- 1 Analysis of anti-Omicron neutralizing antibody titers in plasma from pre-Omicron convalescents and
- 2 vaccinees.
- 3
- 4 Daniele Focosi^{1,#}, Massimo Franchini², Michael J. Joyner³, Arturo Casadevall⁴, David J Sullivan⁴
- 5
- 6 ¹North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy.
- 7
- 8 ²Division of Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy; <u>massimo.franchini@asst-</u>
- 9 <u>mantova.it</u>
- ³Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN 55902, USA
- 11 joyner.michael@mayo.edu;
- ⁴Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD
- 13 21218, USA; <u>acasade1@jhu.edu</u>[#]corresponding author: via Paradisa 2, 56124 Pisa, Italy. E-mail:
- 14 <u>daniele.focosi@gmail.com</u>.
- 15
- 16 Keywords: COVID19; Omicron; convalescent plasma; vaccine; neutralizing antibodies.
- 17 Word count: abstract 210; body 2979.
- 18 Acknowledgements: none.

Funding Information: The analysis was supported by the U.S. Department of Defense's Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), in collaboration with the Defense Health Agency (DHA) (contract number: W911QY2090012) (D.S), with additional support from Bloomberg Philanthropies, State of Maryland, the National Institutes of Health (NIH) National Institute of Allergy and Infectious Diseases (NIAID) 3R01Al152078-01S1) (A.C).

Author contributions: D.F. and M.J.J. conceived the manuscript; D.F., D.J.S. and M.F. analyzed the literature,curated tables and wrote manuscripts; M.F. provided Figure 1; D.S. provided Figures 2 -4.A.C. and M.J.J. revised the manuscript.

28 Abstract

29 The novel SARS-CoV-2 Omicron, with its antigenic escape from unboosted vaccines and therapeutic 30 monoclonal antibodies, demonstrates the continued relevance of COVID19 convalescent plasma (CCP) 31 therapies. Lessons learnt from previous usage of CCP suggests focusing on outpatients and 32 immunocompromised recipients, with high nAb-titer units. In this analysis we systematically reviewed 33 Omicron neutralizing plasma activity data from 31 publications, and found that approximately 50% 34 (426/841) of CCP from unvaccinated donors neutralizes Omicron with very low mean neutralization titers 35 (about 30), representing a more than 30-fold reduction from paired WA-1 neutralization. Two doses of 36 mRNA vaccines had a similar 50% percent neutralization with more than doubling of Omicron 37 neutralization mean titer (about 60). However, CCP from vaccinees recovered from previous variants of 38 concern or third-dose uninfected vaccinees was nearly 100% neutralizing with mean Omicron neutralizing 39 titers over 1000, a 30-fold Omicron neutralizing antibody increase compared to non-boosted vaccinees or 40 unvaccinated convalescents. These findings have implications for both CCP stocks collected in prior 41 pandemic periods and plans to restart CCP collections. Plasma from either boosted vaccinees or 42 vaccination after pre-Omicron COVID-19 has nearly 100% neutralizing activity with Omicron neutralizing 43 levels similar to matched convalescent plasma to variant neutralizing activity. Thus, CCP provides an 44 effective tool to combat the emergence of variants that defeat therapeutic monoclonal antibodies.

45 Introduction

55

46 The SARS-CoV-2 Omicron variant of concern (VOC) (named VUI-21NOV-01 by Public Health England and 47 belonging to GISAID clade GR/484A) was first reported on November 8, 2021 in South Africa (particularly in Gauteng, North West and Limpopo regions, where it was likely to have been circulating for weeks 1), 48 and shortly thereafter spread all around the world. Omicron mutations impact 27% of T cell epitopes² 49 and 31% of B cell epitopes of Spike, while percentages for other VOC were significantly lower ³. The 50 51 Omicron variant already includes several sublineages (with more expected soon during such a massive 52 spread), which are named by PANGO phylogeny using the BA alias: the BA.1 wave of Winter 2021-2022 has been suddenly replaced by BA.2 worldwide, with further BA.4 and BA.5 waves emerging in South 53 54 Africa, BA.2.12.1 in USA, and the BA.1/BA.2 recombinant XE causing concern in UK.

56 The novel VOC Omicron is reducing the efficacy of all vaccines approved to date (unless 3 doses are 57 delivered) and is initiating an unexpected boost in COVID19 convalescent plasma (CCP) usage, with Omicron being treated as a shifted novel virus instead of a SARS-CoV-2 variant drift. Two years into the 58 59 pandemics, we are back to the starting line for some therapeutic agents. Specifically, Omicron escapes viral neutralization by most monoclonal antibodies (mAbs) authorized to date 4-9 with the lone exception 60 of bebtelovimab. Despite the development of promising oral small-chemical antivirals (molnupiravir and 61 62 nirmatrelvir), the logistical and economical hurdles for deploying these drugs worldwide will prevent their 63 immediate and widespread availability, and concerns remain regarding both molnupiravir (both safety¹⁰ and efficacy ¹¹) and nirmatrelvir (efficacy ¹²). COVID19 convalescent plasma (CCP) was used as a frontline 64 treatment from the very beginning of the pandemic. Efficacy outcomes have been mixed to date, with 65 most failures explained by low dose, late usage, or both ¹³, but efficacy of high-titer CCP has been 66 definitively proven in outpatients with mild disease stages ^{14,15}. Neutralizing antibody (nAb) efficacy 67 against VOC remains a prerequisite to support CCP usage, which can now be collected from vaccinated 68 69 convalescents including donors recovered from breakthrough infections ¹⁶: pre-Omicron evidence 70 suggest that those nAbs have higher titers and are more effective against VOCs than those from unvaccinated convalescents 17,18, 71

72 There are up to 48 different possible vaccine schedules according to EMA and FDA approvals including a 73 number of homologous or heterologous boosts, but the most commonly delivered schedules in the 74 western hemisphere are: 1) BNT162b2 or mRNA-1273 for 2 doses eventually followed by a homologous 75 boost; 2) ChAdOx1 for 2 doses eventually followed by a BNT162b2 boost; 3) Ad26.COV2.S for 1 dose 76 eventually followed by a BNT162b2 boost. Many more inactivated vaccines have been in use in low-and-77 middle income countries (LMIC), which are target regions for CCP therapy given that the minimal burden 78 to expand the existing transfusion infrastructure to treat COVID-19. Most blood donors there have 79 already received the vaccine schedule before, after or without having been infected, with an nAb titer generally declining over months. Hence identifying the settings where the nAb titer is highest will 80 81 definitively increase the efficacy of CCP collections. Variations in nAb titers against a given SARS-CoV-2 82 strain are usually reported as fold-changes in geometric mean titer (GMT) compared to wild-type strains: nevertheless, fold-changes for groups that include non-responders can lead to highly artificial results and 83 possibly over-interpretation. Rigorous studies have hence reported the percentage of responders as 84 85 primary outcome and provided fold-changes of GMT where calculation is reasonable (100% responders in both arms) ¹⁹. 86

87 To date the most rigorous data repository for SARS-CoV-2 sensitivity to antivirals is the Stanford 88 University Coronavirus Antiviral & Resistance Database, but as of April 30, 2022 the tables there 89 summarizing "Virus Variants and Spike **Mutations** vs Convalescent Plasma" 90 (https://covdb.stanford.edu/page/susceptibility-data/#:~:text=Table%202.-

91 ,Virus%20Variants%20and%20Spike%20Mutations%20vs%20Convalescent%20Plasma,-

<u>Table%203.%20Virus</u>) and "Virus Variants and Spike Mutations vs Plasma from Vaccinated Persons"
 (https://covdb.stanford.edu/page/susceptibility-

94 <u>data/#table.2.virus.variants.and.spike.mutations.vs.convalescent.plasma</u>) report aggregate data from

95 only 6 studies, and do not dissect the infecting sublineages, nor the different heterologous or

96 homologous vaccination schemes, nor the time from infection/vaccine to neutralization assay.
 97 Consequently, a more in-depth analysis is needed to better stratify the populations.

