COMPARATIVE ANALYSIS OF ANTIBODY RESPONSES FROM COVID-19 CONVALESCENTS RECEIVING VARIOUS VACCINES REVEALS CONSISTENT HIGH NEUTRALIZING ACTIVITY FOR SARS-CoV-2 VARIANT OF CONCERN OMICRON ========================================================================================================================================================================================= * Daniele Focosi * Massimo Franchini * Michael J. Joyner * Arturo Casadevall ## Abstract The novel SARS-CoV-2 Omicron variant of concern (VOCs), with its escape from unboosted vaccines and monoclonal antibodies, demonstrates the continued relevance of COVID19 convalescent plasma therapies. Lessons learnt from previous usage of CCP suggests focusing on outpatients and using high nAb-titer units in early disease stages. In this systematic analysis, we show that CCP from unvaccinated donors is not effective against Omicron, while CCP from vaccinees convalescents from previous VOCs or third-dose uninfected vaccinees is likely to remain effective against Omicron. CCP remains the only antibody-based therapy that keeps up with the variants and provides an effective tool to combat the emergence of variants that defeat monoclonal antibodies. Consequently, there is a need for continue study of the variables that determine CCP efficacy. Keywords * COVID19 * Omicron * convalescent plasma * vaccine * neutralizing antibodies * outpatients ## Introduction The SARS-CoV-2 Omicron variant of concern (VOC), named VUI-21NOV-01 by Public Health England and belonging to GISAID clade GR/484A, was first reported on November 8, 2021 in South Africa (particularly in Gauteng, North West and Limpopo regions, where it is likely to have been circulating for weeks [1]), and shortly thereafter spread all around the world. Omicron mutations impact 27% of T cell epitopes [2] and 31% of B cell epitopes of Spike, while percentages for other VOC were significantly lower [3]. The omicron variant already includes several sublineages (with more expected soon during such a massive spread), which are named by PANGO phylogeny using the BA alias: BA.1 (which represents the majority of cases) and BA.3 (a.k.a. 21K in NextStrain, both harboring the HV69-70 deletion which leads to S-gene target failure in Thermo Fisher TaqPath® RT-PCR), and BA.2 (a.k.a. 21L in NextStrain). The novel VOC Omicron is reducing the efficacy of all vaccines approved to date (unless 3 doses are delivered) [4-19], represents an unexpected boost over CCP usage, with Omicron being treated as an entirely novel virus instead of a SARS-CoV-2 variants. Two years into the pandemics, we are back to the starting line for some therapeutic agents. Importantly, Omicron evades most monoclonal antibodies (mAbs) approved to date [5,12-14,20,21] with the lone exception of sotrovimab: nevertheless, as expected for non-cocktail mAb therapies, sotrovimab treatment-emergent immune escape from S:E340K has been shown to be as high as 10% [22,23]. Despite the development of promising oral small-chemical antivirals (molnupiravir and nirmatrelvir), the logistical and economical hurdles for deploying these drugs worldwide will prevent their immediate availability. COVID19 convalescent plasma (CCP) was used as a frontline treatment from the very beginning of the pandemic. Efficacy outcomes have been mixed to date, with most failures explained by low dose and late usage [24], but efficacy of high-titer CCP has been definitively proven in outpatients with mild disease stages [25,26]. Neutralizing antibody (nAb) efficacy against variants of concerns (VOC) remains a prerequisite to support CCP usage, which could now be collected also from vaccinated convalescents including breakthrough infections [27]: pre-Omicron evidences suggest that those nAbs have higher titers and are more effective against VOCs than those from unvaccinated convalescents [28,29], Several countries have up to 48 different possible vaccine schedules according to EMA and FDA approvals including a number of homologous or heterologous boosts, but the most commonly delivered in the westernized countries were 1) BNT162b2 and mRNA-1273 for 2 doses eventually followed by a homologous boost; 2) ChAdOx1 for 2 doses eventually followed by a BNT162b2 boost; 3) Ad26.COV2.S for 1 dose eventually followed by a BNT162b2 boost. Many more inactivated vaccines have been in use in low-and-middle income countries, the ideal target regions for CCP therapy, widen that this therapy is relatively inexpensive. All these patients can have received the vaccine schedule before, after or without having been infected, and, further complicating the picture, the nAb titer generally declines with time. Hence identifying the settings where the nAb titer is highest will definitively increase the appropriateness of CCP collections. Variations in nAb titers against a given SARS-CoV-2 strain are usually reported as fold-changes in geometric mean titer (GMT) compared to wild-type strains: nevertheless, fold-changes for groups that include non-responders can lead to highly artificial results and possibly over-interpretation. Rigorous studies have hence reported the percentage of responders as primary outcome and provided fold-changes of GMT where calculation is reasonable (100% responders in both arms) [19]. To date the most rigorous data repository for SARS-CoV-2 sensitivity to antivirals is the Stanford University Coronavirus Antiviral & Resistance Database, but as of December 22, 2021 the tables there summarizing “Virus Variants and Spike Mutations vs Convalescent Plasma” ([https://covdb.stanford.edu/page/susceptibility-data/#:∼:text=Table%202.