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Summary 
 
The Trøndelag Health Study (HUNT) is a population-based cohort of ~229,000 individuals recruited in four 

waves beginning in 1984 in Trøndelag County, Norway. ~88,000 of these individuals have available genetic 

data from array genotyping. HUNT participants were recruited during 4 community-based recruitment waves 

and provided information on health-related behaviors, self-reported diagnoses, family history of disease, and 

underwent physical examinations. Linkage via the Norwegian personal identification number integrates 

digitized health care information from doctor visits and national health registries including death, cancer and 

prescription registries. Genome-wide association studies of HUNT participants have provided insights into the 

mechanism of cardiovascular, metabolic, osteoporotic and liver-related diseases, among others. Unique 

features of this cohort that facilitate research include nearly 40 years of longitudinal follow-up in a motivated 

and well-educated population, family data, comprehensive phenotyping, and broad availability of DNA, RNA, 

urine, fecal, plasma, and serum samples. 
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Background 

Norway, like other Nordic countries, has characteristics that are uniquely favorable for recruitment to 

population studies, establishing biobanks, and identifying clinical outcomes and prospective disease 

trajectories. This includes a unique personal identification number applied throughout the life span, a universal 

and digitized public health care system, and accessible harmonized electronic health records. In addition, 

seventeen mandatory and validated national health registries are used for health analysis, administration, and 

emergency preparedness, and fifty-two national medical quality registries provide disease specific data on 

diagnosis and treatment parameters. Finally, Norwegians are an altruistic, highly motivated population for 

participating in biomedical research, as reflected in survey response rates of up to 89%. These factors have 

supported the establishment and maintenance of the Trøndelag Health Study (HUNT), a large population-

based prospective Norwegian cohort, linked to registries and biobanks dating back more than 50 years (Figure 

1).  

To understand the genetic basis of diseases, as well as follow individuals with genetic and 

epidemiological risk factors in a well-ascertained county in Norway, we established a comprehensive 

collaboration in 2005 between the HUNT study at the Norwegian University of Science and Technology, 

Norway and the University of Michigan, USA. This paper presents the history and status of this collaboration by 

describing the study population, the strategy incorporating genotyping, sequencing, and imputation-based 

approaches in HUNT, the vast phenotype data collected by decades of HUNT researchers, the linkage to the 

digitized public health care system and key findings to date. 
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Figure 1: The Trøndelag Health Study (HUNT), Trøndelag, Norway. The country of Trøndelag is shaded 

light blue and the orange point indicates the location of the HUNT Research Center at Levanger. 

 
 
 
 
Study population 
 

HUNT is an ongoing population-based health study in Trøndelag County, Norway. The study collects 

health-related data from questionnaires, interviews and clinical examinations from individuals within this 

geographical region (Figure 2). More than 229 000 adults (20 years or older at recruitment) have participated 

in the study to date, of whom 95 000 have provided at least one biological sample 

(https://www.ntnu.edu/hunt/hunt-samples)1-4. The periodic survey design includes four recruitment waves. 

HUNT1 (1984-86), HUNT2 (1995-97), HUNT3 (2006-08) and HUNT4 (2017-19) concentrated primarily on the 

North-Trøndelag area, where all adults (age ≥20 years) were invited. In addition, HUNT4 expanded to collect 

basic questionnaire data from the adult population of South-Trøndelag (105,797 additional participants)3. ~19 

000 adults have participated in all four HUNT waves, thus having longitudinal questionnaire and physical exam 

information spanning over 35 years. Complementing the surveys in adult participants, four separate Young-

HUNT surveys gathered data from ~25 000 adolescents in junior high and high school, concurrent with 

HUNT2-4. No genotyping has been performed on Young-HUNT, however 4 212 have sequentially participated 

in the adult version of HUNT. The HUNT Study has a high level of participation (ranging from 54% to 89% 

between surveys among those invited) making the cohort a good representative of the general Norwegian 

population. The HUNT and Young-HUNT cohorts are described in more detail elsewhere1-5.  
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Figure 2: Sample sizes across the HUNT1-4 surveys and details of key data and biological samples. 