98

99 Methods

On April 30, 2022, we searched PubMed, medRxiv and bioRxiv for research investigating the efficacy of 100 101 CCP (either from vaccinated or unvaccinated donors) against SARS-CoV-2 VOC Omicron. In unvaccinated 102 patients, convalescence was annotated according to infecting sublineage (pre-VOC Alpha, VOC Alpha, 103 VOC Beta or VOC Delta). Given the heterologous immunity that develops after vaccination in 104 convalescents, the infecting lineage was not annotated in vaccine recipients. In vaccinees, strata were 105 created for 2 homologous doses, 3 homologous doses, or post-COVID-19 and post-vaccination (Vax-CCP). 106 The mean neutralizing titer for WA-1 (pre-Alpha wild-type), Omicron and number out of total that 107 neutralized Omicron was abstracted from studies.

108 Statistical significance between means was investigated using Tukey's test.

109

110 **Results**

Our literature search identified 31 studies, that were then manually mined for relevant details and the PRISMA flowchart for our study is provided in Figure 1. Given the urgency to assess efficacy against the upcoming VOC Omicron, most studies (with a few exceptions) relied on Omicron pseudovirus neutralization assays, which, as opposed to live authentic virus, are scalable, do not require BSL-3 facilities, and provide results in less than 1 week. Geometric mean titer (GMT) of nAb and fold-reduction (FR) in GMT against Omicron compared to WA-1 were the most common ways of reporting changes.

117 Neutralizing activity to WA-1 from CCP collected from subjects infected with Alpha VOC, Delta VOC or 118 vaccinated with 2 mRNA vaccine doses averaged nAb titers of 850 to 2,000 (Figure 2 and Table 1). Beta 119 VOC CCP was tested in a few samples and averaged a nAb titer of 186. The same CCP averaged about a 120 30-FR against Omicron compared to WA-1. CCP from uninfected vaccinees receiving a third boost 121 registered GMT averaging 10,000-20,000, or 10- fold higher dilutional nAb titer to WA-1 viral assays. The 122 nAb FR against Omicron was now 10 to 20, but importantly the average nAb GMT was close to 1,000 123 again. The approximately 30-FR in nAb GMT from WA-1 to Omicron was reversed by the 30-fold increase 124 in nAb GMT from either boosted vaccination or vaccination and COVID-19 combination.

125 In addition to the nAb GMT levels showing potency, the percentage of individuals within a study cohort 126 positive for any level of Omicron neutralization shows the likelihood of a possible donation having anti-Omicron activity. All studies but one tested a limited number of 20 to 40 individuals. The pre-Alpha CCP 127 128 showed that most (18 of 27 studies) had less than 50% of individuals tested within a study with 129 measurable Omicron neutralizing activity: only 2 out of 27 studies indicated 100% of individuals tested 130 showed Omicron neutralization (Figure 3). Likewise, most of the studies investigating Alpha and Beta CCP 131 showed similar percent with nAb. Delta CCP had 6 of 7 studies with more than 50% Omicron 132 neutralization. The plasma from studies of the 2-dose mRNA vaccines indicated a more uniform 133 distributive increase in percent of individual patients with measurable Omicron nAb's. The stark contrast is post COVID-19/post vaccination (Vax-CCP), where 16 of 19 studies had 100% of individuals tested with 134 135 anti-Omicron nAb. The 3-dose vaccinee studies had similarly had 12 of 17 studies with 100% measurable 136 nAb.

There were 5 studies which directly compared anti-Omicron nAb titers in nonvaccinated pre-Alpha, Alpha, Beta, and Delta CCP, and vaccinated plasma with the same nAb assay (Figure 4). nAb GMT against WA-1 was higher for Alpha and Delta CCP but lower for Beta CCP. nAb GMT against Omicron was actually highest for Beta CCP with average levels of 14 for pre-Alpha, Alpha and Delta. In these 5 studies, nAb GMT rose from 2-dose vaccinations to post COVID-19 and post vaccination (VaxCCP) to the 3-dose boosted vaccination. Importantly, for nAb GMT against Omicron were 15 to 140 to 463, respectively representing a 10 to 30-fold rise.

Another set of 9 matched vaccination studies inclusive of plasma collected after 2 and 3 dose schedules, as well as post COVID-19 and post vaccination plasma (Vax-CCP) depicted a 60-fold rise in GMT of anti-Omicron nAb from the 2-dose vaccine to post COVID-19 vaccinees, and a 30-fold increase after the third vaccine dose. The pattern was similar for nAb GMT against WA-1.

The AZD1222, 3-dose mRNA-1273 and Ad26.COV2 vaccines were understudied, with 3 or less independent studies at different time points, reported in Table 10. The GMT nAb to Omicron after 3mRNA-1273 doses ranged 60 to 2000, with a 5 to 15 FR compared with WA-1. nAb to Omicron GMT after AZD1222 vaccine was modest (~10 to 20), as with Ad26.COV2 vaccine (~20 to 40). Two studies reported on post-COVID-19/post-mRNA-1273 with nAb GMT against Omicron of 38 and 272. Studies with 100% of individual patient samples neutralizing Omicron included 2 3-dose mRNA-1273 studies, one AZD1222 study, and one post-COVID-19/post-mRNA-1273 study.

Few data exist for comparisons among different vaccine boosts. For CoronaVac® (SinoVac), three doses led to 5.1 FR in nAb titer²⁰, while for Sputnik V nAb titer moved from a 12-fold reduction at 6-12 months up to a 7-fold reduction at 2-3 months after a boost with Sputnik Light^{21,22}. These *in vitro* findings have been largely confirmed *in vivo*, where prior heterologous SARS-CoV-2 infection, with and without mRNA vaccination, protects against Omicron re-infection²³.