-,Virus%20Variants%20and%20Spike%20Mutations%20vs%20Convalescent%20Plasma,-Table%203.%20Virus](https://covdb.stanford.edu/page/susceptibility-data/#:%E2%88%BC:text=Table%202.-,Virus%20Variants%20and%20Spike%20Mutations%20vs%20Convalescent%20Plasma,-Table%203.%20Virus)) and “Virus Variants and Spike Mutations vs Plasma from Vaccinated Persons” ([https://covdb.stanford.edu/page/susceptibility-data/#table.2.virus.variants.and.spike.mutations.vs.convalescent.plasma](https://covdb.stanford.edu/page/susceptibility-data/#table.2.virus.variants.and.spike.mutations.vs.convalescent.plasma)) report aggregate data from only 6 studies, and do not dissect the infecting sublineages, nor the different heterologous or homologous vaccination schemes, nor the time from infection/vaccine to neutralization assay. Consequently, a more in-depth analysis is needed to better stratify the populations. ## Methods On December 22, 2021, we searched PubMed, medRxiv and bioRxiv for research investigating the efficacy of COVID19 convalescent plasma (either from vaccinated or unvaccinated donors) against SARS-CoV-2 VOC Omicron. In unvaccinated patients, convalescence was annotated according to infecting sublineage (unspecified, D614G wild-type, VOC Alpha, VOC Beta or VOC Delta). Given the heterologous immunity that develops after vaccination in convalescents, the infecting lineage was not annotated in vaccine recipients. In vaccinees, strata were created for uninfected, 1 dose, 2 homologous doses, 3 homologous doses, or heterologous combinations. ## Results Figure 1 shows the PRISMA flowchart for this study. Our literature search identified 22 studies, that were then manually mined for relevant details. ![Figure 1](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/12/25/2021.12.24.21268317/F1.medium.gif) [Figure 1](http://medrxiv.org/content/early/2021/12/25/2021.12.24.21268317/F1) Figure 1 PRISMA flowchart for the current study. Given the urgency to assess efficacy against the upcoming VOC Omicron, most studies (with a few exceptions [21,30]) relied over Omicron pseudovirus development and neutralization assays, which, as opposed to live authentic virus, are scalable, do not require BSL-3 facilities, and provide results in less than 1 week. Table 1 shows that CCP collected from unvaccinated convalescents (regardless of the infecting lineage) harbors very low or no neutralizing activity against Omicron, and are hence clinically useless. View this table: [Table 1](http://medrxiv.org/content/early/2021/12/25/2021.12.24.21268317/T1) Table 1 Efficacy of CCP collected from unvaccinated COVID19 survivors, infected from different SARS-CoV-2 VOC, against VOC Omicron. Efficacy is reported as ED50/IC50 or fold-reductions (FR) compared to wild-type D614G lineages (e.g. USA-WA1/2020) at different time points since onset of symptoms or positivity, expressed in days (d) or months (m). BAU: binding arbitrary unit. LOD: limit of dilution. Table 2 shows that CCP from vaccinees that have not been previously or later infected has very low nAb content against Omicron. On the other hand, CCP collected from vaccinated convalescents is generally high in nAb content against Omicron, regardless of the order of events (infection/vaccination vs. vaccination/breakthrough infection [31]), of the infecting sublineage, and of the number of vaccine doses. View this table: [Table 2](http://medrxiv.org/content/early/2021/12/25/2021.12.24.21268317/T2) Table 2 Efficacy against VOC Omicron of convalescent plasma collected from vaccinated donors, either infected (either before, between or after vaccination with 1 or more homologous or heterologous doses) or uninfected (with 3 homologous or heterologous doses), reported as NT50/ED50/IC50 (dilution factors that yields 50% neutralization of SARS-CoV-2) or fold-reduction (FR) in nAb titers compared to wild-type D614G lineage. Time after last event (infection or vaccination) is reported when available from the original source. The single reference for CoronaVax and Sputnik V are both discussed within the text for space constraints. ## Discussion Although nAb titers correlate with vaccine efficacy [32,33], it is important to keep in mind that SARS-CoV-2 binding non-neutralizing antibodies can similarly provide protection via Fc-mediated functions [34,35]. However, these are harder to measure in the laboratory and no automated assay exist for use in clinical laboratories. Hence, whereas the presence of a high nAb titer in CCP is evidence for antibody effectiveness *in vitro*, the absence of nAb titer does not imply lack of protection *in vivo* where Fc effects mediate protection by other mechanisms such as ADCC, complement activation and phagocytosis. That said, it is always preferable to use CCP with a high nAb titer since that is positive correlate for antiviral activity and there is now strong clinical evidence that such titers correlate with efficacy in clinical trials [25,26]. This systematic review provides