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Abstract 22 

The novel SARS-CoV-2 Omicron variant of concern (VOCs), with its escape from unboosted vaccines 23 

and monoclonal antibodies, demonstrates the continued relevance of COVID19 convalescent plasma 24 

therapies. Lessons learnt from previous usage of CCP suggests focusing on outpatients and using 25 

high nAb-titer units in early disease stages. In this systematic analysis, we show that CCP from 26 

unvaccinated donors is not effective against Omicron, while CCP from vaccinees convalescents from 27 

previous VOCs or third-dose uninfected vaccinees is likely to remain effective against Omicron. CCP 28 

remains the only antibody-based therapy that keeps up with the variants and provides an effective 29 

tool to combat the emergence of variants that defeat monoclonal antibodies. Consequently, there is 30 

a need for continue study of the variables that determine CCP efficacy. 31 
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Introduction 33 

The SARS-CoV-2 Omicron variant of concern (VOC), named VUI-21NOV-01 by Public Health England 34 

and belonging to GISAID clade GR/484A, was first reported on November 8, 2021 in South Africa 35 

(particularly in Gauteng, North West and Limpopo regions, where it is likely to have been circulating 36 

for weeks [1]), and shortly thereafter spread all around the world. Omicron mutations impact 27% of 37 

T cell epitopes [2] and 31% of B cell epitopes of Spike, while percentages for other VOC were 38 

significantly lower [3]. The omicron variant already includes several sublineages (with more expected 39 

soon during such a massive spread), which are named by PANGO phylogeny using the BA alias: BA.1 40 

(which represents the majority of cases) and BA.3 (a.k.a. 21K in NextStrain, both harboring the 41 

HV69-70 deletion which leads to S-gene target failure in Thermo Fisher TaqPath® RT-PCR), and BA.2 42 

(a.k.a. 21L in NextStrain). 43 

The novel VOC Omicron is reducing the efficacy of all vaccines approved to date (unless 3 doses are 44 

delivered) [4-19], represents an unexpected boost over CCP usage, with Omicron being treated as an 45 

entirely novel virus instead of a SARS-CoV-2 variants. Two years into the pandemics, we are back to 46 

the starting line for some therapeutic agents. Importantly, Omicron evades most monoclonal 47 

antibodies (mAbs) approved to date [5,12-14,20,21] with the lone exception of sotrovimab: 48 

nevertheless, as expected for non-cocktail mAb therapies, sotrovimab treatment-emergent immune 49 

escape from S:E340K has been shown to be as high as 10% [22,23]. Despite the development of 50 

promising oral small-chemical antivirals (molnupiravir and nirmatrelvir), the logistical and 51 

economical hurdles for deploying these drugs worldwide will prevent their immediate availability. 52 

COVID19 convalescent plasma (CCP) was used as a frontline treatment from the very beginning of 53 

the pandemic. Efficacy outcomes have been mixed  to date, with most failures explained by low dose 54 

and late usage [24], but efficacy of high-titer CCP has been definitively proven in outpatients with 55 

mild disease stages [25,26]. Neutralizing antibody (nAb) efficacy against variants of concerns (VOC) 56 

remains a prerequisite to support CCP usage, which could now be collected also from vaccinated 57 

convalescents including breakthrough infections [27]: pre-Omicron evidences suggest that those 58 

nAbs have higher titers  and are more effective against VOCs than those from unvaccinated 59 

convalescents [28,29], 60 

Several countries have up to 48 different possible vaccine schedules according to EMA and FDA 61 

approvals including a number of homologous or heterologous boosts, but the most commonly 62 

delivered in the westernized countries were 1) BNT162b2 and mRNA-1273 for 2 doses eventually 63 

followed by a homologous boost; 2) ChAdOx1 for 2 doses eventually followed by a BNT162b2 boost; 64 

3) Ad26.COV2.S for 1 dose eventually followed by a BNT162b2 boost. Many more inactivated 65 

vaccines have been in use in low-and-middle income countries, the ideal target regions for CCP 66 

therapy, widen that this therapy is relatively inexpensive. All these patients can have received the 67 

vaccine schedule before, after or without having been infected, and, further complicating the 68 

picture, the nAb titer generally declines with time. Hence identifying the settings where the nAb titer 69 

is highest will definitively increase the appropriateness of CCP collections. Variations in nAb titers 70 

against a given SARS-CoV-2 strain are usually reported as fold-changes in geometric mean titer 71 

