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Abstract— Control-based algorithms in the
intensive care unit (ICU) patients have been
developed to deliver a sufficient amount of insulin,
but optimizing the rate of feeding of nutrition in ICU
patients to improve glycemic variability control has
not been done yet. Continuous feeding is commonly
used for nutrition in critically ill patients who cannot
be fed orally to maintain a normal blood sugar
concentration, but optimizing its rate, for these
individuals, is needed to avoid the adverse outcomes
caused by medications such as insulin. This paper
develops a control-based algorithm combines a
predictive control algorithm with a revised nonlinear
compartmental model used in the ICU to design
personalized feeding function rates to improve
patient glycemic variability. Our control algorithm
is robust and acts very quickly to avoid medical
intervention effects.

I. INTRODUCTION

Patients in the Intensive Care Unit (ICU),
including non-diabetic patients, have high glycemic
variability including Hyperglycemia (high blood
sugar > 140 mg/dl) and Hypoglycemia (low blood
sugar < 40 mg/dl), which in turn are associated
with increased morbidity and mortality [1], [2], [3],
[4]. A recent report indicated that Hyperglycemia
occurs in 22%-46% of non-diabetic ICU patients
[5]. Hypoglycemia which occurs in 10.1% of ICU
patients has a more significant concern in ICU
patients [6], [2]. Delivering an inadequate amount
of insulin is the main cause of hypoglycemia [7].

Continuous feeding (enteral nutrition), which
consists of nutritional infusion used at a constant
rate, is selected to be the standard method of
nutrition for patients in ICU [8], [9], with several
benefits, including improves gut function, decreases
infections, and lower mortality [10], but optimizing
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this method has not been done yet. For medical
reasons, the administrated continuous feeding in the
ICU should be initiated at a rate of 10-20 ml/h
and then gradually increased to the target rate [11].
In ICU patients with acute kidney injury, it has
been recommended that to reduce kidney failure
morbidity, those individuals should be placed under
continuous feeding to receive an amount of protein-
restricted by body weight (1.2-2 g/kg body weight
per day) [12].

Under continuous feeding, ultradian oscillations
of plasma glucose, glycemic variability, with
periods of 50-200 min, initially discovered by
Hansen in [13], have been shown in non-diabetic
patients [14], [15]. Damped, slow, and unregulated
glucose oscillations have been also detected in
patients with diabetes. [16].

Multiple models of plasma glucose regulation,
with different levels of and fidelity of physiological
representation, demonstrate ultradian oscillations
under constant feeding [17], [18], [19]. The
underlying mechanisms of these oscillations are
based on different hypotheses.

Control-based algorithms with a closed-loop
action, including Model Predictive Control (MPC),
have been developed to regulate blood glucose
dynamics in ICU settings [20], [21], [22]. All
these closed-loop algorithms have been developed
to deliver insulin without nurse input. This paper
however develops an MPC-based algorithm to
optimize the nutrition feeding rates for ICU patients
and accounts for body size and unknown input
medications such as insulin, the leading cause of
hypoglycemia.

The paper is organized as follows. In Section
II, a revised nonlinear model is introduced. The
proposed control algorithm is described in Section
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III. Our simulation results are demonstrated in
Section IV. A brief discussion is provided in
Section V, and Conclusions and future plans are
included in Section VI.

II. REVISED ICU MODEL DESCRIPTION

The Ultradian model developed by Sturis
et al. [17] is considered in this work. This
nonlinear multi-compartmental model oscillates
under constant feeding due to a delayed insulin
signaling cascade that triggers the liver to produce
hepatic glucose. The original model (see [17], [23])
uses state variables, the total amount of insulin
(Ip mU) and total amount of glucose (Gp mg) in
the plasma compartment, and the total amount of
insulin in the peripheral (interstitial) compartment
(Ii mU); and the delayed insulin signaling to the
liver are given by three cascade of insulin variables
(total amount) H1, H2, and H3 (mU).

Since in the clinical practices measurements are
taken in concentrations, we express the model
in terms of compartment-wise concentrations of
insulin and glucose as these are the relevant
and clinically measured physiological variables.
Additionally, in order to introduce a patient-
specific parameter, we explicitly use the patient size
Ωm (non-dimensional), to express the peripheral
compartment size Vm = ΩmV̂m where V̂m, is the
nominal peripheral (muscle) size in the original
model [17]. For this work all other parameters
match those in [17]. The recasted equations of the
model are given by

dip
dt

=f1(gp) −ΩmE(ip − ii) − ip/tp (1a)

dii
dt

=E(ip − ii) − ii/ti (1b)

dgp
dt

=u+ f5(h3) −Ωmf3(gp)f4(ii) − f2(gp)