strong evidence that CCP from unvaccinated donors is unlikely to be effective against Omicron. On the contrary, despite the huge heterogeneity of vaccine schedules, CCP from vaccinated COVID-19 convalescent individuals consistently harbors high nAb titers against Omicron if collected up to 6 months since last event (either vaccine dosage or infection). Consequently, prescreening of CCP donors for nAb titers is not necessary, and qualification of CCP units remains advisable only within clinical trials. A more objective way to assess previous infection would be measuring anti-nucleocapsid (N) antibodies, but unfortunately these vanish quickly [36,37]. Previous symptomatic infection and vaccination can be established by collecting past medical history (PMH) during the donor selection visit, which is cheaper, faster, and more reliable than measuring rapidly declining anti-N antibodies. Although there is no formal evidence for this, it is likely that asymptomatic infection (leading to lower nAb levels) also leads to lower nAb levels after vaccination compared to symptomatic infection, given that disease severity correlates with antibody titer [38,39]: hence those asymptomatically infected donors missed by investigating PMH are less likely to be useful. The same reasoning applies to uninfected vaccinees receiving third dose boosts, but several authorities, including FDA, do not allow collection from such donors for CCP therapy on the basis that the convalescent polyclonal and poly-target response is a prerequisite for efficacy and superior to the polyclonal anti-Spike only response of vaccinees. This may be a false premise for recipients of inactivated whole-virus vaccines (e.g., BBIBP-CorV or VLA2001): for BBIBP-CorV, the efficacy against Omicron is largely reduced [40,41], but the impact of boost doses is still unreported at the time of writing. For CoronaVac® (SinoVac), three doses led to 5.1 fold-reduction in nAb titer [41], while for Sputnik V nAb titer moved from a 12-fold reduction at 6-12 months up to a 7-fold reduction at 2-3 months after a boost with Sputnik Light [30]. Another point to consider is that information on levels after third dose do not currently exceed more than one month of follow-up, while studies on convalescents extend to more than 6 months: to date it seems hence advisable to start from convalescent vaccinees rather than uninfected 3-dose vaccinees. Vaccine schedules with a delayed boost seem to elicit higher and broader nAb levels than the approved, short schedules [42-45], but this remain to be confirmed in larger series. With the increase of Omicron seroprevalence in time, polyclonal intravenous immunoglobulins collected from regular donors could become a more standardized alternative to CCP (see Figure 2), but their efficacy to date (at the peak of the vaccinations campaign) is still 16-fold reduced against Omicron compared to wild-type SARS-CoV-2 [14], and such preparations include only IgG and not IgM and IgA, which have powerful SARS-CoV-2 activity. ![Figure 2](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/12/25/2021.12.24.21268317/F2.medium.gif) [Figure 2](http://medrxiv.org/content/early/2021/12/25/2021.12.24.21268317/F2) Figure 2 Simplified representation of the evolution of nAb-based therapeutics along the course of a pandemic. CCP collection from vaccinated convalescents (regardless of infecting sublineage, vaccine type and number of doses) is likely to achieve high nAb titer against VOC Omicron, and, on the basis of lessons learnt with CCP usage during the first 2 years of the pandemic. Although in ideal situations one would prefer RCT evidence of efficacy against omicron before deployment there is concern that variants are generated so rapidly that by the time such trials commenced this variant could be replaced for another. Given the success of CCP in 2 outpatient RCTs reducing hospitalization [25,26] and the loss of major mAb therapies due to Omicron antigenic changes, the high titers in CCP collected from vaccinated convalescents provides an immediate option for COVID-19, especially in resource poor areas. Given the reduced hospitalization rate with Omicron compared to Delta [46,47], it is even more relevant to identify patient subsets at risk of progression in order to minimize the number needed to treat to prevent a single hospitalization: moving from the same criteria used for mAb therapies while using the same (now unused) in-hospital facilities seems a logical approach. We declare we have no conflict of interest related to this manuscript. ## Data Availability All data produced are available online at PubMed, medRxiv and bioRxiv. ## Acknowledgements none. ## Footnotes * massimo.franchini{at}asst-mantova.it * acasade1{at}jhu.edu. * joyner.michael{at}mayo.edu ; * **Funding Information:** none. * Received December 24, 2021. * Revision received December 24, 2021. * Accepted December 25, 2021. * © 2021, Posted by Cold Spring Harbor Laboratory The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission. ## References 1. 1.Yeh, T.-Y.; Contreras, G.P. Tajima D test accurately forecasts Omicron / COVID-19 outbreak. 2021, 10.1101/2021.12.02.21267185 %J medRxiv, 2021.2012.2002.21267185, doi:10.1101/2021.12.02.21267185 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMi4wMi4yMTI2NzE4NXYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 2. 