(GMT) compared to wild-type strains: nevertheless, fold-changes for groups that include non-72 

responders can lead to highly artificial results and possibly over-interpretation. Rigorous studies 73 

have hence reported the percentage of responders as primary outcome and provided fold-changes 74 

of GMT where calculation is reasonable (100% responders in both arms) [19]. 75 

To date the most rigorous data repository for SARS-CoV-2 sensitivity to antivirals is the Stanford 76 

University Coronavirus Antiviral & Resistance Database, but as of December 22, 2021 the tables 77 

there summarizing “Virus Variants and Spike Mutations vs Convalescent Plasma” 78 
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(https://covdb.stanford.edu/page/susceptibility-data/#:~:text=Table%202.-79 

,Virus%20Variants%20and%20Spike%20Mutations%20vs%20Convalescent%20Plasma,-80 

Table%203.%20Virus) and “Virus Variants and Spike Mutations vs Plasma from Vaccinated Persons” 81 

(https://covdb.stanford.edu/page/susceptibility-82 

data/#table.2.virus.variants.and.spike.mutations.vs.convalescent.plasma) report aggregate data 83 

from only 6 studies, and do not dissect the infecting sublineages, nor the different heterologous or 84 

homologous vaccination schemes, nor the time from infection/vaccine to neutralization assay. 85 

Consequently, a more in-depth analysis is needed to better stratify the populations.  86 

 87 

Methods 88 

On December 22, 2021, we searched PubMed, medRxiv and bioRxiv for research investigating the 89 

efficacy of COVID19 convalescent plasma (either from vaccinated or unvaccinated donors) against 90 

SARS-CoV-2 VOC Omicron. In unvaccinated patients, convalescence was annotated according to 91 

infecting sublineage (unspecified, D614G wild-type, VOC Alpha, VOC Beta or VOC Delta). Given the 92 

heterologous immunity that develops after vaccination in convalescents, the infecting lineage was 93 

not annotated in vaccine recipients. In vaccinees, strata were created for uninfected, 1 dose, 2 94 

homologous doses, 3 homologous doses, or heterologous combinations. 95 

 96 

Results 97 

Figure 1 shows the PRISMA flowchart for this study. Our literature search identified 22 studies, that 98 

were then manually mined for relevant details. 99 

Given the urgency to assess efficacy against the upcoming VOC Omicron, most studies (with a few 100 

exceptions [21,30])  relied over Omicron pseudovirus development and neutralization assays, which, 101 

as opposed to live authentic virus, are scalable, do not require BSL-3 facilities, and provide results in 102 

less than 1 week. 103 

Table 1 shows that CCP collected from unvaccinated convalescents (regardless of the infecting 104 

lineage) harbors very low or no neutralizing activity against Omicron, and are hence clinically 105 

useless.  106 

Table 2 shows that CCP from vaccinees that have not been previously or later infected has very low 107 

nAb content against Omicron. On the other hand, CCP collected from vaccinated convalescents is 108 

generally high in nAb content against Omicron, regardless of the order of events 109 

(infection/vaccination vs. vaccination/breakthrough infection [31]), of the infecting sublineage, and 110 

of the number of vaccine doses.  111 

 112 

Discussion 113 

Although nAb titers correlate with vaccine efficacy [32,33], it is important to keep in mind that SARS-114 

CoV-2 binding non-neutralizing antibodies can similarly provide protection via Fc-mediated functions 115 

[34,35].  However, these are harder to measure in the laboratory and no automated assay exist for 116 

use in clinical laboratories.  Hence, whereas the presence of a high nAb titer in CCP is evidence for 117 

antibody effectiveness in vitro, the absence of nAb titer does not imply lack of protection in vivo 118 

where Fc effects mediate protection by other mechanisms such as ADCC, complement activation and 119 
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phagocytosis.  That said, it is always preferable to use CCP with a high nAb titer since that is positive 120 

correlate for antiviral activity and there is now strong clinical evidence that such titers correlate with 121 

efficacy in clinical trials [25,26]. 122 

This systematic review provides strong evidence that CCP from unvaccinated donors is unlikely to be 123 

effective against Omicron. On the contrary, despite the huge heterogeneity of vaccine schedules, 124 