DNA: Deoxyribonucleic acid, HUNT: Trøndelag Health Study, RNA: Ribonucleic acid 

 

Genotyping and imputation study design in HUNT 

 

~88 000 individuals provided DNA for medical research during at least one of the HUNT recruitment 

periods. Initially, our efforts were focused on identifying genetic variants associated with myocardial infarction 

(MI)6-8. Towards this goal, we genotyped exome variants and performed low-pass whole-genome sequencing 

(4.7x average coverage) in 2014 on 2,201 samples from HUNT2 and HUNT3 (HUNT-WGS) (Supplementary 

Table 1), including early-onset MI cases and equal numbers of sex- and age-matched controls. Although no 

novel significant associations were found, likely due to the limited sample size, this set of low-pass sequences 

provided important insights into genetic variants present in the Norwegian population and contributed 

Norwegian reference sequences to the Haplotype Reference Consortium (HRC) imputation panel9. We next 

undertook genome-wide genotyping on all HUNT2-3 participants (n=71 860) with available DNA (Figure 3). 

Motivated by a goal of capturing high-quality, common- and low-frequency and Norwegian-specific variants, we 

used a variety of approaches to observe or estimate genotypes: 1) direct genotyping using standard and 

customized HumanCoreExome arrays from Illumina; 2) genotyping and imputation with a merged HRC and 

HUNT-WGS imputation panel; and 3) imputation with the TOPMed imputation panel (Figure 4). After 

genotyping 12 864 with standard HumanCoreExome arrays (HumanCoreExome 12 v1.0 and v1.1), we 

performed genotyping on the remaining samples using a customized HumanCoreExome array (UM HUNT 

Biobank v1.0) which included protein-altering variants observed in HUNT-WGS. This resulted in genotyping 
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358 964 polymorphic variants. We next used the 2 201 sequenced samples (HUNT-WGS) for joint imputation 

with the HRC panel10. We previously showed that imputation with a HUNT-specific reference panel improved 

imputation of low-frequency and population-specific variants compared to either using the 1000 Genomes or 

HRC reference panels alone11. Lastly, we imputed 25 million variants from the TOPMed imputation panel 

(minor allele count greater than 10), which resulted in slightly lower imputation quality compared to the 

population-specific reference panel but captured a larger number of variants (Supplementary Figure 1). 

These two imputed datasets can be used separately in downstream analysis; we recommend using the HRC 

and HUNT-WGS imputation for the investigation of the Norwegian specific variants. Together, the imputations 

resulted in 33 million variants in 70 517 individuals from HUNT2 or HUNT3 of which 3.3 million variants are not 

found in UK Biobank. Finally, 18 722 new samples from HUNT4 have recently been genotyped using the same 

approaches (HumanCoreExome array, UM HUNT Biobank v2.0) and following imputation will create a new, 

larger data freeze of ~88,000 individuals from HUNT2-4. Further details of the quality control and imputation in 

HUNT can be found in the Supplementary Note. 

 
Figure 3: Genotyped samples from HUNT available from the different HUNT surveys (n=88 615). 

HUNT: Trøndelag Health Study 
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Figure 4: Genotyping and imputation-based approach in HUNT 

HUNT: Trøndelag Health Study, HRC: Haplotype Reference Consortium, k: Thousand, M: Million, TOPMed: 

Trans-Omics for Precision Medicine, WGS: Whole-genome sequencing 

 
Phenotypes  

 

A broad range of phenotypes are available for HUNT participants based on laboratory tests, clinical 

examinations, and self-reported questionnaires. These include non-fasting blood lipids and glycaemic traits; 

history (including age of diagnosis) of a range of diseases including cardiovascular events; basic 

demographics including sex and participation age; anthropometrics including weight, height, BMI, and waist-to-

hip ratio; blood pressure measurements; and lifestyle information including smoking status (Table 1). HUNT 

data categories have been previously described2, 3, and are described in detail on the HUNT databank website 

(https://www.ntnu.edu/hunt/databank). Importantly, many measurements and questionnaire items have been 

intentionally kept identical or similar across HUNT surveys to enable longitudinal analyses.  
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Table 1: HUNT cohort demographics for all attendees at HUNT1-4 clinical examinations (n=123 219), and among those genotyped (n=88 

615). 