2.Ahmed, S.F.; Quadeer, A.A.; McKay, M. SARS-CoV-2 T cell responses are expected to remain robust against Omicron. 2021, 10.1101/2021.12.12.472315 %J bioRxiv, 2021.2012.2012.472315, doi:10.1101/2021.12.12.472315 %J bioRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMS4xMi4xMi40NzIzMTV2MSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzEyLzI1LzIwMjEuMTIuMjQuMjEyNjgzMTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 3. 3.Bernasconi, A.; Pinoli, P.; Al Khalaf, R.; Alfonsi, T.; Canakoglu, A.; Cilibrasi, L.; Ceri, S. Report on Omicron Spike mutations on epitopes and immunological/epidemiological/kinetics effects from literature. Availabe online: [https://virological.org/t/report-on-omicron-spike-mutations-on-epitopes-and-immunological-epidemiological-kinetics-effects-from-literature/770](https://virological.org/t/report-on-omicron-spike-mutations-on-epitopes-and-immunological-epidemiological-kinetics-effects-from-literature/770) (accessed on 4. 4.Wilhelm, A.; Widera, M.; Grikscheit, K.; Toptan, T.; Schenk, B.; Pallas, C.; Metzler, M.; Kohmer, N.; Hoehl, S.; Helfritz, F.A., et al. Reduced Neutralization of SARS-CoV-2 Omicron Variant by Vaccine Sera and monoclonal antibodies. 2021, 10.1101/2021.12.07.21267432 %J medRxiv, 2021.2012.2007.21267432, doi:10.1101/2021.12.07.21267432 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMi4wNy4yMTI2NzQzMnY0IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 5. 5.Cao, Y.R.; Wang, J.; Jian, F.; Xiao, T.; Song, W.; Yisimayi, A.; Huang, W.; Li, Q.; Wang, P.; An, R., et al. B.1.1.529 escapes the majority of SARS-CoV-2 neutralizing antibodies of diverse epitopes. 2021, 10.1101/2021.12.07.470392 %J bioRxiv, 2021.2012.2007.470392, doi:10.1101/2021.12.07.470392 %J bioRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMS4xMi4wNy40NzAzOTJ2MiI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzEyLzI1LzIwMjEuMTIuMjQuMjEyNjgzMTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 6. 6.Cele, S.; Jackson, L.; Khan, K.; Khoury, D.S.; Moyo-Gwete, T.; Tegally, H.; Scheepers, C.; Amoako, D.; Karim, F.; Bernstein, M., et al. SARS-CoV-2 Omicron has extensive but incomplete escape of Pfizer BNT162b2 elicited neutralization and requires ACE2 for infection. 2021, 10.1101/2021.12.08.21267417 %J medRxiv, 2021.2012.2008.21267417, doi:10.1101/2021.12.08.21267417 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMi4wOC4yMTI2NzQxN3YzIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 7. 7.Lu, L.; Mok, B.; Chen, L.; Chan, J.; Tsang, O.; Lam, B.; Chuang, V.; Chu, A.; Chan, A.; Ip, J., et al. Neutralization of SARS-CoV-2 Omicron variant by sera from BNT162b2 or Coronavac vaccine recipients. 2021, 10.1101/2021.12.13.21267668 %J medRxiv, 2021.2012.2013.21267668, doi:10.1101/2021.12.13.21267668 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMi4xMy4yMTI2NzY2OHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 8. 8.Ikemura, N.; Hoshino, A.; Higuchi, Y.; Taminishi, S.; Inaba, T.; Matoba, S. SARS-CoV-2 Omicron variant escapes neutralization by vaccinated and convalescent sera and therapeutic monoclonal antibodies. 2021, 10.1101/2021.12.13.21267761 %J medRxiv, 2021.2012.2013.21267761, doi:10.1101/2021.12.13.21267761 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMi4xMy4yMTI2Nzc2MXYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 9. 9.Basile, K.; Rockett, R.J.; McPhie, K.; Fennell, M.; Johnson-Mackinnon, J.; Agius, J.; Fong, W.; Rahman, H.; Ko, D.; Donavan, L., et al. Improved neutralization of the SARS-CoV-2 Omicron variant after Pfizer-BioNTech BNT162b2 COVID-19 vaccine boosting. 2021, 10.1101/2021.12.12.472252 %J bioRxiv, 2021.2012.2012.472252, doi:10.1101/2021.12.12.472252 %J bioRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMS4xMi4xMi40NzIyNTJ2MSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzEyLzI1LzIwMjEuMTIuMjQuMjEyNjgzMTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 10. 10.Garcia-Beltran, W.F.; St Denis, K.J.; Hoelzemer, A.; Lam, E.C.; Nitido, A.D.; Sheehan, M.L.; Berrios, C.; Ofoman, O.; Chang, C.C.; Hauser, B.M., et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. 2021, 10.1101/2021.12.14.21267755 %J medRxiv, 2021.2012.2014.21267755, doi:10.1101/2021.12.14.21267755 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMi4xNC4yMTI2Nzc1NXYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 11. 11.Schubert, M.; Bertoglio, F.; Steinke, S.; Heine, P.A.; Ynga-Durand, M.A.; Zuo, F.; Du, L.; Korn, J.; Milosevic, M.; Wenzel, E.V., et al. Human serum from SARS-CoV-2 vaccinated and COVID-19 patients shows reduced binding to the RBD of SARS-CoV-2 Omicron variant in comparison to the original Wuhan strain and the Beta and Delta variants. 2021, 10.1101/2021.12.10.21267523 %J medRxiv, 2021.2012.2010.21267523, doi:10.1101/2021.12.10.21267523 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMi4xMC4yMTI2NzUyM3YzIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 12. 12.Planas, D.; Saunders, N.; Maes, P.; Benhassine, F.G.; Planchais, C.; Porrot, F.; Staropoli, I.; Lemoine, F.; Pere, H.; Veyer, D., et al. Considerable escape of SARS-CoV-2 variant Omicron to antibody neutralization. 