CCP from vaccinated COVID-19 convalescent individuals consistently harbors high nAb titers against 125 

Omicron if collected up to 6 months since last event (either vaccine dosage or infection). 126 

Consequently, prescreening of CCP donors for nAb titers is not necessary, and qualification of CCP 127 

units remains advisable only within clinical trials. A more objective way to assess previous infection 128 

would be measuring anti-nucleocapsid (N) antibodies, but unfortunately these vanish quickly [36,37]. 129 

Previous symptomatic infection and vaccination can be established by collecting past medical history 130 

(PMH) during the donor selection visit, which is cheaper, faster, and more reliable than measuring 131 

rapidly declining anti-N antibodies. Although there is no formal evidence for this, it is likely that 132 

asymptomatic infection (leading to lower nAb levels) also leads to lower nAb levels after vaccination 133 

compared to symptomatic infection, given that disease severity correlates with antibody titer 134 

[38,39]: hence those asymptomatically infected donors missed by investigating PMH are less likely to 135 

be useful. 136 

The same reasoning applies to uninfected vaccinees receiving third dose boosts, but several 137 

authorities, including FDA, do not allow collection from such donors for CCP therapy on the basis 138 

that the convalescent polyclonal and poly-target response is a prerequisite for efficacy and superior 139 

to the polyclonal anti-Spike only response of vaccinees. This may be a false premise for recipients of 140 

inactivated whole-virus vaccines (e.g., BBIBP-CorV or VLA2001): for BBIBP-CorV, the efficacy against 141 

Omicron is largely reduced [40,41], but the impact of boost doses is still unreported at the time of 142 

writing. For CoronaVac® (SinoVac), three doses led to 5.1 fold-reduction in nAb titer  [41], while for 143 

Sputnik V nAb titer moved from a 12-fold reduction at 6-12 months up to a 7-fold reduction at 2-3 144 

months after a boost with Sputnik Light [30].  145 

Another point to consider is that information on levels after third dose do not currently exceed more 146 

than one month of follow-up, while studies on convalescents extend to more than 6 months: to date 147 

it seems hence advisable to start from convalescent vaccinees rather than uninfected 3-dose 148 

vaccinees. Vaccine schedules with a delayed boost seem to elicit higher and broader nAb levels than 149 

the approved, short schedules [42-45], but this remain to be confirmed in larger series. 150 

With the increase of Omicron seroprevalence in time, polyclonal intravenous immunoglobulins 151 

collected from regular donors could become a more standardized alternative to CCP (see Figure 2), 152 

but their efficacy to date (at the peak of the vaccinations campaign) is still 16-fold reduced against 153 

Omicron compared to wild-type SARS-CoV-2 [14], and such preparations include only IgG and not 154 

IgM and IgA, which have powerful SARS-CoV-2 activity. 155 

CCP collection from vaccinated convalescents (regardless of infecting sublineage, vaccine type and 156 

number of doses) is likely to achieve high nAb titer against VOC Omicron, and, on the basis of lessons 157 

learnt with CCP usage during the first 2 years of the pandemic. Although in ideal situations one 158 

would prefer RCT evidence of efficacy against omicron before deployment there is concern that 159 

variants are generated so rapidly that by the time such trials commenced this variant could be 160 

replaced for another. Given the success of CCP in 2 outpatient RCTs reducing hospitalization [25,26] 161 

and the loss of major mAb therapies due to Omicron antigenic changes, the high titers in CCP 162 

collected from vaccinated convalescents provides an immediate option for COVID-19, especially in 163 

resource poor areas.  Given the reduced hospitalization rate with Omicron compared to Delta 164 
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[46,47], it is even more relevant to identify patient subsets at risk of progression in order to minimize 165 

the number needed to treat to prevent a single hospitalization: moving from the same criteria used 166 

for mAb therapies while using the same (now unused) in-hospital facilities seems a logical approach. 167 