160 The studies included here mostly refer to neutralization of Omicron BA.1 sublineage from CCP collected 161 from convalescent patients from pre-Omicron VOCs. A small study nevertheless confirmed that CCP from 162 patients infected by wild-type SARS-CoV-2 or recipients of current mRNA vaccines showed a substantial 163 loss in neutralizing activity that was comparable against BA.1, BA.1.1 and BA.2²⁴, but was rescued against 164 BA.2 by vaccine boosts²⁵. Furthermore, within-Omicron CCP efficacy (i.e., efficacy of CCP collected from

165 convalescents of an Omicron sublineage against the same or another Omicron sublineage) has been166 investigated in a few publications so far:

- BA.1 CCP against BA.1: BA.1 breakthrough infection in fully vaccinated es rapidly elicited potent cross-reactive broad nAbs against VOCs Alpha, Beta, Gamma, Delta and BA.1, from unmeasurable IC₅₀ values to mean 1:2929 at around 9-12 days, which were higher than the mean peak IC₅₀ values of BNT162b2 vaccinees ^{26,27}. Convalescent serums only displayed low level of neutralization activity against the cognate virus and were unable to neutralize other SARS-CoV-2 variants ²⁸.
- BA.1 CCP against BA.2: 3 studies on 7 Omicron BA.1 breakthrough infections showed that the neutralization of the BA.2 sublineage was 1.3 to 1.8-fold lower than against the parental BA.1 sublineage ^{24,29,30}. The neutralizing GMTs against heterologous BA.2 and USA/WA1-2020 were 4.2-and 28.4-fold lower than the GMT against homologous BA.1, respectively ³¹. Accordigly, antibodies derived from memory B cells or plasma cells of Omicron breakthrough cases cross-react with the Wuhan-Hu-1, BA.1 and BA.2 receptor-binding domains whereas Omicron primary infections elicit B cells of narrow specificity ³².
- 180
- 181 182

 BA.1 CCP against BA.2.12.1 : compared to BA.2, BA.2.12.1 exhibits stronger neutralization escape from the plasma of 3-dose vaccinees and from vaccinated BA.1 convalescents.³³.

BA.1 CCP against BA.4/BA.5: in 24 Omicron/BA.1 infected but unvaccinated individuals, FRNT₅₀ declined from 275 for BA.1 to 36 for BA.4 and 37 for BA.5, a 7.6 and 7.5-FR, respectively. In 15 BNT162b2- or Ad26.CoV.2S-vaccinated with breakthrough Omicron/BA.1 infection, FRNT₅₀ declined from 507 for BA.1 to 158 for BA.4 (3.2-fold) and 198 for BA.5 (2.6-fold). Absolute BA.4 and BA.5 neutralization levels were about 5-fold higher in this group versus unvaccinated BA.1-infected participants ³⁴. Compared to BA.2, BA.4/BA.5 exhibited stronger neutralization escape from the plasma of 3-dose vaccinees and from vaccinated BA.1 convalescents. ³³.

No study has been reported yet on the efficacy of BA.2 CCP against other Omicron sublineages, which
 would be the commonest scenario if a CCP program is re-launched at this time.

192

193 Discussion

194 CCP with a high nAb titer is preferable, since nAbs are by definition antiviral, and there is now strong clinical evidence that nAb titers correlate with clinical benefit in randomized clinical trials (RCT) ^{14,15}. 195 Although nAb titers correlate with vaccine efficacy ^{35,36}, it is important to keep in mind that SARS-CoV-2 196 197 binding non-neutralizing antibodies can similarly provide protection via Fc-mediated functions ^{37,38}. 198 However, such functions are harder to measure in the laboratory and no automated assay exist for use in 199 clinical laboratories. Hence, whereas the presence of a high nAb titer in CCP is evidence for antibody 200 effectiveness in vitro, the absence of nAb titer does not imply lack of protection in vivo where Fc effects 201 mediate protection by other mechanisms such as ADCC, complement activation and phagocytosis.

The mechanism by which CCP from vaccinated COVID-19 convalescent individuals neutralizes Omicron lineage variants is probably a combination of higher amounts of antibody and broader antibody

204 specificity. Higher amounts of antibody could neutralize antigenically different variants through the law 205 of mass action whereby even lower affinity antibodies elicited to earlier variants would bind to the 206 Omicron variant as mass compensates for reduced binding strength to drive the reaction forward. In 207 addition, vaccinated COVID-19 convalescent individuals would have experienced SARS-CoV-2 protein in 208 two antigenically different forms: as part of intact infective virions generated in vivo during an infectious 209 process and as antigens in vaccine preparations. As the immune system processes the same antigen in 210 different forms there are numerous opportunities for processing the protein in different manners that 211 can diversity the specificity of the immune response and thus increase the likelihood of eliciting 212 antibodies that react with variant proteins. Stucturally, it has been shown that mRNA third dose vaccination induces mostly mainly class 1/2 antibodies encoded by IGHV1-58;IGHJ3-1 and IGHV1-213 214 69;IGHJ4-1 germlines, but not the IGHV2-5;IGHJ3-1 germline, broadly cross-reactive Class 3 antibodies seen after infection ³⁹. 215

Our analysis provides strong evidence that, unlike what has been observed in Syrian hamster models ⁴⁰, CCP from unvaccinated donors is likely (less than 50%) to have any measurable Omicron neutralization. Although the nAb GMT threshold for clinical utility remains poorly defined, it is noticeable that low Omicron nAb GMT were generally detected in CCP after infection from pre-Omicron VOCs.

220 On the contrary, despite the huge heterogeneity of vaccine schedules, CCP from vaccinated and COVID-221 19 convalescent individuals (Vax-CCP) consistently harbors high nAb titers against Omicron if collected up 222 to 6 months since last event (either vaccine dose or infection). These Omicron neutralizing levels are 223 comparable in dilutional titers to that of WA-1 CCP neutralizing WA-1, but their prevalence is much 224 higher at this time, facilitating recruitment of suitable donors. Pre-Omicron CCP boosted with WA-1 type 225 vaccines induces heterologous immunity that effectively neutralizes Omicron in the same assays which 226 rule in or out therapeutic anti-Spike monoclonal antibodies. Consequently, prescreening of Vax-CCP 227 donors for nAb titers is not necessary, and qualification of Vax-CCP units remains advisable only within clinical trials. A more objective way to assess previous infection (convalescence) would be measuring 228 anti-nucleocapsid (N) antibodies, but unfortunately these vanish quickly 41,42. Previous symptomatic 229 230 infection and vaccination can be established by collecting past medical history (PMH) during the donor 231 selection visit, which is cheaper, faster, and more reliable than measuring rapidly declining anti-N 232 antibodies. Although there is no formal evidence for this, it is likely that asymptomatic infection (leading 233 to lower nAb levels) also leads to lower nAb levels after vaccination compared to symptomatic infection, given that disease severity correlates with antibody titer ^{43,44}: hence those asymptomatically infected 234 donors missed by investigating PMH are also less likely to be useful. 235

236 The same reasoning applies to uninfected vaccinees receiving third dose boosts, but several authorities, 237 including the FDA, do not currently allow collection from such donors for CCP therapy on the basis that 238 the convalescent polyclonal and poly-target response is a prerequisite for efficacy and superior to the 239 polyclonal anti-Spike-only response induced by vaccinees. This may be a false premise for recipients of inactivated whole-virus vaccines (e.g., BBIBP-CorV or VLA2001): for BBIBP-CorV, the efficacy against 240 Omicron is largely reduced ^{20,22,45}, but the impact of boost doses is still unreported at the time of writing. 241 242 Table 1 and Table 9 clearly show that 3-doses of BNT162b2 are enough to restore nAb levels against 243 Omicron in the absence of SARS-CoV-2 infection.

244 Another point to consider is that information on nAb levels after the third vaccine dose has been almost 245 exclusively investigated for only 1 month of follow-up, while studies on convalescents extend to more 246 than 6 months: to date it seems hence advisable to start from convalescent vaccinees rather than 247 uninfected 3-dose vaccinees. This is also confirmed by immune escape reported in vivo after usage of vaccine (non-convalescent) plasma ⁴⁶ despite very high nAb titres, likely due to restricted antigen 248 specificity. Vaccine schedules with a delayed boost seem to elicit higher and broader nAb levels than the 249 approved, short schedules⁴⁷⁻⁵⁰, but this remain to be confirmed in larger series. The same is true for 250 breakthrough infections from Alpha or Delta VOC in fully BNT162b2 vaccinated subjects⁵¹, although 251 252 variation in time from infection due to successive waves is a major confounder.