 All (HUNT1-4)  Genotyped (HUNT2-4)  

  N  Total  Male  Female  N  Total  Male  Female  

Number of Individuals (%)  123 219    
59 121 

(48%)  
64 098 

(52%)  
88 615    

41 482  
(47%)  

47 133  
(53%)  

Age at ascertainment, yrs   
(range 18-90+; mean ± SD)*  

123 219  43.8 ± 17.7  43.8 ± 17.3  43.9 ± 18.0  88 566  
39.1 ±   
14.0  

39.2 ± 

13.8  
39.0 ±   
14.1  

Follow-up time, years  123177  22.4 ± 12.8  
22.2 ± 

12.9  
22.5 ± 

12.7  
88548  24.1 ± 12.4  

24.2 ± 

12.4  
24.0 ± 

12.5  

Quantitative Measurements (mean ± SD) Ş  

    BMI, kg/m2  119 888  26.8 ± 4.6  26.9 ± 4.1  26.8 ± 5.1  88 345  27.2 ± 4.7  27.3 ± 4.1  27.0 ± 5.1  

    SBP **, mm Hg  120 448  136.8 ± 23.7  138 ± 21.2  135 ± 25.6  88 420  
133 ±   
21.3  

135 ± 19.2  131 ± 22.8  

    LDL-C #, mg/dL  93 835  3.4 ± 1.1  3.3 ± 1.1  3.4 ± 1.1  87 163  3.3 ± 1.1  3.3 ± 1  3.4 ± 1.1  

    Creatinine, µmol/l  95 361  80.3 ± 22  
88.9 ± 

22.7  
72.7 ± 

18.3  
88 527  

79.6 ±   
22.0  

88.3 ± 

22.9  
72.0 ±   
18.0  

    Glucose ##, mmol/L  78 429  5.6 ± 1.7  5.7 ± 1.8  5.5 ± 1.6  71 790  5.6 ± 1.7  5.7 ± 1.8  5.5 ± 1.6  

    Thyroid stimulating hormone, 

mIU/L  
71 213  1.4 ± 1.5  1.5 ± 1.5  1.4 ± 1.6  70 541  1.4 ± 1.5  1.5 ± 1.5  1.4 ± 1.6  

   Blood haemoglobin, g/dL  54347  14.6 ± 1.3  15.4 ± 1.2  14.0 ± 1.0  51 892  31 ± 1.7  31.1 ± 1.6  30.8 ± 1.8 

  FEV1 18 854 3.1 ± 1.0 3.6  ± 1.1 2,7 ± 0.8 17687 3.1 ± 1.0 3.6 ± 1.1 2.7 ± 0.8 

  BMD total hip T-score HUNT3
###

 

  
11435 0.1  ±0.9 - 0.1 ± 0.9 0.2 ±0.9 11281 0.1 ± 0.9 -0.1 ± 0.9 0.2 ± 0.9 

*Age at first attendance of HUNT is reported. ŞMeasurements at last attendance of HUNT is reported. **Mean of first and second measurements in HUNT1 and 

mean of second and third measurement in HUNT2,3, and 4. #
Friedewald equation was used to estimate LDL-C. ##Non-fasting glucose. ##~70% of participants from 

HUNT4 also have BMD measured in total hip which are undergoing quality control. 
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FEV1:Forced expiratory volume in the first second, HUNT: Trøndelag Health Study, BMI: Body mass index, SBP: Systolic blood pressure, LDL-C: Low-density 

lipoprotein cholesterol, SD: standard deviation
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Linkage to regional and national health registries 

 

Using the unique personal identification number given to all Norwegian citizens allows for longitudinal 

follow-up by linkage between HUNT data, regional and national registries and electronic health records. 

Norway currently has 17 national health registries (https://helsedata.no/no/) that are mandatory and cover the 

entire population (Supplementary Table 2). Commonly used national registries linked with HUNT include the 

Norwegian Cause of Death Registry (established 1951), the Cancer Registry of Norway (established 1952), the 

Medical Birth Registry of Norway (established 1967), and the Norwegian Prescription Database (established 

2004). Another 52 national disease-specific medical quality registries hold detailed information on treatment 

and responses at an individual level (https://www.kvalitetsregistre.no/registeroversikt) (Supplementary Table 

2). Electronic health records from the local hospitals hold International Statistical Classification of Diseases and 

Related Health Problems (ICD) codes back to 1987. Potential linkage to non-health related registries expands 

the data resource, that among others includes Statistics Norway, recording income and wealth statistics for 

individuals and households, and the Norwegian Armed Forces Health Registry (https://helsedata.no/no/). 

Together, the listed registries provide opportunities to integrate a breadth of data from multiple time points to 

obtain high quality phenotypes and related information on, for example, environmental and socioeconomic 

factors. Time-stamped data allows studies of disease development and progression. Some selected disease 

endpoints are presented in Table 2. 