We declare we have no conflict of interest related to this manuscript.168 
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Table 1 169 

Efficacy of CCP collected from unvaccinated COVID19 survivors, infected from different SARS-CoV-2 VOC, against VOC Omicron. Efficacy is reported as 170 

ED50/IC50 or fold-reductions (FR) compared to wild-type D614G lineages (e.g. USA-WA1/2020) at different time points since onset of symptoms or positivity, 171 

expressed in days (d) or months (m). BAU: binding arbitrary unit. LOD: limit of dilution. 172 

convalescents from VOC ref 

unspecified D614G Alpha Beta Delta 

 no activity @ 1.5 and 12m    Gruell [48] 

 ID50 < 135 @ 1m    Liu [13] 

 21 FR, all < LOD (1:20)    Aggarwal [14] 

  47 FR  17 FR Ikemura [8] 

 80 FR @ 2m    Hoffman [49] 

 BAU/ml reduced from 

3x10
3
 to 8x10

2
 at 7-25 

days (n = 27) 

   Schubert [11] 

none at 6m and 12m 

(36 pts) 

    Planas [12] 

58 FR @ 1.3m  

32 FR @ 6.2m 

    Schmidt [50] 

 ED50 68 (10.6 FR @ 1 mo), 

65 (5.1 FR @ 3 mo) 

   Zhang [51] 

  IC50 < 1:16 in 0/10 

pts 

IC50 < 1:16 in 7/8 pts IC50 < 1:16 in 6/7 pts Rossler [15] 

17 FR     Zhao [41] 

 none (2/9 of ICU and 1/9 

of hospitalized above 

cutoff) 

  none (0/12) Zeng [17] 

 40 FR (IC50 23.4 IU/ml) @ 

1m or 4m 

   Sheward [18] 

    28.9 FR Lechmere [31] 

none in 73.3%      Carreno [21] 

 15 FR @ 1 m 

4.4 FR @ 6 m 

   Zou [52] 

 2/20 pts, 2.3-70.1 FR @ 2/5 pts, 2.3-70.1 FR 2/2 pts, 2.3-70.1 FR @ 1m 15/17 pts, 22.1-74.4 FR @ 1m Lusvarghi [53] 
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1m @ 1m 

IC50 15-18 at ? mo     Syed [54] 

  173 
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Table 2 174 

Efficacy against VOC Omicron of convalescent plasma collected from vaccinated donors, either infected (either before, between or after vaccination with 1 175 

or more homologous or heterologous doses) or uninfected (with 3 homologous or heterologous doses), reported as NT50/ED50/IC50 (dilution factors that 176 

yields 50% neutralization of SARS-CoV-2) or fold-reduction (FR) in nAb titers compared to wild-type D614G lineage. Time after last event (infection or 177 

vaccination) is reported when available from the original source. The single reference for CoronaVax and Sputnik V are both discussed within the text for 178 

space constraints. 179 

BNT162b2/tozinameran (Comirnaty®) 

(Pfizer/BioNtech) 

mRNA-1273/elasomeran (Spikevax®) 

(Moderna) 

AZD1222 / ChAdOx1 (Vaxzevria®, 

Covishield®) (AstraZeneca) 

JNJ-78436735/ 

Ad26.COV2.S® 

(J&J/Janssen) 

ref 

2 doses 3 doses convale

scent + 

1 dose 

convale

scent + 

2 doses 

convale

scent + 

3 doses 

2 

doses 

3 

doses 

2 doses + 

BNT162b

2 

2 

doses 

+ 

infecti

on 

3 

doses 

+ 

infecti

on 

2 

doses 

2 dose + 

infectio

n 

1 dose + 

BNT162

b2 

1 dose + 2 

BNT162bd

oses 

1 dose 1 dose + 

BNT162

b2 

11.4 FR 

@ 6 m 

10 at 0.5 

m, (8 

FR); 

0 @ 3m 

(20 FR) 

 32.8-FR 

@ 1-7m 

 0 (20 

FR 

comp

ared 

to 

Delta) 

