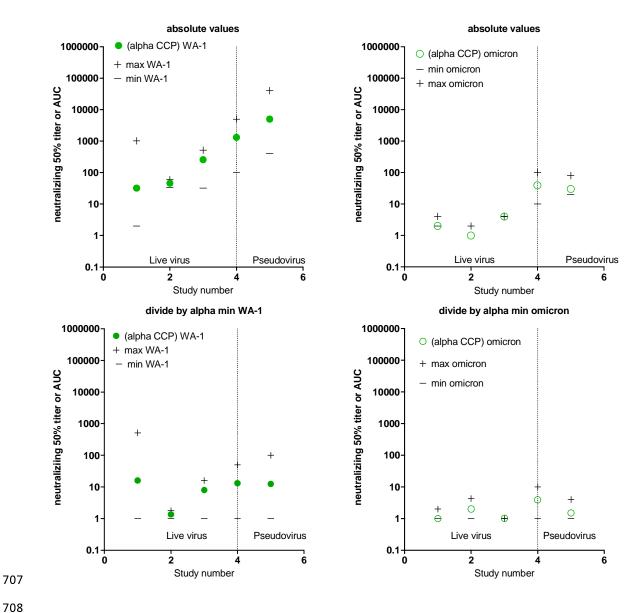
against Omicron BA.1, BA.2 and BA.4/5.


				Omicron	Omicron	Omicron			
		time		BA.1	BA.2	BA. 14/5			
		mean		nAb	nAb	nAb			
	Assay type	or		GMT ₅₀	GMT ₅₀	GMT ₅₀			BA.1;
	(live virus =1	media	WA-1	(Fold	(Fold	(Fold		BA.1; BA.2;	BA.1; BA.2;
	Pseudovirus=	n	nAb	reductio	reductio	reductio	Numbe	BA.4/5	BA.4/5
	2)	(min-	GMT	nfrom	n from	nfrom	rin	neutralizin	neutralizir
reference	-,	max)	0	WA-1)	WA-1)	WA-1)	study	g number	g percent
		132	0				otuuy	8	86;91;86
		med		140 (14	100 (20	50 (40			00,51,00
Planas ⁸²	1	days	2000	FR)	FR)	FR)	22	19;20;19	
		28		,	,	,			94;100;94
		(26-				37 (15			,,
Muik ⁸¹	1	30)	549	90 (6 FR)	93 (6 FR)	FR)	18	17;18; 17	
		,		208 (20	Not	211 (20		, ,	100; nd;
Khan ⁸⁰	1		4123	FR)	done	FR)	18	18;nd;;18	100
		(14-							100;100;
		90)		130 (5	1461 (5	347 (19			88
Wang ⁷⁹	1	days	6657	FR)0	FR)	FR)	16	16;16;14	
		(21-							93;93; 100
		28)		976 (3	933 (3	647 (4			
Qu ²³	2	days	2633	FR)	FR)	FR)	15	14; 14; 15	
Tuekprakhon		28		1116 (4	1113 (4	360 (11			100; 100;
84	2	days	4122	FR)	FR)	FR)	19	19; 19; 19	100
		14		900 (6	829 (7	275 (21			100; 100;
Hach man ⁸⁵	2	days	5783	FR)	FR)	FR)	27	27;27;27	100
		14		1066 (6	776 (8	Not			100; 100;
Yu ⁸³	2	days	6539	FR)	FR)	done	24	24;24	nd
			3247	494 (7	511(6	189 (16	1		
GM (GMT ₅₀)				FR)	FR)	FR)			
							159	154;138;12	97;98;96
Total (AVG%)								9	