2021, 10.1101/2021.12.14.472630 %J bioRxiv, 2021.2012.2014.472630, doi:10.1101/2021.12.14.472630 %J bioRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMS4xMi4xNC40NzI2MzB2MSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzEyLzI1LzIwMjEuMTIuMjQuMjEyNjgzMTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 13. 13.Liu, L.; Iketani, S.; Guo, Y.; Chan, J.F.-W.; Wang, M.; Liu, L.; Luo, Y.; Chu, H.; Huang, Y.; Nair, M.S., et al. Striking Antibody Evasion Manifested by the Omicron Variant of SARS-CoV-2. 2021, 10.1101/2021.12.14.472719 %J bioRxiv, 2021.2012.2014.472719, doi:10.1101/2021.12.14.472719 %J bioRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMS4xMi4xNC40NzI3MTl2MyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzEyLzI1LzIwMjEuMTIuMjQuMjEyNjgzMTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 14. 14.Aggarwal, A.; Ospina Stella, A.; Walker, G.; Akerman, A.; Milogiannakis, V.; Hoppe, A.C.; Mathivanan, V.; Fichter, C.; McAllery, S.; Amatayakul-Chantler, S., et al. SARS-CoV-2 Omicron: reduction of potent humoral responses and resistance to clinical immunotherapeutics relative to viral variants of concern. 2021, 10.1101/2021.12.14.21267772 %J medRxiv, 2021.2012.2014.21267772, doi:10.1101/2021.12.14.21267772 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMi4xNC4yMTI2Nzc3MnYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 15. 15.Rössler, A.; Riepler, L.; Bante, D.; Laer, D.v.; Kimpel, J. SARS-CoV-2 B.1.1.529 variant (Omicron) evades neutralization by sera from vaccinated and convalescent individuals. 2021, 10.1101/2021.12.08.21267491 %J medRxiv, 2021.2012.2008.21267491, doi:10.1101/2021.12.08.21267491 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMi4wOC4yMTI2NzQ5MXYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 16. 16.Dejnirattisai, W.; Shaw, R.H.; Supasa, P.; Liu, C.; Stuart, A.S.; Pollard, A.J.; Liu, X.; Lambe, T.; Crook, D.; Stuart, D.I., et al. Reduced neutralisation of SARS-COV-2 Omicron-B.1.1.529 variant by post-immunisation serum. 2021, 10.1101/2021.12.10.21267534 %J medRxiv, 2021.2012.2010.21267534, doi:10.1101/2021.12.10.21267534 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMi4xMC4yMTI2NzUzNHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 17. 17.Cong, Z.; Evans, J.P.; Qu, P.; Faraone, J.; Zheng, Y.-M.; Carlin, C.; Bednash, J.S.; Zhou, T.; Lozanski, G.; Mallampalli, R., et al. Neutralization and Stability of SARS-CoV-2 Omicron Variant. 2021, 10.1101/2021.12.16.472934 %J bioRxiv, 2021.2012.2016.472934, doi:10.1101/2021.12.16.472934 %J bioRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMS4xMi4xNi40NzI5MzR2MSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzEyLzI1LzIwMjEuMTIuMjQuMjEyNjgzMTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 18. 18.Sheward, D.J.; Kim, C.; Ehling, R.A.; Pankow, A.; Castro Dopico, X.; Martin, D.P.; Reddy, S.T.; Dillner, J.; Karlsson Hedestam, G.B.; Albert, J., et al. Variable loss of antibody potency against SARS-CoV-2 B.1.1.529 (Omicron). 2021, 10.1101/2021.12.19.473354 %J bioRxiv, 2021.2012.2019.473354, doi:10.1101/2021.12.19.473354 %J bioRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMS4xMi4xOS40NzMzNTR2MSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzEyLzI1LzIwMjEuMTIuMjQuMjEyNjgzMTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 19. 19.Jacobsen, H.; Strengert, M.; Maass, H.; Ynga Durand, M.A.; Kessel, B.; Harries, M.; Rand, U.; Abassi, L.; Kim, Y.; Lueddecke, T., et al. Diminished neutralization responses towards SARS-CoV-2 Omicron VoC after mRNA or vector-based COVID-19 vaccinations. 2021, 10.1101/2021.12.21.21267898 %J medRxiv, 2021.2012.2021.21267898, doi:10.1101/2021.12.21.21267898 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMi4yMS4yMTI2Nzg5OHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 20. 20.VanBlargan, L.A.; Errico, J.M.; Halfmann, P.; Zost, S.J.; Crowe, J.E.; Purcell, L.A.; Kawaoka, Y.; Corti, D.; Fremont, D.H.; Diamond, M. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by several therapeutic monoclonal antibodies. 2021, 10.1101/2021.12.15.472828 %J bioRxiv, 2021.2012.2015.472828, doi:10.1101/2021.12.15.472828 %J bioRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMS4xMi4xNS40NzI4Mjh2MSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzEyLzI1LzIwMjEuMTIuMjQuMjEyNjgzMTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 21. 21.Carreno, J.M.; Alshammary, H.; Tcheou, J.; Singh, G.; Raskin, A.; Kawabata, H.; Sominsky, L.; Clark, J.; Adelsberg, D.C.; Bielak, D., et al. Activity of convalescent and vaccine serum against a B.1.1.529 variant SARS-CoV-2 isolate. 2021, 10.1101/2021.12.20.21268134 %J medRxiv, 2021.2012.2020.21268134, doi:10.1101/2021.12.20.21268134 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMi4yMC4yMTI2ODEzNHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 22. 22.Therapeutic Goods Administration. Australian Product Information – XEVUDY (Sotrovimab) Concentrated Injection solution for infusion. (2021). Accessed on December 22, 2021 at [https://www.tga.gov.au/sites/default/files/xevudy-pi.pdf](https://www.tga.gov.au/sites/default/files/xevudy-pi.pdf). 23. 23.Rockett, R.J.; Basile, K.; Maddocks, S.; Fong, W.; Agius, J.E.; Johnson-Mackinnon, J.; Arnott, A.; Chandra, S.; Gall, M.; Draper, J.L., et al. RESISTANCE CONFERRING MUTATIONS IN SARS-CoV-2 DELTA FOLLOWING SOTROVIMAB INFUSION. 