@ 6m 

 22.7 FR 

@ 0.5m 

20 FR @ 

6m 

    10 FR 

compar

ed to 

Delta @ 

6m 

27.1 FR 

compared 

to Delta  

@ 0.5m 

  Wilhelhm 

[4] 

>6.0FR 

@ 1m 

>4.1 FR 

@ 1m 

ID50 

1,549 @ 

1m 

  >6.0F

R @ 

1m 

>4.1FR 

@ 1m 

         Gruell [48] 

              ID50 < 

153 @ 

1m 

 Liu [13] 

   17.9-

26.6 FR 

    17.9- 

26.6 

FR 

 

       Aggarwal 

[14] 

     27 FR 

@ 3m 

          Ikemura 

[8] 

34 FR @ 

3m 

     8 FR @ 

1m 

     14 FR @ 

1m 

   Hoffman 

[49] 

   4.5 FR 

@ 12-

       4.5 FR 

@ 12-

    Lechmere 

[31] 
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22d 

after 

Delta 

BTI 

22d 

Delta 

BTI 

BAU/ml 

reduced 

from 

3x10
3
 to 

8x10
2
 @ 

7-25d (n 

= 27)  

BAU/ml 

minimall

y 

reduced 

@ 5-49d 

             BAU/ml 

minimall

y 

reduced 

@ 5-49d 

Schubert 

[11] 

none @ 

5m 

ED50 of 

1050 @ 

1m 

ED50 of 

1598 @ 

1m 

       none 

@ 5m 

     Planas [12] 

127 FR 

@ 1.2m 

27 FR @ 

5m 

NT50 

3871 @ 

1m 

 NT50 

8106 

(154 

folds 

increase 

compare

d to 

prevacci

nation) 

 127 

FR @ 

1.2m 

27 FR 

@ 5m 

 NT50 3871  

@ 1m 

      NT50 < 

25 @ 

~1m 

and 43 

@ 5m 

 Schmidt 

[50] 

 22 FR 

@ 10-60 

d 

22 FR @ 

10-60 d 

             Cele [6] 

     49-84 

FR @ 

1m 

4.2-6.5 

FR @ 

2w 

after 

50 μg 

boost 

 ? in 2 

pts 

infect

ed 

betwe

en 

dose 

2 and 

3 

       Doria-Rose 

[55] 

IC50 < 

1:16 in 

11/20 

pts 

 IC50 < 

1:16 in 

1/5 pts 

vaccinat

ed first 

  IC50 < 

1:16 

in 

9/10  

pts 

    IC50 < 

1:16 

in 

20/20 

pts 

 IC50 > 

1:16 in 

7/20 pts 

   Rossler 

[15] 
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and 0/5 

infected 

first 

22.9 FR 

@ 1m 

(20 pts) 

3.3 FR 

@ 1-

11w (23 

pts) 

   22.9 

FR @ 

1m 

(28 

pts) 

3.3 FR 

@ 1-

11w 

(23 

pts) 

         Zeng [17] 

23 FR 7.5 FR  14 FR 13 FR 42 FR 16.7 

FR 

 11 FR        Carreno 

[21] 

15-18 FR     15-18 

FR 

          Syed [54] 

none @ 

6m 

  22 FR @ 

6m 

14 FR @ 

< 1 m 

none 

@ 6m 

  22 FR 

@ 6m 

14- FR 

@ < 

1m 

      Edara [56] 

16w 

apart: @ 

3w  

@ 4m 

(10 pts) 

4w 

apart: @ 

3w  

@ 4m 

(12 pts) 

 

  @ 3w  

@ 4m 

(10 pts) 

            Chatterjee 

[42] 

only in 

5/29 

pts: 25.5 

FR at 

1m 

In29/29 

pts, 

31.8-

fold 

increase 

@ 43d 

compar

ed to 

dose 2 

              Lusvarghi 

[53] 

45 FR      45 FR          7 FR  Sheward 

[18] 

 180 

   181 
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Figure 1  182 

PRISMA flowchart for the current study. 183 

 184 
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Figure 2 185 

Simplified representation of the evolution of nAb-based therapeutics along the course of a pandemic. 186 

 187 

188 
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