 

Table 2: ICD codes captured in the local hospital register from 1987 to 2021 for selected diseases and the 

observed case numbers in genotyped HUNT participants.* 

 

ICD Chapter ICD-9 ICD-10 Cases genotyped 

Infectious and parasitic diseases    

COVID-19, virus identified  U07.1 39 

Personal history of COVID-19  U08 112 

Post COVID-19 condition  U09 8 

Neoplasms    

Malignant neoplasm of colon, rectosigmoid 

junction, rectum, anus and anal canal 

153, 154 C18, C19, 

C20, C21 

3291 

Malignant neoplasm of bronchus and lung 162 C34 2521 

Malignant melanoma of skin 172 C43 2345 

Malignant neoplasm of breast 174, 175 C50 2047 

Malignant neoplasm of prostate 185 C61 3153 

Endocrine, nutritional and metabolic 

diseases 

   

Hypothyroidism 240, 241, 242, 243, 

244, 245 

E00, E01, 

E02, E03 

7250 

Type 2 diabetes mellitus 250 E11 11444 
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Mental and behavioural disorders    

Dementia 290, 294, 331 F00, F01, 

F02, F03, 

G30, G31.1 

4509 

Mood (affective) disorders 296, 298, 300, 301, 

311 

F30, F31, 

F32, F33, 

F34, F38, 

F39 

9267 

Diseases of the nervous system    

Parkinson’s disease 332, 333 G20, G21, 

G22, F02.3 

5124 

Epilepsy 345 G40 11480 

Migraine 346 G43 1728 

Diseases of the eye and adnexa    

Glaucoma 365 H40 4223 

Diseases of the circulatory system    

Essential (primary) hypertension 401 I10 18263 

Angina pectoris 413.9 I20 8388 

Acute myocardial infarction 410 I21 10144 

Atrial fibrillation and flutter 427 I48 14538 

Heart failure 428 I50, I09, 

I11 

7273 

Intracerebral hemorrhage 431, 432 I61 2901 

Aortic aneurysm and dissection 441 I71 2491 

Diseases of the respiratory system    

Chronic obstructive pulmonary disease 496 J44.8, 

J44.9 

6529 

Asthma 493 J45 6511 

Post-inflammatory pulmonary fibrosis 515 J84.1, 

J84.8 

954 

Diseases of the digestive system    

Crohn’s disease 555 K50 586 

Ulcerative colitis 556 K51 2288 

Coeliac disease 579 K90.0 1152 

Diseases of the skin and subcutaneous 

tissue 

   

Atopic dermatitis 691.8 L20 1067 

Psoriasis 696 L40 3135 

Diseases of the musculoskeletal system 

and connective tissue 

   

Gout 274 M10 6178 

Ankylosing spondylitis 720 M45 2064 

Diseases of the genitourinary system    
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Chronic kidney disease 585 N18 4668 

Pregnancy, childbirth and the puerperium    

Gestational hypertension 342 O13 1666 

Prescription data 
#
    

Low dose aspirin - - 22500 

Statin - - 2200 

*Numbers are from a data query (August 8, 2021) from the Nord-Trøndelag Hospital Trust including Namsos 

and Levanger Hospitals of participants selected for genotyping from HUNT2-4. The register is ongoing and 

therefore the number of cases continue to increase over time. 
#Approximate numbers from the prescription register and restricted to those genotyped in HUNT2-3 only. 

HUNT: Trøndelag Health Study, ICD: International Statistical Classification of Diseases and Related Health 

Problems 

 
Analytical approaches with related samples 
 

97% of HUNT participants are of Norwegian ancestry4. Using principal components of ancestry 

projected onto the Human Genome Diversity Project, we typically exclude samples of non-European ancestry 

(<2%) (Supplementary Figure 2) due to limited power. We have observed fine-scale differences between 

North- and South-Trøndelag and between individuals born closer to the coast versus the border with 

Sweden12. Additionally, because of high ascertainment from a single county in Norway (Trøndelag), there are 

many related individuals within the cohort. 79 551 (89%) out of 88 615 HUNT2-4 participants have at least one 

2nd degree or closer relative who also participates in HUNT (Supplementary Figure 3, Supplementary Table 

3). High degree of participant relatedness in the dataset on one hand allows for unique data-analysis methods 

using nuclear or extended families, but can result in bias when using methods that assume unrelated 

individuals or power loss if related individuals are exclude. An early effort to use extended families and genetic 

data in HUNT was for the analysis of rare coding variants13, where family samples can provide more power to 

detect associations when sample sizes were limited and only a modest fraction of all trait-associated variants 

were identified13. 