685

Supplementary Figure 1 687

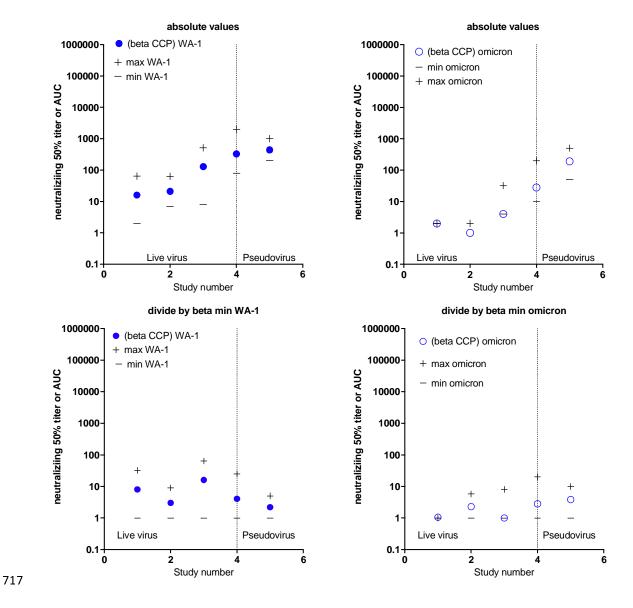
688 Alternative graphing of Supplementary table 1 and Figure 2A. 27 in vitro studies investigating the efficacy 689 of pre-Alpha CCP against Omicron with GMT₅₀ from each study with minimum and maximum dilution 690 titer also shown. The absolute values are graphed in the upper panels for WA-1 on left and omicron on


- 691 right. In the lower panels all numbers divided by the minimum value for each study to normalize for WA-
- 692 1 on left and Omicron on right. The GMT₅₀ approximates 10 with this computational division. Live virus
- 693 assays are on the left and pseudoviral assays on the right.

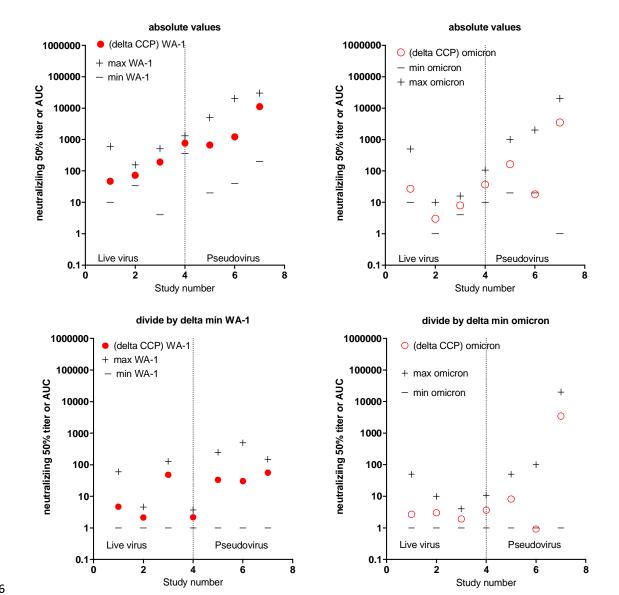
- 694
- 696
- 697
- 698

Supplementary Figure 2 699

700 Alternative graphing of Supplementary table 2 and Figure 2A. 5 in vitro studies investigating the efficacy 701 of Alpha CCP against Omicron with GMT₅₀ from each study with minimum and maximum dilution titer 702 also shown. The absolute values are graphed in the upper panels for WA-1 on left and omicron on right. 703 In the lower panels all numbers divided by the minimum value for each study to normalize for WA-1 on 704 left and Omicron on right. The GMT₅₀ approximates 10 with this computational division. Live virus assays 705 are on the left and pseudoviral assays on the right.