2021, 10.1101/2021.12.18.21267628 %J medRxiv, 2021.2012.2018.21267628, doi:10.1101/2021.12.18.21267628 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMi4xOC4yMTI2NzYyOHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 24. 24.Focosi, D.; Franchini, M.; Pirofski, L.-a.; Burnouf, T.; Paneth, N.; Joyner, M.J.; Casadevall, A. COVID-19 convalescent plasma and randomized clinical trials: rebuilding confidence by explaining failures and finding signals of efficacy. 2021, 10.1101/2021.09.07.21263194 %J medRxiv, 2021.2009.2007.21263194, doi:10.1101/2021.09.07.21263194 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wOS4wNy4yMTI2MzE5NHYzIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 25. 25.Libster, R.; Pérez Marc, G.; Wappner, D.; Coviello, S.; Bianchi, A.; Braem, V.; Esteban, I.; Caballero, M.T.; Wood, C.; Berrueta, M., et al. Early High-Titer Plasma Therapy to Prevent Severe Covid-19 in Older Adults. N Engl J Med 2021, 384, 610–618, doi:10.1056/NEJMoa2033700. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1056/NEJMoa2033700&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33406353&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F12%2F25%2F2021.12.24.21268317.atom) 26. 26.Sullivan, D.; Gebo, K.; Shoham, S.; Bloch, E.; Lau, B.; Shenoy, A.; Mosnaim, G.; Gniadek, T.; Fukuta, Y.; Patel, B., et al. Randomized Controlled Trial of Early Outpatient COVID-19 Treatment with High-Titer Convalescent Plasma. medRxiv 2021. 27. 27.Vickers, M.A.; Sariol, A.; Leon, J.; Ehlers, A.; Locher, A.V.; Dubay, K.A.; Collins, L.; Voss, D.; Odle, A.E.; Holida, M., et al. Exponential increase in neutralizing and spike specific antibodies following vaccination of COVID-19 convalescent plasma donors. Transfusion 2021, 61, 2099–2106, doi:10.1111/trf.16401. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/trf.16401&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33829513&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F12%2F25%2F2021.12.24.21268317.atom) 28. 28.Schmidt, F.; Weisblum, Y.; Rutkowska, M.; Poston, D.; Da Silva, J.; Zhang, F.; Bednarski, E.; Cho, A.; Schaefer-Babajew, D.J.; Gaebler, C., et al. High genetic barrier to SARS-CoV-2 polyclonal neutralizing antibody escape. Nature 2021, 10.1038/s41586-021-04005-0, doi:10.1038/s41586-021-04005-0. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41586-021-04005-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34544114&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F12%2F25%2F2021.12.24.21268317.atom) 29. 29.Germanio, C.D.; Simmons, G.; Thorbrogger, C.; Martinelli, R.; Stone, M.; Gniadek, T.; Busch, M.P. Vaccination of COVID-19 Convalescent Plasma Donors Increases Binding and Neutralizing Antibodies Against SARS-CoV-2 Variants. 2021, 10.1101/2021.10.28.21265622%J medRxiv, 2021.2010.2028.21265622, doi:10.1101/2021.10.28.21265622 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMC4yOC4yMTI2NTYyMnYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 30. 30.Dolzhikova, I.V.; Iliukhina, A.A.; Kovyrshina, A.V.; Kuzina, A.V.; Gushchin, V.A.; Siniavin, A.E.; Pochtovyi, A.A.; Shidlovskaya, E.V.; Kuznetsova, N.A.; Megeryan, M.M., et al. Sputnik Light booster after Sputnik V vaccination induces robust neutralizing antibody response to B.1.1.529 (Omicron) SARS-CoV-2 variant. 2021, 10.1101/2021.12.17.21267976 %J medRxiv, 2021.2012.2017.21267976, doi:10.1101/2021.12.17.21267976 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMi4xNy4yMTI2Nzk3NnYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 31. 31.Lechmere, T.; Snell, L.B.; Graham, C.; Seow, J.; Shalim, Z.A.; Charalampous, T.; Alcolea-Medina, A.; Batra, R.; Nebbia, G.; Edgeworth, J.D., et al. Broad neutralization of SARS–CoV–2 variants, including omicron, following breakthrough infection with delta in COVID–19 vaccinated individuals. 2021, 10.1101/2021.12.01.21266982 %J medRxiv, 2021.2012.2001.21266982, doi:10.1101/2021.12.01.21266982 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMi4wMS4yMTI2Njk4MnYyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 32. 32.Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med 2021, 27, 1205–1211, doi:10.1038/s41591-021-01377-8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41591-021-01377-8&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34002089&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F12%2F25%2F2021.12.24.21268317.atom) 33. 33.Feng, S.; Phillips, D.J.; White, T.; Sayal, H.; Aley, P.K.; Bibi, S.; Dold, C.; Fuskova, M.; Gilbert, S.C.; Hirsch, I., et al. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nat Med 2021, 27, 2032–2040, doi:10.1038/s41591-021-01540-1. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41591-021-01540-1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34588689&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F12%2F25%2F2021.12.24.21268317.atom) 34. 34.Gilbert, P.B.; Montefiori, D.C.; McDermott, A.B.; Fong, Y.; Benkeser, D.; Deng, W.; Zhou, H.; Houchens, C.R.; Martins, K.; Jayashankar, L., et al. Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science 2021, eab3435. 35. 35.Earle, K.A.; Ambrosino, D.M.; Fiore-Gartland, A.; Goldblatt, D.; Gilbert, P.B.; Siber, G.R.; Dull, P.; Plotkin, S.A. Evidence for antibody as a protective correlate for COVID-19 vaccines. Vaccine 2021, 39, 4423–4428, doi:10.1016/j.vaccine.2021.05.063. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.vaccine.2021.05.063&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34210573&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F12%2F25%2F2021.12.24.21268317.atom) 36. 36.Krutikov, M.; Palmer, T.; Tut, G.; Fuller, C.; Azmi, B.; Giddings, R.; Shrotri, M.; Kaur, N.; Sylla, P.; Lancaster, T., et al. Prevalence and duration of detectable SARS-CoV-2 nucleocapsid antibodies in staff and residents of long-term care facilities over the first year of the pandemic (VIVALDI study): prospective cohort study in England. The Lancet Healthy Longevity 2021, [https://doi.org/10.1016/S2666-7568(21)00282-8](https://doi.org/10.1016/S2666-7568(21)00282-8), doi:[https://doi.org/10.1016/S2666-7568(21)00282-8](https://doi.org/10.1016/S2666-7568(21)00282-8). 37. 37.Amjadi, M.F.; Adyniec, R.R.; Gupta, S.; Bashar, S.J.; Mergaert, A.M.; Braun, K.M.; Moreno, G.K.; O’Connor, D.H.; Friedrich, T.C.; Safdar, N., et al. Anti-membrane and anti-spike antibodies are long-lasting and together discriminate between past COVID-19 infection and vaccination. 2021, 10.1101/2021.11.02.21265750 %J medRxiv, 2021.2011.2002.21265750, doi:10.1101/2021.11.02.21265750 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMS4wMi4yMTI2NTc1MHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 38. 38.Klein, S.; Pekosz, A.; Park, H.-S.; Ursin, R.; Shapiro, J.; Benner, S.; Littlefield, K.; Kumar, S.; Naik, H.M.; Betenbaugh, M., et al. Sex, age, and hospitalization drive antibody responses in a COVID-19 convalescent plasma donor population. Availabe online: [https://www.medrxiv.org/content/medrxiv/early/2020/06/28/2020.06.26.20139063.full.pdf](https://www.medrxiv.org/content/medrxiv/early/2020/06/28/2020.06.26.20139063.full.pdf) (accessed on Feb 5, 2021). 39. 39.Focosi, D.; Franchini, M. Clinical predictors of SARS-CoV-2 neutralizing antibody titers in COVID-19 convalescents: Implications for convalescent plasma donor recruitment. European journal of haematology 2021, 107, 24–28, doi:10.1111/ejh.13630. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/ejh.13630&link_type=DOI) 40. 40.Yu, X.; Wei, D.; Xu, W.; Li, Y.; Li, X.; Zhang, X.-x.; Qu, J.; Yang, Z.; Chen, E. Pseudotyped SARS-CoV-2 Omicron variant exhibits significant escape from neutralization induced by a third booster dose of vaccination. 2021, 10.1101/2021.12.17.21267961 %J medRxiv, 2021.2012.2017.21267961, doi:10.1101/2021.12.17.21267961 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMi4xNy4yMTI2Nzk2MXYzIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 41. 41.Zhao, X.; Li, D.; Ruan, W.; Zhang, R.; Zheng, A.; Qiao, S.; Zheng, X.; Zhao, Y.; Chen, Z.; Dai, L., et al. Reduced sera neutralization to Omicron SARS-CoV-2 by both inactivated and protein subunit vaccines and the convalescents. 2021, 10.1101/2021.12.16.472391 %J bioRxiv, 2021.2012.2016.472391, doi:10.1101/2021.12.16.472391 %J bioRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMS4xMi4xNi40NzIzOTF2MSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzEyLzI1LzIwMjEuMTIuMjQuMjEyNjgzMTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 42. 42.Chatterjee, D.; Tauzin, A.; Marchitto, L.; Gong, S.Y.; Boutin, M.; Bourassa, C.; Beaudoin-Bussieres, G.; Bo, Y.; Ding, S.; Laumaea, A., et al. SARS-CoV-2 Omicron Spike recognition by plasma from individuals receiving BNT162b2 mRNA vaccination with a 16-weeks interval between doses. 2021, 10.1101/2021.12.21.473679 %J bioRxiv, 2021.2012.2021.473679, doi:10.1101/2021.12.21.473679 %J bioRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMS4xMi4yMS40NzM2Nzl2MSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzEyLzI1LzIwMjEuMTIuMjQuMjEyNjgzMTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 43. 43.Grunau, B.; Goldfarb, D.M.; Asamoah-Boaheng, M.; Golding, L.; Kirkham, T.L.; Demers, P.A.; Lavoie, P.M. Immunogenicity of Extended mRNA SARS-CoV-2 Vaccine Dosing Intervals. Jama 2021, 10.1001/jama.2021.21921, doi:10.1001/jama.2021.21921. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jama.2021.21921&link_type=DOI) 44. 44.Tauzin, A.; Nayrac, M.; Benlarbi, M.; Gong, S.Y.; Gasser, R.; Beaudoin-Bussieres, G.; Brassard, N.; Laumaea, A.; Vezina, D.; Prevost, J., et al. A single BNT162b2 mRNA dose elicits antibodies with Fc-mediated effector functions and boost pre-existing humoral and T cell responses. medRxiv [Preprint] 2021, 10.1101/2021.03.18.435972 %J bioRxiv, 2021.2003.2018.435972, doi:10.1101/2021.03.18.435972 %J bioRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMS4wMy4xOC40MzU5NzJ2MSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzEyLzI1LzIwMjEuMTIuMjQuMjEyNjgzMTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 45. 45.Skowronski, D.M.; Setayeshgar, S.; Febriani, Y.; Ouakki, M.; Zou, M.; Talbot, D.; Prystajecky, N.; Tyson, J.R.; Gilca, R.; Brousseau, N., et al. Two-dose SARS-CoV-2 vaccine effectiveness with mixed schedules and extended dosing intervals: test-negative design studies from British Columbia and Quebec, Canada. 2021, 10.1101/2021.10.26.21265397 %J medRxiv, 2021.2010.2026.21265397, doi:10.1101/2021.10.26.21265397 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMC4yNi4yMTI2NTM5N3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 46. 