Previously, methods had been developed to account for relatedness for analysis of quantitative traits14, 

but methods to properly account for relatedness and control for unbalanced case-control ratios for binary traits 

were lacking. We therefore developed statistical methods to allow for the analysis of all individuals, and to 

control for case-control imbalance of binary phenotypes, which is commonly observed in biobanks such as 

HUNT. These methods, which are computationally efficient in biobank-scale data, allowed us to perform 

association testing in HUNT for both single variants (using SAIGE) and gene-based burden tests (using 

SAIGE-GENE), while accounting for sample relatedness with a sparse identical by state (IBS) sharing matrix13, 

15-17. These methods account for case-control imbalance of binary phenotypes, typical in a population-based 

sample, by using the saddlepoint approximation to calibrate unbalanced case-control ratios in score tests 
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based on logistic mixed models [Add SAIGE reference]. We demonstrated a vast improvement in reducing 

type I error rates when analyzing unbalanced case control ratios with SAIGE in HUNT. For example, venous 

thromboembolism with 2 325 cases and 65 294 controls and a case:control ratio of 0.036 had substantial 

inflation of type I error with methods available prior to the development of SAIGE (Supplementary Figure 4). 

To demonstrate the application of SAIGE-GENE, we investigated 13 416 genes, with at least two rare 

(MAF�≤�1%) missense and/or stop-gain variants that were directly genotyped or imputed from the joint HRC 

and HUNT-WGS reference panel among 69 716 Norwegian samples from HUNT2-3 with measured high-

density lipoprotein. We identified eight genes with p-values below the exome-wide significance threshold 

(P�≤�2.5�×�10−6), seven of which remained significant after conditioning on nearby single-variant 

associations, suggesting independent rare coding variants within these genes16. Importantly, using SAIGE and 

SAIGE-GENE, we were able to use all samples, account for sample relatedness case-control imbalance, and 

maintain well controlled type I error rates. 

A traditional way of using related samples is linkage analysis, which however has computational 

challenges in the era of whole-genome genetics. To allow for linkage testing in datasets with millions of genetic 

markers, faster and computationally scalable linkage analysis method have been developed, Population 

Linkage18. Population Linkage uses a Haseman-Elston regression (originally used for sibling pair linkage 

analysis) to estimate variance components from pairwise relationships and IBD estimates. Using HUNT data, 

Zajac et. al. observed 25 significant linkage peaks with LOD > 3 across 19 distinct loci for the four traits (high-

density lipoprotein, low-density lipoprotein, total cholesterol and triglycerides), where 5 peaks with LOD > 3 

were not replicated at genome-wide significance in a genome-wide association study (GWAS) of 359,432 

genotyped variants in HUNT. However, after imputing the dataset with the HRC and HUNT-WGS reference 

panel to cover more variants or meta-analysis in GLGC, significant associations in all 5 linkage peaks were 

observed. This study demonstrates one of the benefits of linkage analysis over GWAS, that is the ability to test 

for linkage in regions that are difficult to genotype such as rare variants, structural variants, copy number 

variants or variants in highly repetitive regions, as long as identical by descent segments in the region can be 

identified18. Finally, linkage analysis may improve statistical power when investigating rare risk variants which 

segregate within families and reduce confounding effects of population stratification. 

 The high degree of relatedness in the HUNT Study participants has enabled analysis methods are 

tailored to this study design. These include GWAS by proxy19, 20, in which the phenotypes of non-genotyped 

family members of genotyped HUNT participants can be used to identify proxy-cases, individuals with a 

proportion (0.5 for first degree relatives) of the genetic risk of cases. These proxy-cases can be appropriately 

modelled to increase statistical power in GWAS. For example, the power to detect an allele with an odds ratio 

of 1.1 and MAF of 0.21 at an alpha of 5x10-8 increases from 0.419 to 0.644 when proxy-cases are 

appropriately modelled instead of used in controls as in standard GWAS (Supplementary Figure 5). 
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Genetic discoveries from HUNT 
 