(1c)
dh1

dt
=

3

td
(ip − h1) (1d)

dh2

dt
=

3

td
(h1 − h2) (1e)

dh3

dt
=

3

td
(h2 − h3) (1f)

where ip = Ip/Vp, gp = Gp/Vg, ii = Ii/Vm, are
the concentrations of the plasma insulin, plasma
glucose, and interstitial insulin respectively; h1,
h2, and h3 describe the delayed insulin signaling
variables in concentrations, which are computed
as h1 = H1/Vp, h2 = H2/Vp, and h3 =
H3/Vp; u is an exogenous glucose infusion rate to
be controlled; and where Vp, (distribution volume
for plasma insulin) Vg (distribution volume for
plasma glucose), and Vm (interstitial space) are
the compartmental sizes for this model; f1 defines
the insulin production rate, f3f4 define the muscle
absorption rate, f2 defines the brain absorption rate,
and f5 defines the hepatic production rate. The
mathematical equations of these production rates
are given in Table I. The nominal parameters of
the model are depicted in Table II.

Note that because the diffusive constant E, which
appears in (1a) and (1b) is proportional to the
compartmental muscle surface, we scale it by the
relative muscle size Ωm; however, using Vm =
ΩmV̂m, the term Ωm is canceled out in (1b).

TABLE I
THE MODEL PRODUCTION RATES ARE GIVEN BY THESE

FUNCTIONS.

Production rate Function

f1(gp) =
Rm/Vp

(1+e(C1−gp)/a1 )

f2(gp) = Ub(1 − e−gp/C2 )/Vg
f3(gp) = gp/C3

f4(ii) = (Um − U0)

(
(

ii
C4(1+ ˆVm/Eti)

)β

1+(
ii

C4(1+ ˆVm/Eti)
)β

)
f5(h3) =

Rg/Vg

(1+eα(h3−C5))

In Fig. 1, we illustrate the effect of the muscle size
(Ωm: 0.6-1.6) on the glucose dynamics (oscillation
amplitude and feeding rate). We note that increase
the muscle size will require a higher feeding rate
to keep the same blood glucose level, and yields
changes in amplitude of oscillation and oscillation
stability. The next section demonstrates an optimal
design for the feeding rate as the body size changes.
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TABLE II
THE NOMINAL PARAMETERS OF THE ULTRADIAN MODEL, AS

REPORTED IN [23].

parameter value parameter value
Vp(L) 3 Ub(mg/min) 72
V̂m(L) 11 C2(mg/L) 144
Vg(L) 10 C3(mg/L) 1000

E0(L/min) 0.2 U0(mg/min) 40
tp(min) 6 Um(mg/min) 940
ti(min) 100 β 1.77
td(min) 36 C4(mg/L) 80

Rm(mU/min) 210 Rg(mU/min) 180
a1(mg/L) 300 α(L/mU) 0.29
C1(mg/L) 2000 C5(mU/L) 26
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Fig. 1. Top panel: Average glucose oscillation computed
at a steady-state glucose level (125 mg/dl), represented by
average upper peaks (green), average mean value (black), and
average lower peaks (red) (mg/dl), versus different muscle sizes.
Bottom panel: steady-state feeding rates (mg/l/min) computed at
different muscle sizes.

III. MODEL-PREDICTIVE CONTROL
ALGORITHM FOR FEEDING RATE CONTROL

In Fig. 2, we illustrate a schematic diagram
for the proposed closed-loop Model-Predictive
Control (MPC) algorithm. The components of this
algorithm will be described in detail in this section.

The model-based Predictive Control improves
glycemic control in the ICU by providing the
service of counting the effect of current and future
control inputs (i.e., delivered carbohydrate and

Fig. 2. Closed-loop MPC control algorithm with a state
observer scheme (Kalman filter).

insulin rates) on the future outputs (i.e., blood
glucose) by imposing clinical constraints on the
inputs and outputs of the system. It requires solving
an optimal control problem, with chosen input
and output horizons, at each time instant T , after
which only the first control value (i.e., carbohydrate
infusion or insulin rate for the next time instant) of
the optimal input sequence is applied to the actual
system (i.e., patient).

In the ICU, the MPC application has been
illustrated primarily to optimize the insulin
injection [20], [22].

In this work, the delivered glucose infusion flow
is the desired input to be controlled, while insulin
injection and glucose boluses are considered to be
unknown medical interventions.

We refer to the “real system,” in Fig 2, by
real patients, with arbitrary muscle sizes, and these
muscle sizes are unknown to the controller.

In the rest of the paper, we assume that
the nonlinear mathematical model (1a)-(1f), with
nominal size Ωm ≡ 1, is the best model of the
patient dynamics. We linearize this nonlinear model
(Ωm = 1) to generate the internal model (IM), in
Fig 2, around a specific fixed point solution (x̄)
of the nonlinear model. The fixed point solution is
chosen based on the control objective, which means
if the control law is to stabilize the plasma glucose
oscillation at 100 mg/dl, then we approximate the
nonlinear model around 100 mg/dl to create IM.