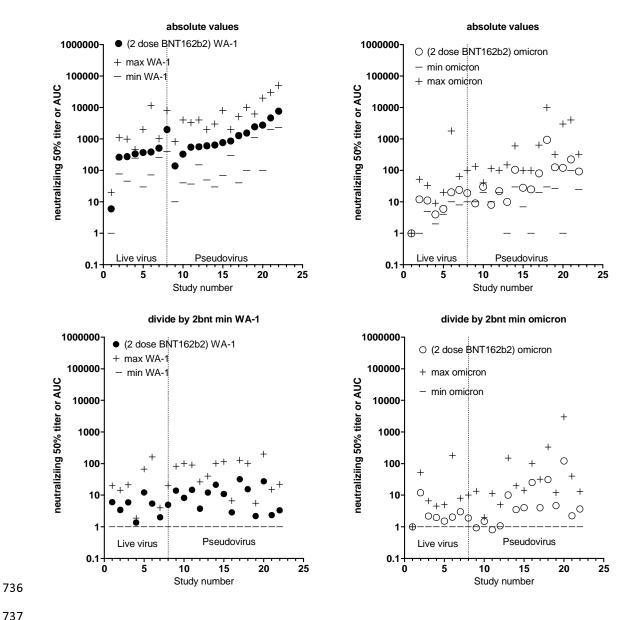


710 Supplementary Figure 3


- 711 Alternative graphing of Supplementary table 3 and Figure 2A. 5 in vitro studies investigating the efficacy
- of Beta CCP against Omicron with GMT₅₀ from each study with minimum and maximum dilution titer also
- shown. The absolute values are graphed in the upper panels for WA-1 on left and omicron on right. In the
- 714 lower panels all numbers divided by the minimum value for each study to normalize for WA-1 on left and
- 715 Omicron on right. The GMT₅₀ approximates 10 with this computational division. Live virus assays are on
- 716 the left and pseudoviral assays on the right.

⁷¹⁹ Supplementary Figure 4

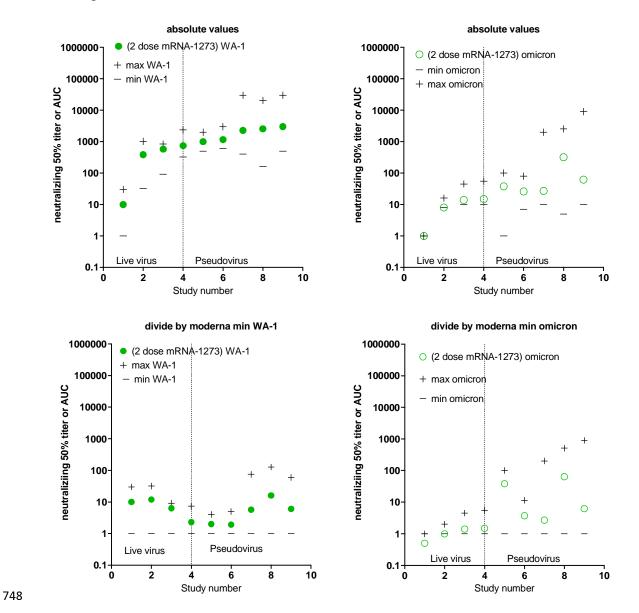
- 720 Alternative graphing of Supplementary table 4 and Figure 2A. 7 in vitro studies investigating the efficacy
- 721 of Delta CCP against Omicron with GMT₅₀ from each study with minimum and maximum dilution titer
- also shown. The absolute values are graphed in the upper panels for WA-1 on left and omicron on right.
- 723 In the lower panels all numbers divided by the minimum value for each study to normalize for WA-1 on
- 724 left and Omicron on right. The GMT₅₀ approximates 10 with this computational division. Live virus assays
- are on the left and pseudoviral assays on the right.



728

Supplementary Figure 5 729

Alternative graphing of Supplementary table 5 and Figure 2B. 22 in vitro studies investigating the efficacy 730 731 of plasma from uninfected recipients of 2 BNT162b2 doses against Omicron with GMT₅₀ from each study 732 with minimum and maximum dilution titer also shown. The absolute values are graphed in the upper 733 panels for WA-1 on left and omicron on right. In the lower panels all numbers divided by the minimum 734 value for each study to normalize for WA-1 on left and omicron on right. The GMT₅₀ approximates 10 735 with this computational division. Live virus assays are on the left and pseudoviral assays on the right.