With the increase of Omicron seroprevalence in time, polyclonal intravenous immunoglobulins collected from regular donors could become a more standardized alternative to CCP, but their efficacy to date (at the peak of the vaccinations campaign) is still 16-fold reduced against Omicron compared to wild-type SARS-CoV-2, and such preparations include only IgG and not IgM and IgA, which have powerful SARS-CoV-2 activity.

258 CCP collection from vaccinated convalescents (regardless of infecting sublineage, vaccine type and number of doses) is likely to achieve high nAb titer against VOC Omicron, and, on the basis of lessons 259 260 learnt with CCP usage during the first 2 years of the pandemic. Although in ideal situations one would 261 prefer RCT evidence of efficacy against Omicron before deployment, there is concern that variants are generated so rapidly that by the time such trials commenced this variant could be replaced for another. 262 Given the success of CCP in 2 outpatient RCTs reducing hospitalization^{14,15} and the loss of major mAb 263 264 therapies due to Omicron antigenic changes, the high titers in CCP collected from vaccinated convalescents provides an immediate option for COVID-19, especially in LMIC. Given the reduced 265 hospitalization rate with Omicron compared to Delta ^{52,53}, it is even more relevant to identify patient 266 subsets at risk of progression in order to minimize the number needed to treat to prevent a single 267 268 hospitalization: moving from the same criteria used for mAb therapies while using the same (now 269 unused) in-hospital facilities seems a logical approach.

270 We declare we have no conflict of interest related to this manuscript.

271

272 **References**

- Yeh, T.-Y. & Contreras, G.P. Tajima D test accurately forecasts Omicron / COVID-19 outbreak.
 2021.2012.2002.21267185 (2021).
- 275 2. Ahmed, S.F., Quadeer, A.A. & McKay, M. SARS-CoV-2 T cell responses are expected to
 276 remain robust against Omicron. 2021.2012.2012.472315 (2021).
- 277 3. Bernasconi, A., *et al.* Report on Omicron Spike mutations on epitopes and
- immunological/epidemiological/kinetics effects from literature. (2021).
- 279 4. Cao, Y.R., *et al.* B.1.1.529 escapes the majority of SARS-CoV-2 neutralizing antibodies of
 280 diverse epitopes. 2021.2012.2007.470392 (2021).
- Planas, D., et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization.
 Nature 602, 671-675 (2022).
- 283 6. Liu, L., *et al.* Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2.
 284 Nature 602, 676-681 (2022).

285	7.	Aggarwal, A., et al. SARS-CoV-2 Omicron: reduction of potent humoral responses and
286		resistance to clinical immunotherapeutics relative to viral variants of concern.
287		2021.2012.2014.21267772 (2021).
288	8.	VanBlargan, L.A., et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes
289		neutralization by several therapeutic monoclonal antibodies. 2021.2012.2015.472828
290		(2021).
291	9.	Carreno, J.M., <i>et al.</i> Activity of convalescent and vaccine serum against a B.1.1.529 variant
292		SARS-CoV-2 isolate. 2021.2012.2020.21268134 (2021).
293	10.	Zhou, S. <i>, et al</i> . β-d-N4-hydroxycytidine Inhibits SARS-CoV-2 Through Lethal Mutagenesis But
294		Is Also Mutagenic To Mammalian Cells. <i>The Journal of Infectious Diseases</i> 224 , 415-419
295		(2021).
296	11.	Jayk Bernal, A. <i>, et al.</i> Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized
297	± ± .	Patients. <i>N Engl J Med</i> 386 , 509-520 (2022).
298	12.	Gupta, K., Strymish, J., Stack, G. & Charness, M. Rapid Relapse of Symptomatic SARS-CoV-2
299	12.	Infection Following Early Suppression with Nirmatrelvir/Ritonavir. Accessed online at
300		https://www.researchsquare.com/article/rs-1588371/v1 on May 1, 2022. Research Square
301		(2022).
301	13.	Focosi, D., <i>et al.</i> COVID-19 convalescent plasma and randomized clinical trials: rebuilding
302	15.	confidence by explaining failures and finding signals of efficacy. 2021.2009.2007.21263194
303 304		(2021).
	14	
305	14.	Libster, R., et al. Early High-Titer Plasma Therapy to Prevent Severe Covid-19 in Older Adults.
306	4 5	N Engl J Med 384 , 610-618 (2021).
307	15.	Sullivan, D., et al. Early Outpatient Treatment for Covid-19 with Convalescent Plasma. N Engl
308		J Med (2021).
309	16.	Vickers, M.A., et al. Exponential increase in neutralizing and spike specific antibodies
310		following vaccination of COVID-19 convalescent plasma donors. <i>Transfusion</i> 61 , 2099-2106
311		(2021).
312	17.	Schmidt, F., et al. High genetic barrier to SARS-CoV-2 polyclonal neutralizing antibody
313	_	escape. Nature (2021).
314	18.	Germanio, C.D., et al. Vaccination of COVID-19 Convalescent Plasma Donors Increases
315		Binding and Neutralizing Antibodies Against SARS-CoV-2 Variants. 2021.2010.2028.21265622
316		(2021).
317	19.	Jacobsen, H., et al. Diminished neutralization responses towards SARS-CoV-2 Omicron VoC
318		after mRNA or vector-based COVID-19 vaccinations. 2021.2012.2021.21267898 (2021).
319	20.	Zhao, X., et al. Reduced sera neutralization to Omicron SARS-CoV-2 by both inactivated and
320		protein subunit vaccines and the convalescents. 2021.2012.2016.472391 (2021).
321	21.	Dolzhikova, I.V., et al. Sputnik Light booster after Sputnik V vaccination induces robust
322		neutralizing antibody response to B.1.1.529 (Omicron) SARS-CoV-2 variant.
323		2021.2012.2017.21267976 (2021).
324	22.	Bowen, J.E., et al. Omicron BA.1 and BA.2 neutralizing activity elicited by a comprehensive
325		panel of human vaccines. 2022.2003.2015.484542 (2022).
326	23.	Carazo, S., et al. Protection against Omicron re-infection conferred by prior heterologous
327		SARS-CoV-2 infection, with and without mRNA vaccination. 2022.2004.2029.22274455
328		(2022).
329	24.	Iketani, S., et al. Antibody Evasion Properties of SARS-CoV-2 Omicron Sublineages.
330		2022.2002.2007.479306 (2022).
331	25.	Tjan, L.H., et al. High neutralizing activity against Omicron BA.2 can be induced by COVID-19
332		mRNA booster vaccination. 2022.2004.2019.22273940 (2022).
333	26.	Zhou, R., et al. Vaccine-breakthrough infection by the SARS-CoV-2 Omicron variant elicits
334		broadly cross-reactive immune responses. 2021.2012.2027.474218 (2021).