46.MRC Centre for Global Infectious Disease Analysis. Report 50 - Hospitalisation risk for Omicron cases in England. Accessed online at [https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2021-12-22-COVID19-Report-50.pdf](https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2021-12-22-COVID19-Report-50.pdf) on December 23, 2021. Availabe online: (accessed on 47. 47.Wolter, N.; Jassat, W.; Walaza, S.; Welch, R.; Moultrie, H.; Groome, M.; Amoako, D.G.; Everatt, J.; Bhiman, J.N.; Scheepers, C., et al. Early assessment of the clinical severity of the SARS-CoV-2 Omicron variant in South Africa. 2021, 10.1101/2021.12.21.21268116 %J medRxiv, 2021.2012.2021.21268116, doi:10.1101/2021.12.21.21268116 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMi4yMS4yMTI2ODExNnYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 48. 48.Gruell, H.; Vanshylla, K.; Tober-Lau, P.; Hillus, D.; Schommers, P.; Lehmann, C.; Kurth, F.; Sander, L.E.; Klein, F. mRNA booster immunization elicits potent neutralizing serum activity against the SARS-CoV-2 Omicron variant. 2021, 10.1101/2021.12.14.21267769 %J medRxiv, 2021.2012.2014.21267769, doi:10.1101/2021.12.14.21267769 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMi4xNC4yMTI2Nzc2OXYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 49. 49.Hoffmann, M.; Krüger, N.; Schulz, S.; Cossmann, A.; Rocha, C.; Kempf, A.; Nehlmeier, I.; Graichen, L.; Moldenhauer, A.-S.; Winkler, M.S., et al. The Omicron variant is highly resistant against antibody-mediated neutralization - implications for control of the COVID-19 pandemic. 2021, 10.1101/2021.12.12.472286 %J bioRxiv, 2021.2012.2012.472286, doi:10.1101/2021.12.12.472286 %J bioRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMS4xMi4xMi40NzIyODZ2MSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzEyLzI1LzIwMjEuMTIuMjQuMjEyNjgzMTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 50. 50.Schmidt, F.; Muecksch, F.; Weisblum, Y.; Da Silva, J.; Bednarski, E.; Cho, A.; Wang, Z.; Gaebler, C.; Caskey, M.; Nussenzweig, M., et al. Plasma neutralization properties of the SARS-CoV-2 Omicron variant. 2021, 10.1101/2021.12.12.21267646 %J medRxiv, 2021.2012.2012.21267646, doi:10.1101/2021.12.12.21267646 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMi4xMi4yMTI2NzY0NnYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 51. 51.Zhang, L.; Li, Q.; Liang, Z.; Li, T.; Liu, S.; Cui, Q.; Nie, J.; Wu, Q.; Qu, X.; Huang, W., et al. The significant immune escape of pseudotyped SARS-CoV-2 Variant Omicron. Emerging microbes & infections 2021, 10.1080/22221751.2021.2017757, 1–11, doi:10.1080/22221751.2021.2017757. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/22221751.2021.2017757&link_type=DOI) 52. 52.Zou, j.; Xia, H.; Xie, X.; Kurhade, C.; Machado, R.R.; Weaver, S.C.; Ren, P.; Shi, P.-Y. Neutralization against Omicron SARS-CoV-2 from previous non-Omicron infection. 2021, 10.1101/2021.12.20.473584 %J bioRxiv, 2021.2012.2020.473584, doi:10.1101/2021.12.20.473584 %J bioRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMS4xMi4yMC40NzM1ODR2MSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzEyLzI1LzIwMjEuMTIuMjQuMjEyNjgzMTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 53. 53.Lusvarghi, S.; Pollett, S.D.; Neerukonda, S.N.; Wang, W.; Wang, R.; Vassell, R.; Epsi, N.J.; Fries, A.C.; Agan, B.K.; Lindholm, D.A., et al. SARS-CoV-2 Omicron neutralization by therapeutic antibodies, convalescent sera, and post-mRNA vaccine booster. 2021, 10.1101/2021.12.22.473880 %J bioRxiv, 2021.2012.2022.473880, doi:10.1101/2021.12.22.473880 %J bioRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMS4xMi4yMi40NzM4ODB2MiI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzEyLzI1LzIwMjEuMTIuMjQuMjEyNjgzMTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 54. 54.Syed, A.M.; Ciling, A.; Khalid, M.M.; Sreekumar, B.; Kumar, G.R.; Silva, I.; Milbes, B.; Kojima, N.; Hess, V.; Shacreaw, M., et al. Omicron mutations enhance infectivity and reduce antibody neutralization of SARS-CoV-2 virus-like particles. 2021, 10.1101/2021.12.20.21268048 %J medRxiv, 2021.2012.2020.21268048, doi:10.1101/2021.12.20.21268048 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMi4yMC4yMTI2ODA0OHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 55. 55.Doria-Rose, N.; Shen, X.; Schmidt, S.D.; O’Dell, S.; McDanal, C.; Feng, W.; Tong, J.; Eaton, A.; Maglinao, M.; Tang, H., et al. Booster of mRNA-1273 Vaccine Reduces SARS-CoV-2 Omicron Escape from Neutralizing Antibodies. 2021, 10.1101/2021.12.15.21267805 %J medRxiv, 2021.2012.2015.21267805, doi:10.1101/2021.12.15.21267805 %J medRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4xMi4xNS4yMTI2NzgwNXYyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMTIvMjUvMjAyMS4xMi4yNC4yMTI2ODMxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 56. 56.Edara, V.-V.; Manning, K.E.; Ellis, M.; Lai, L.; Moore, K.M.; Foster, S.L.; Floyd, K.; Davis-Gardner, M.E.; Mantus, G.; Nyhoff, L.E., et al. mRNA-1273 and BNT162b2 mRNA vaccines have reduced neutralizing activity against the SARS-CoV-2 Omicron variant. 2021, 10.1101/2021.12.20.473557 %J bioRxiv, 2021.2012.2020.473557, doi:10.1101/2021.12.20.473557 %J bioRxiv. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMS4xMi4yMC40NzM1NTd2MSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzEyLzI1LzIwMjEuMTIuMjQuMjEyNjgzMTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9)