We use the state-space (around this point) to
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estimate IM’s parameters, but we skip this step as
a future plan of this paper.

At a sampling time Ts (min), the discrete-time
version of IM is given by these model equations

xm(k + 1) =Axm(k) +Bu(k) (2a)
ym(k) =Cxm(k) (2b)

where A, B, C are the model matrices which are
known.

In our control algorithm, the IM is simulated,
using the feeding input u, in parallel with the real
system ”patient” (nonlinear model with unknown
muscle size Ωm to the controller) to produce
a simulated blood glucose ym(k), while, the
nonlinear model (with unknown muscle size)
generates ”real” glucose measurements (i.e., patient
measurements), which take place each Ts (e.g., 5-
15min), denoted by y(k). We use ym(k) to predict
the offset between the real measurements and IM
through d(k) = y(k) − ym(k), which captures
the actual unknown disturbance (medications) and
parameter uncertainty. The mismatch between the
real measurements and IM is significantly reduced
using the Kalman filter by updating the states of
IM with the current measurement information from
the patient. Therefore, accurate predictions using
the updated model will be obtained [24]. Due to
a lack of space, the prediction equations of IM,
ym(k + 1), using the discrete-time model (2), can
be found elsewhere [25].

The predictions of the real system (patient),
y(k + 1), are formulated using the predictions of
IM and the prediction of the offset d(k) through
y(k + 1) = ym(k + 1) + d(k), assuming that
d(k + 1) = d(k). These predictions will be
incorporated within the MPC controller to solve
an open-loop optimization problem online using
a quadratic objective function to generate future
feeding input rates u(k+1). As a close-loop action,
the first value of u is applied in the algorithm at
each sampling time.

The objective function that needs to be

minimized is described as follows:

min
∆Uk

J(y,∆u) =
P∑
i=1

(yk+i − rk+i)
TQ(yk+i − rk+i)

+
M−1∑
i=1

∆uTk+iR∆uk+i (3a)

Subject to
ymin ≤y(k) ≤ ymax (3b)

∆umin ≤∆u(k) ≤ ∆umax (3c)
umin ≤u(k) ≤ umax (3d)

where ∆Uk = [ ∆uk · · · ∆uk+M−1 ], in
which ∆uk+1 = uk+1 − uk−1, denotes a vector
containing all changes in the future feeding rates,
within a given input horizon M . This objective
function comprises a trade-off between allowable
changes in input rates and deviations from the
desired glycemic level. The design parameters of
the MPC are the weighting matrices Q and R, the
control horizon (M ), and the prediction horizon P .

The upper and lower constraints of glucose, ymin

and ymax in (3b), keep the average blood glucose
level of the nonlinear model within this range [40-
140] mg/dl, by optimizing the objective function
(3a) for a given target blood glucose trajectory.

The constraints umin and umax in (3d) limit the
feeding rate u based on ∆u, which itself has given
clinical bounds (∆umin, ∆umax) imposed by the
second constraint. These bounds will guarantee that
the feeding pump does not go too high or too low.
All the above linear inequalities (constraints) are
transformed in a matrix form and incorporated in
the objective function (3a).

IV. SIMULATION RESULTS

In this section, the proposed MPC algorithm
will be implemented and tested in the presence
of measurement noise (white noise with standard
deviation σ = 5 mg/dl) to improve glycemic
variability, avoid a simulated insulin intervention,
and track control objectives (glucose trajectories).
The minimum glucose level implemented in the

MPC algorithm was ymin = 60 mg/dl, which is a
slightly above the hypoglycemia level (40 mg/dl),
and the maximum glucose values was ymax = 140
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Fig. 3. Top panel: a comparison between glycemic variability
(oscillation) before and after control MPC is shown. The
oscillation was stabilized at 125 mg/dl (objective control) when
the MPC was turned on at 500 min. At 800 min, the control
objective was changed to track 110 mg/dl. Bottom panel: feeding
rate of nutrition before and during the control.

mg/dl. The maximum constraints of the feeding
rate were selected as ∆umin = 0, ∆umax = 1
mg/dl/min, while, the limits of the feeding input
were umin = 0, umax = 2.5 mg/dl/min [18].

The IM was constructed by approximating
the nonlinear model around the control objective
(glucose level) 125 mg/dl, with the nominal muscle
size (Ωm0 = 1).

The parameters of the MPC algorithem were
selected to achieve a good control performance.
The lengths of prediction and input horizons were
chosen to be P = 15 and M = 5, while, the
weighting matrices were R = 5, Q = 1.