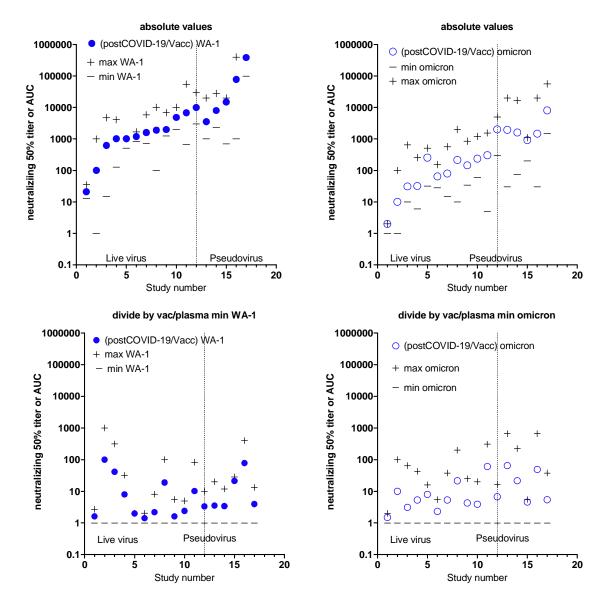


738

739

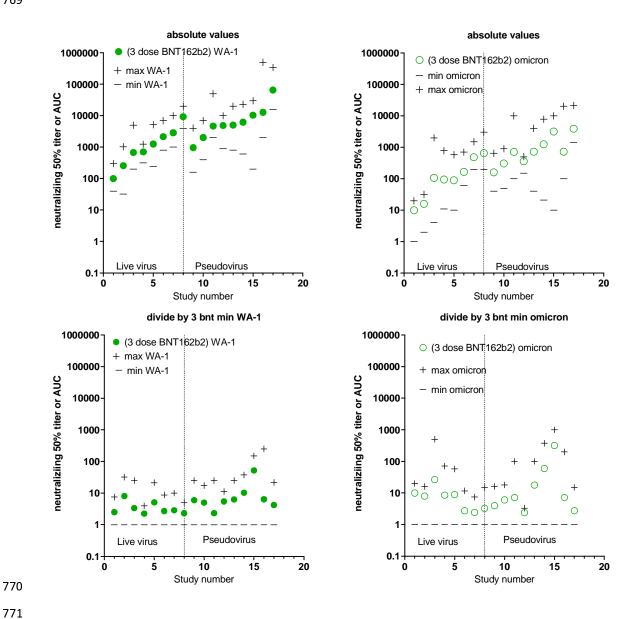
740 Supplementary Figure 6

Alternative graphing of Supplementary table 6 and Figure 2B. 9 *in vitro* studies investigating the efficacy of plasma from uninfected recipients of 2 mRNA-1273 doses against Omicron with GMT₅₀ from each study with minimum and maximum dilution titer also shown. The absolute values are graphed in the upper panels for WA-1 on left and omicron on right. In the lower panels all numbers divided by the minimum value for each study to normalize for WA-1 on left and omicron on right. The GMT₅₀ approximates 10 with this computational division. Live virus assays are on the left and pseudoviral assays on the right.



750

751 Supplementary Figure 7

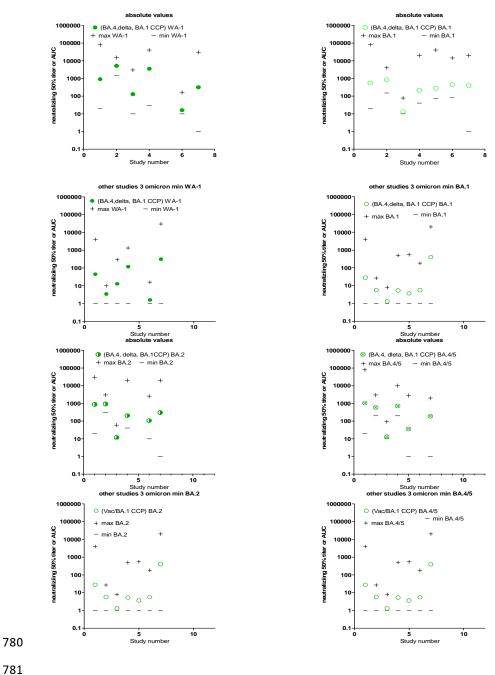

Alternative graphing of Supplementary table 7 and Figure 2B. 17 *in vitro* studies investigating the efficacy of plasma from infected and vaccinated (2 BNT162b2 doses) subjects (VaxCCP) against Omicron with GMT₅₀ from each study with minimum and maximum dilution titer also shown. The absolute values are graphed in the upper panels for WA-1 on left and omicron on right. In the lower panels all numbers divided by the minimum value for each study to normalize for WA-1 on left and Omicron on right. The GMT₅₀ approximates 10 with this computational division. Live virus assays are on the left and pseudoviral assays on the right.

Supplementary Figure 8 761

762 Alternative graphing of Supplementary table 8 and Figure 2B. 17 in vitro studies investigating the efficacy 763 of plasma from uninfected subjects vaccinated with 3 BNT162b2 doses against Omicron with GMT₅₀ from 764 each study with minimum and maximum dilution titer also shown. The absolute values are graphed in the 765 upper panels for WA-1 on left and omicron on right. In the lower panels all numbers divided by the minimum value for each study to normalize for WA-1 on left and Omicron on right. The GMT₅₀ 766 767 approximates 10 with this computational division. Live virus assays are on the left and pseudoviral assays 768 on the right.