335	27.	Bekliz, M., et al. Neutralization of ancestral SARS-CoV-2 and variants Alpha, Beta, Gamma,
336		Delta, Zeta and Omicron by mRNA vaccination and infection-derived immunity through
337		homologous and heterologous variants. 2021.2012.2028.21268491 (2021).
338	28.	Turelli, P., et al. Omicron infection induces low-level, narrow-range SARS-CoV-2 neutralizing
339		activity. 2022.2005.2002.22274436 (2022).
340	29.	Yu, J., <i>et al.</i> Comparable Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants.
341		2022.2002.2006.22270533 (2022).
342	30.	Seaman, M.S., et al. Vaccine Breakthrough Infection with the SARS-CoV-2 Delta or Omicron
343		(BA.1) Variant Leads to Distinct Profiles of Neutralizing Antibody Responses.
344		2022.2003.2002.22271731 (2022).
345	31.	Zou, J., et al. Cross neutralization of Omicron BA.1 against BA.2 and BA.3 SARS-CoV-2.
346		2022.2003.2030.486409 (2022).
347	32.	Park, YJ., <i>et al.</i> Imprinted antibody responses against SARS-CoV-2 Omicron sublineages.
348	52.	2022.2005.2008.491108 (2022).
349	33.	Cao, Y.R., <i>et al.</i> BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection.
350	55.	2022.2004.2030.489997 (2022).
351	34.	Khan, K., et al. Omicron sub-lineages BA.4/BA.5 escape BA.1 infection elicited neutralizing
352	54.	immunity. 2022.2004.2029.22274477 (2022).
	35.	Khoury, D.S., <i>et al.</i> Neutralizing antibody levels are highly predictive of immune protection
353	30.	
354	20	from symptomatic SARS-CoV-2 infection. <i>Nat Med</i> 27 , 1205-1211 (2021).
355	36.	Feng, S., et al. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2
356	27	infection. <i>Nat Med</i> 27 , 2032-2040 (2021).
357	37.	Gilbert, P.B., et al. Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy
358	20	clinical trial. <i>Science</i> , eab3435 (2021).
359	38.	Earle, K.A., et al. Evidence for antibody as a protective correlate for COVID-19 vaccines.
360		Vaccine 39 , 4423-4428 (2021).
361	39.	Andreano, E., et al. COVID-19 mRNA third dose induces a unique hybrid immunity-like
362		antibody response. 2022.2005.2009.491201 (2022).
363	40.	Ryan, K.A. <i>, et al.</i> Convalescence from prototype SARS-CoV-2 protects Syrian hamsters from
364		disease caused by the Omicron variant. 2021.2012.2024.474081 (2021).
365	41.	Krutikov, M., et al. Prevalence and duration of detectable SARS-CoV-2 nucleocapsid
366		antibodies in staff and residents of long-term care facilities over the first year of the
367		pandemic (VIVALDI study): prospective cohort study in England. The Lancet Healthy
368		Longevity (2021).
369	42.	Amjadi, M.F., et al. Anti-membrane and anti-spike antibodies are long-lasting and together
370		discriminate between past COVID-19 infection and vaccination. 2021.2011.2002.21265750
371		(2021).
372	43.	Klein, S., et al. Sex, age, and hospitalization drive antibody responses in a COVID-19
373		convalescent plasma donor population. in <i>medRxiv [Preprint]</i> 2020.2006.2026.20139063
374		(2020).
375	44.	Focosi, D. & Franchini, M. Clinical predictors of SARS-CoV-2 neutralizing antibody titers in
376		COVID-19 convalescents: Implications for convalescent plasma donor recruitment. European
377		journal of haematology 107 , 24-28 (2021).
378	45.	Yu, X., et al. Pseudotyped SARS-CoV-2 Omicron variant exhibits significant escape from
379		neutralization induced by a third booster dose of vaccination. 2021.2012.2017.21267961
380		(2021).
381	46.	Gachoud, D., <i>et al.</i> Antibody response and intra-host viral evolution after plasma therapy in
382		COVID-19 patients pre-exposed or not to B-cell depleting agents. 2022.2004.2024.22274200
383		(2022).
		х <i>г</i>

384	47.	Chatterjee, D., et al. SARS-CoV-2 Omicron Spike recognition by plasma from individuals
385		receiving BNT162b2 mRNA vaccination with a 16-week interval between doses. <i>Cell Rep</i> 38,
386		110429 (2022).
387	48.	Grunau, B., et al. Immunogenicity of Extended mRNA SARS-CoV-2 Vaccine Dosing Intervals.
388		Jama (2021).
389	49.	Tauzin, A., et al. A single BNT162b2 mRNA dose elicits antibodies with Fc-mediated effector
390		functions and boost pre-existing humoral and T cell responses. <i>medRxiv [Preprint]</i> ,
391		2021.2003.2018.435972 (2021).
392	50.	Skowronski, D.M., et al. Two-dose SARS-CoV-2 vaccine effectiveness with mixed schedules
393		and extended dosing intervals: test-negative design studies from British Columbia and
394		Quebec, Canada. 2021.2010.2026.21265397 (2021).
395	51.	Miyamoto, S., et al. Vaccination-infection interval determines cross-neutralization potency
396		to SARS-CoV-2 Omicron after breakthrough infection by other variants.
397		2021.2012.2028.21268481 (2022).
398	52.	León, G., et al. Development and pre-clinical characterization of two therapeutic equine
399		formulations towards SARS-CoV-2 proteins for the potential treatment of COVID-19.
400		medRxiv [Preprint], 2020.2010.2017.343863 (2020).
401	53.	Wolter, N., et al. Early assessment of the clinical severity of the SARS-CoV-2 Omicron variant
402		in South Africa. 2021.2012.2021.21268116 (2021).
403	54.	Zeng, C., et al. Neutralization and Stability of SARS-CoV-2 Omicron Variant. bioRxiv (2021).
404	55.	Lechmere, T., et al. Broad Neutralization of SARS-CoV-2 Variants, Including Omicron,
405		following Breakthrough Infection with Delta in COVID-19-Vaccinated Individuals. <i>mBio</i> 13,
406		e0379821 (2022).
407	56.	Schmidt, F. <i>, et al</i> . Plasma Neutralization of the SARS-CoV-2 Omicron Variant. <i>N Engl J Med</i>
408		386 , 599-601 (2022).
409	57.	Arien, K.K., et al. Three doses of BNT162b2 vaccine confer neutralising antibody capacity
410		against the SARS-CoV-2 Omicron variant. <i>NPJ Vaccines</i> 7 , 35 (2022).
411	58.	Lusvarghi, S., et al. SARS-CoV-2 BA.1 variant is neutralized by vaccine booster-elicited serum,
412		but evades most convalescent serum and therapeutic antibodies. <i>Sci Transl Med</i> , eabn8543
413		(2022).
414	59.	Hoffmann, M., et al. The Omicron variant is highly resistant against antibody-mediated
415		neutralization: Implications for control of the COVID-19 pandemic. Cell 185, 447-456 e411
416		(2022).
417	60.	Zou, J., et al. Neutralization against Omicron SARS-CoV-2 from previous non-Omicron
418		infection. <i>Nat Commun</i> 13 , 852 (2022).
419	61.	Zhang, L., et al. The significant immune escape of pseudotyped SARS-CoV-2 variant Omicron.
420		Emerging microbes & infections 11 , 1-5 (2022).
421	62.	Gruell, H., et al. mRNA booster immunization elicits potent neutralizing serum activity
422		against the SARS-CoV-2 Omicron variant. <i>Nat Med</i> 28 , 477-480 (2022).
423	63.	Dejnirattisai, W., et al. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from
424		neutralizing antibody responses. <i>Cell</i> 185 , 467-484 e415 (2022).
425	64.	Sheward, D.J., et al. Variable loss of antibody potency against SARS-CoV-2 B.1.1.529
426		(Omicron). <i>bioRxiv</i> , 2021.2012.2019.473354 (2021).
427	65.	Rossler, A., Riepler, L., Bante, D., von Laer, D. & Kimpel, J. SARS-CoV-2 Omicron Variant
428		Neutralization in Serum from Vaccinated and Convalescent Persons. <i>N Engl J Med</i> 386 , 698-
429		700 (2022).
430	66.	Tada, T., et al. Increased resistance of SARS-CoV-2 Omicron variant to neutralization by
431		vaccine-elicited and therapeutic antibodies. <i>EBioMedicine</i> 78 , 103944 (2022).