To show the effect of the MPC control on
glycemic variability around the plasma glucose
125 mg/dl, we simulate the nonlinear model, with
nominal muscle size, using an average feeding
function of nutrition at 2.5 mg/dl/min, to produce
oscillatory glycemic variability behavior as shown
in Fig. 3. The MPC was turned on at 500 min to
stabilize the plasma glucose around 125 mg/dl and
tracks 110 mg/dl (second control objective) and 125
mg/dl.

The administration of medication (insulin
injection) can also shift blood glucose levels. To
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Fig. 4. Top panel: performance of the MPC control algorithm
to maintain plasma glucose at a target level (control objective)
against unknown insulin intervention to the real system (patient),
applied at 1000 min; Bottom panel, feeding rate was adjusted by
the controller to overcome the reduction in the plasma glucose
by the insulin injection.

test the performance of our control algorithm by
adding an insulin infusion (unknown to the MPC)
to the real system at 1000 min which illustrated in
Fig 4. The injected insulin shifted the amplitude of
the plasma glucose. As a consequence, the MPC
responds quickly by increasing the feeding rates
to manigate the shift in the glucose amplitude, and
bring it back to the same amplitude level.

To generate personalized feeding rates when the
muscle size changes, the MPC control algorithm
was simulated with the real system (patient) (IM
computed at a fixed-point solution, 105 mg/dl) with
different muscle sizes (muscle size increased by
25% and 75%), to track a target glucose trajectory
(105 mg/dl, 95 mg/dl, 105 mg/dl), as shown in Fig
5 and 6, upper panels.

To provide a basis for comparison between the
feeding rates proposed by the MPC when the
muscle size was increased, 25% (Ωm = 1.25) and
75% (Ωm = 1.75) respectively, we draw a horizontal
line at the rate 1 mg/dl/min as shown in Fig 5 and 6,
lower panels. The MPC proposed different feeding
rates based on the muscle size to achieve the same
control objective.
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Fig. 5. Glucose variability is stabilized at 105 mg/dl (dots
magenta), using the MPC with IM computed at 105 mg/dl,
while, the oscillation is kept within between 70-105 mg/dl for
95 mg/dl control objective. Lower panel: the proposed feeding
function from the MPC algorithm (red), with parameters: muscle
sized increased by 25% (Ωm = 1.25), R = 5.

V. DISCUSSION

The ultradian model was recasted to track the
concentrations across the compartments, and a
relative body size was implemented to account for
patient’s body size variability.

The MPC stabilized the plasma glucose at 105
mg/dl for the first control objective (105 mg/dl).
Simultaneously, the MPC kept glycemic variability
in both cases ( Ω = 1.25 and Ω = 1.25 ) within
the same variability range (70-105 mg/dl) without
stabilizing the oscillation to 95 mg/dl because IM
was made at 105 mg/dl. To stabilize the plasma
glucose at 95 mg/dl, the IM should be built using
95 mg/dl, as a fixed point solution of the nonlinear
model.

The proposed model-based predictive control
with state estimation, using Kalman filter, has
several advantages over standard MPC. The
patient’s information provided to the MPC
controller yields tighter control and adjust closed-
loop performance. Utilizing the internal model has
several benefits that the controller can estimate
the states of the nonlinear model, formulate the
predictions, and solve a quadratic optimization
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Fig. 6. Glucose variability (with muscle sized 75% increased,
Ωm = 1.75) is stabilized at 105 mg/dl (dots magenta), using the
MPC with IM computed at 105 mg/dl, while, the oscillation is
kept within 70-105 mg/dl for 95 mg/dl control objective. Lower
panel: the proposed feeding function for the MPC algorithm
(red), , R = 10.

problem online.
The MPC control algorithm was designed to

produce optimal feeding infusion rates that keep the
glucose oscillations within the desired range (40-
140 mg/dl) while avoiding medical interventions
as unknown inputs to this model. The produced
feeding rates are personalized rates based on the
body size.

Although the MPC overcame the unknown
medication disturbances, glucose, and insulin
injections, the insulin’s effect on the oscillations
was more significant and stayed for a longer time.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

A successful model-based predictive control
algorithm was developed for glycemic control.
Our control algorithm acts quickly and improves
glycemic variability at a desired plasma glucose
level. This MPC algorithm was designed to produce
personalized optimal feeding infusion rates based
on patient’s body size, while avoiding unknown
medical interventions. The algorithm’s performance
proves its robustness as an essential feature for
possible use in a real-life ICU setting.
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B. Future Works

Future work is directed to implement time-
varying internal models to achieve multiple control
objectives, a parameter estimate approach (such as a
moving horizon estimator (MHE)), and incorporate
more mechanistic glucose models, thus leading
to further improvement in the closed-loop control
algorithm’s performance.
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