Supplementary Figure 9 772

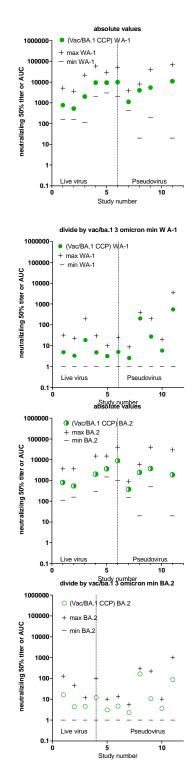
773 Alternative graphing of Supplementary table 10 and Figure 5. 7 in vitro studies investigating the efficacy

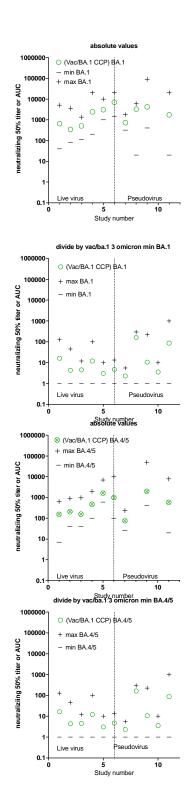

774 of plasma from (pre-omicron, BA.1 and BA.4/5 CCP) subjects (VaxCCP) against Omicron BA.1, BA.2 and

BA.4/5 with GMT₅₀ from each study with minimum and maximum dilution titer also shown. The absolute 775

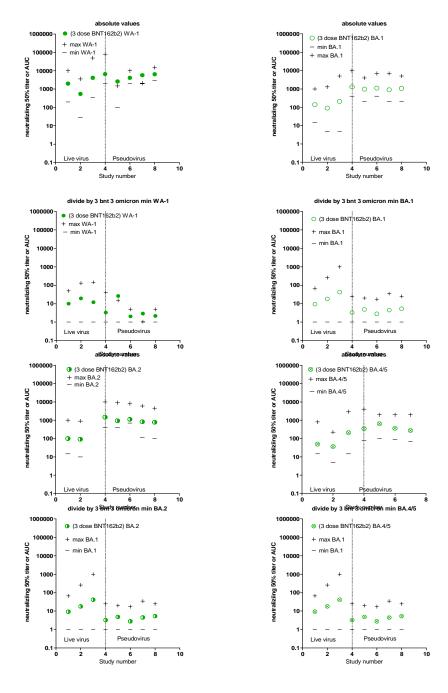
776 values are graphed in the upper panels for WA-1 on left and omicron on right. In the lower panels all

777 numbers divided by the minimum value for each study to normalize for WA-1 on left and Omicron on


- 778 right. The GMT₅₀ approximates 10 with this computational division. Live virus assays are on the left and
- 779 pseudoviral assays on the right.



782 Supplementary Figure 10


Alternative graphing of Supplement table 11 and Figure 5. 9 *in vitro* studies investigating the efficacy of plasma from (post-COVID-19-BA.1/full vacc plasma) subjects (VaxCCP) against Omicron BA.1, BA.2 and BA.4/5 with GMT₅₀ from each study with minimum and maximum dilution titer also shown. The absolute values are graphed in the upper panels for WA-1 on left and omicron on right. In the lower panels all numbers divided by the minimum value for each study to normalize for WA-1 on left and Omicron on right. The GMT₅₀ approximates 10 with this computational division. Live virus assays are on the left and pseudoviral assays on the right.

791 Supplementary Figure 11

- 792 Alternative graphing of Supplementary table 12 and Figure 5. 8 *in vitro* studies investigating the efficacy
- of plasma from (3 dose BNT162b2 plasma) subjects (VaxCCP) against Omicron BA.1, BA.2 and BA.4/5 with
- 794 GMT₅₀ from each study with minimum and maximum dilution titer also shown. The absolute values are
- 795 graphed in the upper panels for WA-1 on left and omicron on right. In the lower panels all numbers
- 796 divided by the minimum value for each study to normalize for WA-1 on left and Omicron on right. The
- 797 GMT₅₀ approximates 10 with this computational division. Live virus assays are on the left and pseudoviral
- 798 assays on the right.