 432 67. Aggarwal, A., et al. SARS-CoV-2 Omicron: evasion of potent humoral responses and 433 resistance to clinical immunotherapeutics relative to viral variants of concern. medRxiv, 434 2021.2012.2014.21267772 (2021). 435 68. Zhao, X., et al. Effects of a Prolonged Booster Interval on Neutralization of Omicron Variant. 436 N Engl J Med 386, 894-896 (2022). 437 69. Bowen, J.E., et al. Omicron BA.1 and BA.2 neutralizing activity elicited by a comprehensive 438 panel of human vaccines. bioRxiv (2022). 439 70. Carreno, J.M., et al. Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. 440 Nature 602, 682-688 (2022). 441 71. Syed, A.M., et al. Omicron mutations enhance infectivity and reduce antibody neutralization
 434 2021.2012.2014.21267772 (2021). 435 68. Zhao, X., et al. Effects of a Prolonged Booster Interval on Neutralization of Omicron Variant. 436 N Engl J Med 386, 894-896 (2022). 437 69. Bowen, J.E., et al. Omicron BA.1 and BA.2 neutralizing activity elicited by a comprehensive 438 panel of human vaccines. bioRxiv (2022). 439 70. Carreno, J.M., et al. Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. 440 Nature 602, 682-688 (2022).
 435 68. Zhao, X., et al. Effects of a Prolonged Booster Interval on Neutralization of Omicron Variant. 436 N Engl J Med 386, 894-896 (2022). 437 69. Bowen, J.E., et al. Omicron BA.1 and BA.2 neutralizing activity elicited by a comprehensive 438 panel of human vaccines. bioRxiv (2022). 439 70. Carreno, J.M., et al. Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. 440 Nature 602, 682-688 (2022).
 A36 N Engl J Med 386, 894-896 (2022). A37 69. Bowen, J.E., et al. Omicron BA.1 and BA.2 neutralizing activity elicited by a comprehensive 438 panel of human vaccines. bioRxiv (2022). 439 70. Carreno, J.M., et al. Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. 440 Nature 602, 682-688 (2022).
 437 69. Bowen, J.E., et al. Omicron BA.1 and BA.2 neutralizing activity elicited by a comprehensive 438 panel of human vaccines. bioRxiv (2022). 439 70. Carreno, J.M., et al. Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. 440 Nature 602, 682-688 (2022).
 438 panel of human vaccines. <i>bioRxiv</i> (2022). 439 70. Carreno, J.M., <i>et al.</i> Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. 440 <i>Nature</i> 602, 682-688 (2022).
43970.Carreno, J.M., et al. Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron.440Nature 602, 682-688 (2022).
440 Nature 602 , 682-688 (2022).
441 71 Sved A M at al Omicron mutations enhance infectivity and reduce antihody neutralization
441 71. Syeu, A.W., et al. Officion mutations enhance mectivity and reduce antibody neutralization
442 of SARS-CoV-2 virus-like particles. <i>medRxiv</i> (2022).
443 72. Haveri, A., et al. Neutralizing antibodies to SARS-CoV-2 Omicron variant after third mRNA
444 vaccination in health care workers and elderly subjects. <i>Eur J Immunol</i> (2022).
445 73. Li, M., <i>et al.</i> Convalescent plasma with a high level of virus-specific antibody effectively
446 neutralizes SARS-CoV-2 variants of concern. <i>Blood advances</i> , 2022.2003.2001.22271662
447 (2022).
448 74. Kurahashi, Y., <i>et al.</i> Cross-neutralizing activity against Omicron could be obtained in SARS-
449 CoV-2 convalescent patients who received two doses of mRNA vaccination. <i>medRxiv</i> ,
450 2022.2002.2024.22271262 (2022).
451 75. Edara, V.V., et al. mRNA-1273 and BNT162b2 mRNA vaccines have reduced neutralizing
452 activity against the SARS-CoV-2 omicron variant. <i>Cell Rep Med</i> 3 , 100529 (2022).
453 76. Muik, A., <i>et al.</i> Neutralization of SARS-CoV-2 Omicron by BNT162b2 mRNA vaccine-elicited
454 human sera. <i>Science (New York, N.Y.)</i> 375 , 678-680 (2022).
455 77. Cele, S., <i>et al.</i> Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization.
456 Nature 602 , 654-656 (2022).
457 78. Wilhelm, A., <i>et al.</i> Reduced Neutralization of SARS-CoV-2 Omicron Variant by Vaccine Sera
458 and Monoclonal Antibodies. <i>medRxiv</i> , 2021.2012.2007.21267432 (2021).
459 79. Doria-Rose, N.A., <i>et al.</i> Booster of mRNA-1273 Strengthens SARS-CoV-2 Omicron
460 Neutralization. <i>medRxiv</i> , 2021.2012.2015.21267805 (2021).
461 80. Kawaoka, Y., <i>et al.</i> Characterization and antiviral susceptibility of SARS-CoV-2 Omicron/BA.2.
462 <i>Res Sq</i> (2022).
463 81. Dejnirattisai, W., et al. Reduced neutralisation of SARS-COV-2 Omicron-B.1.1.529 variant by
463 81. Definitional, <i>W., et al.</i> Reduced neutralisation of SARS-COV-2 Onicion-B.1.1.529 Variant by 464 post-immunisation serum. 2021.2012.2010.21267534 (2021).
$\tau_0 \tau_1$ post-initialitisation setain. 2021.2012.2010.21207.334 (2021).
465
466

467 Figure 1

468 PRISMA flowchart for the current study.

471 Figure 2

GMT of nAb's against WA-1 versus Omicron by study. Mean entire study neutralization of WA-1 in filled
circles with Omicron in empty circles with means and fold reduction above data and number of studies
above x-axis. All means are not statistically significant in difference by multiple comparison in Tukey's
test.

476 477

478

480 Figure 3

Percent of individual plasma samples in each study showing any titer of Omicron neutralization. The percent of samples within a study condition which neutralized Omicron graphed in increasing percentages with the number of samples tested on the right y axis. A) pre-Alpha CCP neutralization of Omicron; B) Alpha, Beta and Delta CCP neutralization of Omicron C) 2 dose mRNA vaccines neutralization of Omicron D) post COVID-19/post vaccine (VaxCCP) and uninfected 3-dose vaccine neutralization of Omicron.

487

488

491

492

Figure 4 494

495 Geometric mean titers of ant-WA.1 or anti-Omicron neutralizing antibodies in plasma samples from 5 496 studies investigating diverse SARS-CoV-2 infecting lineage or vaccination status. 5 studies characterized A) 497 pre-Alpha, Alpha, Beta and Delta CCP for Omicron nAb compared to WA-1, and also B) 2 or 3 doses 498 BNT162b plasma, as well as post-COVID-19 plus BNT162b vaccine (VaxCCP). 9 studies looked at the same 499 vaccine conditions comparing WA-1 nAb to Omicron nAb.

500

Inst COND-INFUNVEC FIRE

503 **Table 1**

504 Comparison of WA-1 to Omicron nAb and percent with any Omicron nAb amongst VOC CCP and 505 vaccination status.

			fold		total		
			reduction		number	total	
	number	WA-1	in nAb		individuals	Omicron	Omicron
	of	nAb	GMT vs.	Omicron	in all	neutralizing	neutralizing
plasma type	studies	GMT	Omicron	nAb GMT	studies	number	percent
pre-Alpha	27	851	31	31	679	300	44
Alpha	6	1,115	61	13	101	38	38
Beta	5	186	15	51	37	19	51
Delta	7	2,023	21	533	94	69	73
2 dose							
BNT162b2							
plasma	22	1,319	35	87	434	204	47
2 dose mRNA-							
1273 plasma	9	1,275	39	57	134	81	60
post-COVID-							
19/full vacc							
plasma	19	28,599	19	938	305	269	88
3 dose							
BNT162b2							
plasma	17	7,657	11	759	307	293	95

507 Table 2

508 Synopsis of *in vitro* studies investigating the efficacy of pre-Alpha CCP against Omicron

		(pre-		(pre-			
		Alpha	(pre-Alpha	Alpha		(pre-Alpha	(pre-Alpha
		CCP)	CCP) fold	CCP)	(pre-Alpha	CCP) Omicron	CCP) Omicron
		WA-1	drop vs.	Omicron	CCP)	neutralizing	neutralizing
reference	time	mean	Omicron	mean	number	number	percent
Zeng ⁵⁴		4980	177	28	18	3	17
Lechmere ⁵⁵							

Liu ⁶		4344	32	136	10	2	20
	1.2						
Sch midt ⁵⁶	mo	2616	38	69	20	19	95
	12						
Sch midt ⁵⁶	mo	2037	15	136	20	17	85
Schmidt ⁵⁶	6 mo	1678	49	34	20	13	65
Arien57		1086	22	49	10	1	10
Lusvarghi ⁵⁸		715	29	25	16	2	13
Hoffman ⁵⁹		614	80	8	17	8	47
Zou ⁶⁰		601	16	38	64	41	64
Planas⁵	6 mo	569	20	28	16	6	38
	12						
Planas⁵	mo	580	20	29	23	8	35
Zhang ⁶¹		556	8	70	28	28	100
	1.5						
Gruell ⁶²	mo	494	82	6	30	3	10
	12						
Gruell ⁶²	mo	93	12	8	30	9	30
Dejnirattisai ⁶³		475	17	28	32	32	100
Sheward ⁶⁴		300	6	50	34	25	74
Rossler ⁶⁵							
Tada ⁶⁶		233	26	9	10	4	40
Aggerwal ⁶⁷ Zhao ⁶⁸		210	21	10	20	0	0
Zhao ⁶⁸		193	17	11	16	1	6
Bowen ⁵⁹		162	16	10	28	13	46
Zou ⁶⁰		142	5	28	36	30	83
Carreno ⁷⁰		100	11	9	15	4	27
Syed ⁷¹		80	4	20	8	6	75
Bekliz ²⁷		37	45	1	34	5	15
Haveri ⁷²		32	32	1	13	0	0
LI ⁷³		28	14	2	71	5	7
Kurahashi ⁷⁴		19	13	2	40	15	38
average		851	31	31			44
total					679	300	

511 Table 3. Synopsis of *in vitro* studies investigating the efficacy of Alpha CCP against Omicron

		(Alpha		(Alpha		(Alpha CCP)	(Alpha CCP)
		CCP)	(Alpha CCP)	CCP)	(Alpha	Omicron	Omicron
		WA-1	fold drop	omicron	CCP)	neutralizing	neutralizing
reference	time	mean	vs. Omicron	mean	number	number	percent
Lusvarghi ⁵⁸		4978	166	30	4	1	25
Dejnirattisai ⁶³		1313	34	39	18	18	100
Rossler ⁶⁵		260	64	4	10	0	0
Haveri ⁷²		64	32	2	20	0	0
Bekliz ²⁷		45	56	1	12	2	17
Li ⁷³		28	14	2	37	17	46
average		1115	61	13			38
total					101	38	

512

514 Table 4. Synopsis of *in vitro* studies investigating the efficacy of Beta CCP against Omicron.

		(beta		(beta		(beta CCP)	(beta CCP)
		CCP)	(beta CCP)	CCP)	(beta	omicron	omicron
		WA-1	fold drop	omicron	CCP)	neutralizing	neutralizing
reference	time	mean	vs. omicron	mean	number	number	percent
Lusvarghi ⁵⁸		439	2	220	2	2	100
Dejnirattisai ⁶³							
		327	12	28	14	14	100
Rossler ⁶⁵		128	32	4	8	1	13
Bekliz ²⁷		21	23	1	8	2	25
Haveri ⁷²		17	8	2	5	0	0
Average		186	15	51			51
Total					37	19	

516 Table 5. Synopsis of *in vitro* studies investigating the efficacy of Delta CCP against Omicron.

		(Delta		(Delta		(Delta CCP)	(Delta CCP)
		CCP)	(Delta CCP)	CCP)	(Delta	Omicron	Omicron
		WA-1	fold drop	Omicron	CCP)	neutralizing	neutralizing
reference	time	mean	vs. omicron	mean	number	number	percent
Zeng ⁵⁴		11200	3	3733	19	10	53
Lechmere ⁵⁵		4751	28	170	14	12	86
Lusvarg hi ⁵⁸		1211	66	18	15	12	80
Aggerwal ⁶⁷		770	21	37	10	9	90
Rossler ⁶⁵		192	25	8	7	1	14
Bekliz ²⁷		72	24	3	10	6	60
Dejnirattisai ⁶³							
		47	2	27	19	19	100
Average		2023	21	533			73
Total					94	69	

518 Table 6. Synopsis of *in vitro* studies investigating the efficacy of plasma from uninfected recipients of 2

519 BNT162b2 doses against Omicron.

			(2 dose			(2 dose	(2 dose
		(2 dose	BNT162b2	(2 dose		BNT162b2	BNT162b2
		BNT162b2	plasma)	BNT162b2	(2 dose	plasma)	plasma)
		plasma)	fold drop	plasma)	BNT162b2	Omicron	Omicron
		WA-1	vs.	Omicron	plasma)	neutralizing	neutralizing
reference	time	mean	Omicron	mean	number	number	percent
	1						percent
Schmidt ⁵⁶ Liu ⁶	mo	7627	83	92	18	15	83
Liu ⁶		4669	21	222	13	6	46
Zeng ⁵⁴		2769	23	120	48	13	27
	5						
Schmidt ⁵⁶	mo	2435	19	128	18	15	83
Dejnirattisai ⁶³							
		1993	105	19	20	20	100
Chatterjee ⁴⁷		1544	2	935	25	25	100
Syed ⁷¹		1280	16	80	21	14	67
Tada ⁶⁶		859	34	25	9	7	78
Bowen ⁶⁹		764	27	28	10	9	90
Chatterjee ⁴⁷		641	6	105	19	10	53
	3						
Hoffman ⁵⁹	mo	604	60	10	11	1	9
Lusvarg hi ⁵⁸		562	26	22	39	3	8
	1						
Gruell ⁶²	mo	546	68	8	30	10	33
	1						
Rossler ⁶⁵	mo	512	32	16	20	9	45
	1						
Edara ⁷⁵	mo	384	19	20	13	2	15
Muik ⁷⁶		368	61	6	25	8	32
Cele ⁷⁷		359	19	19	8	7	88
Bekliz ²⁷		338	86	4	16	11	69
	5						
Planas⁵	mo	329	11	30	16	1	6
Carreno ⁷⁰		300	23	13	10	7	70
	5						
Gruell ⁶²	mo	139	15	9	30	11	37
Wilheim ⁷⁸		6	11	1	15	0	0
Average		1319	35	87			47
Tota					1319	35	

- 521 Table 7. Synopsis of *in vitro* studies investigating the efficacy of plasma from uninfected recipients of 2
- 522 mRNA-1273 doses against Omicron.

reference	time	(2 dose mRNA- 1273 plasma) WA-1 mean	(2 dose mRNA- 1273 plasma) fold drop vs. Omicron	(2 dose mRNA- 1273 plasma) Omicron mean	(2 dose mRNA- 1273 plasma) number	(2 dose mRNA-1273 plasma) Omicron neutralizing number	(2 dose mRNA-1273 plasma) Omicron neutralizing percent
Doria-							F
Rose ⁷⁹		3016	48	63	30	22	73
Syed ⁷¹		2560	8	320	10	8	80
Doria-							
Rose ⁷⁹		2269	84	27	30	22	73
Bowen ⁶⁹		1155	32	36	11	9	82
Tada ⁶⁶		999	26	38	8	5	63
Edara ⁷⁵	1 mo	745	50	15	11	4	36
Carreno ⁷⁰		400	43	9	10	10	100
Rossler ⁶⁵	5 mo	320	40	8	10	1	10
Wilheim ⁷⁸		10	20	1	14	0	0
Average		1275	39	57			60
Tota					134	81	

524 Table 8. Synopsis of *in vitro* studies investigating the efficacy of plasma from infected and vaccinated (2

525 BNT162b2 doses) subjects (VaxCCP) against Omicron.

			(post-				
		(post-	COVID-	(post-			
		COVID-	19/full	COVID-	(post-	(post-COVID-	(post-COVID-
		19/full	vacc	19/fu	COVID-	19/full vacc	19/full vacc
		vacc	plasma)	vacc	19/fu	plasma)	plasma)
	month	plasma)	fold drop	plasma)	vacc	Omicron	Omicron
-	post	WA-1	VS.	Omicron	plasma)	neutralizing	neutralizing
reference	vacc	mean	Omicron	mean	number	number	percent
Schmidt ⁵⁶		388872	48	8102	17	17	100
Planas ⁵		78162	53	1475	22	22	100
Tada ⁶⁶		14868	16	929	7	7	100
Cele ⁷⁷		13333	25	533	13	13	100
Kawoaka ⁸⁰		10863	16	665	5	5	100
Kawoaka ⁸⁰		10002	7	1369	13	13	100
Lechmere ⁵⁵		8843	5	1769	15	15	100
Gruell ⁶²		7997	5	1599	30	30	100
Arien ⁵⁷		4822	20	241	10	10	100
Carreno ⁷⁰		3000	14	214	10	10	100
Dejnirattisai ⁶³							
		1899	9	215	17	17	100
LI ⁷³		1598	20	80	20	20	100
Bekliz ²⁷		1190	18	66	6	6	100
Haveri ⁷²		1024	32	32	33	33	100
Rossler ⁶⁵		1000	4	250	5	5	100
Edara ⁷⁵		625	20	31	24	15	63
Kurahashi ⁷⁴	12 mo	369	7	51	19	19	100
Wilheim ⁷⁸		200	32	6	20	5	25
Kurahashi ⁷⁴	1 mo	22	14	2	19	7	37
average		28599	19	938			88
total					305	269	

527 Table 9. Synopsis of *in vitro* studies investigating the efficacy of plasma from uninfected subjects

528 vaccinated with 3 BNT162b2 doses against Omicron.

			(3 dose			(3 dose	(3 dose
		(3 dose	BNT162b2	(3 dose		BNT162b2	BNT162b2
		BNT162b2	plasma)	BNT162b2	(3 dose	plasma)	plasma)
		plasma)	fold drop	plasma)	BNT162b2	, Omicron	Ómicron
		WA-1	vs.	Ömicron	plasma)	neutralizing	neutralizing
reference	time	mean	Omicron	mean	number	number	percent
	1						
Sch midt ⁵⁶	mo	65617	17	3860	18	18	100
Planas⁵		12739	18	708	20	20	100
Zeng ⁵⁴		10412	3	3155	23	20	87
Dejnirattisai ⁶³							
		9219	14	649	20	20	100
	1						
Gruell ⁶²	mo	6241	5	1248	30	30	100
Lusvarghi ⁵⁸		5029	7	718	39	39	100
Tada ⁶⁶		4892	14	349	12	12	100
Liu ⁶		4673	7	668	15	15	100
Kawoaka ⁸⁰		2866	6	485	10	10	100
Arien ⁵⁷		2157	13	166	10	10	100
50	1						
Hoffman ⁵⁹	mo	2006	7	287	10	9	90
Edara ⁷⁵		1247	14	89	35	31	89
Carreno ⁷⁰		1000	8	125	10	10	100
Syed ⁷¹		960	4	240	8	8	100
Muik′ ⁶		673	6	112	28	27	96
Haveri ⁷²		290	12	24	7	7	100
	0.5						
Wilheim ⁷⁸	mo	150	37	4	12	7	58
average		7657	11	759			95
tota					307	293	

529

531 Table 10. Synopsis of *in vitro* studies investigating the efficacy of plasma from uninfected subjects

vaccinated with 3 mRNA-1273, AZD-1222 or Ad26.COV2 doses against Omicron.

533

			fold drop			Omicron	Omicron
	vaccine	WA-1	VS.	Omicron		neutralizing	neutralizing
reference	type	mean	Omicron	mean	number	number	percent
	COVID19 +						
70	mRNA-						
Careno ⁷⁰	1273	3000	11	272	10	10	100
	COVID19 +						
75	mRNA-						
Edara ⁷⁵	1273 6 mo	931	25	38	13	9	69
	3 dose						
70	mRNA-						
Careno ⁷⁰	1273	1000	17	60	10	10	100
	3 dose						
70	mRNA-						
Doria-Rose ⁷⁹	1273	8457	4	2002	30	30	100
	3 dose						
79	mRNA-		_				
Doria-Rose ⁷⁹	1273	4216	6	650	30	30	100
	3 dose						
– 1 75	mRNA-	1005	4 -		4-	10	
Edara ⁷⁵	1273	1395	15	96	17	16	94
Dejnirattisai ⁸¹	AZD1222	390	19	21	41	41	100
Rossler ⁶⁵	AZD1222	250	25	10.0	20	0	0
- 5	AZD1222 5					-	
Planas ⁵	mo	187	18	10	18	2	10
Syed ⁷¹	Ad26.COV2	28	1	20.0	9	2	22
56	Ad26.COV2						
Sch midt ⁵⁶	1 mo	588	24	25	19	2	11
56	Ad26.COV2						
Sch midt ⁵⁶	6 mo	982	23	43	19	11	58