The wealth of phenotypic and genetic data available in the HUNT cohort has led to the discovery of 

many new genetic associations across a broad range of traits (Table 3). Early genetic studies of HUNT 

participants used exome arrays and focused on cardiovascular disease. We identified a novel coding variant in 

TM6SF2 associated with total cholesterol, MI, and liver enzymes6 and replicated known MI associations at the 

9p21 locus and a low-frequency missense variant in the LPA gene (p.Ile1891Met)7. Following the genotyping 

of nearly 70 000 participants in HUNT2 and HUNT3 and the development of a combined HRC and HUNT-

WGS imputation reference panel, we extended our analyses to a genome-wide search (Figure 5). Through 

imputation of indels called from low-pass HUNT-WGS, we discovered a rare mutation in the MEPE gene, 

enriched in the Norwegian population (0.8% in HUNT, 0.1% in non-Finnish Europeans), that was associated 

with low forearm bone mineral density and increased risk of osteoporosis and fractures21. Although this region 

had been previously identified as associated with bone mineral density22, the association in HUNT with 

replication in the UK biobank23 pin-pointed MEPE as the likely causal gene in the region by identifying an 

insertion/deletion polymorphism that likely resulted in a loss-of-function protein. In another study we paid 

special attention to loss-of-function mutations associated with favorable blood lipid profiles (reduced LDL 

cholesterol and reduced CAD risk) which were not associated with altered liver enzymes or liver damage. We 

additionally found one elderly individual with homozygous ZNF529 loss-of-function variant showing no signs of 

cardiovascular disease or diabetes, suggesting that the full knock-out of this gene is viable. This highlighted 

ZNF529 as a potential therapeutic target for lipids24 identified from sequencing and custom content genotyping.  

 

On top of the association studies performed using HUNT data only, we have contributed to many 

international consortium efforts aimed at aggregating GWAS data across cohorts. By performing GWAS meta-

analyses that included HUNT and other cohorts, efforts driven by our research team have identified genetic 

variants associated with atrial fibrillation which may act through a mechanism of impaired muscle cell 

differentiation and tissue formation during fetal heart development25 and cardiac structural remodeling26; 

variants associated with estimated glomerular filtration rate exhibiting a sex-specific effect27, 28; and variants 

associated with thyroid stimulating hormone that revealed an inverse relationship between TSH levels and 

thyroid cancer29. Later studies using the TOPMed reference panel30 identified variants associated with 

circulating cardiac troponin I level and investigated its role as a non-causal biomarker for MI using Mendelian 

randomization31, and identified variants associated with iron-related biomarker levels and explored their 

relationship with all-cause mortality32.  

  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 25, 2021. ; https://doi.org/10.1101/2021.12.23.21268305doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.23.21268305


 

  
 

 Table 3: Genetic discoveries across HUNT genotyping and analysis strategies.  

Strategy 
Frequency range/ 

Number of 
variants 

Benefits Exemplary  
papers 

Genotyping with 
custom exome 

content designed 
from HUNT 
sequenced 

samples (UM 
HUNT Biobank 

Array) 

Rare-Common/ 
80,137-358,964 

Identify low-
frequency variants 
not amenable to 
imputation-based 

approaches 

Identified likely causal gene, TM6SF2, 
associated with TC and MI33 

Found LOF variant in ZNF529 that leads 
to lower LDL-C24 

HRC and HUNT-
WGS Imputation 

from Human 
CoreExome Array 

Low-Common/ 
22 million 

Include population-
specific variants 

through improved 
imputation 

 Population-enriched variant in MEPE 
pinpoints causal gene for fracture risk21 

Identified variants associated with thyroid 
function29, kidney function27 serum 
PCSK934 and atrial fibrillation25, 26 

TOPMed 
Imputation from 

Human 
CoreExome Array 

Low-Common/ 
25 million 

Expand number of 
available variants for 
association testing 

Identified variants associated with 
troponin and serum iron in the general 

population31, 32 

Family-based 
design,  

> 15,000 sibling 
pairs, >35,000 

parent-offspring 

Any/ 
10-1000 

Improve effect size 
estimates and test 
traits among un-
studied relatives 

Introduced new analysis methods, 
including SAIGE35, within-family 

Mendelian randomization and GWAS36, 37 

Mendelian 
Randomization 

Any/ 
10-1000 

Identify causal links 
between 

environmental factors 
(genetically 

determined traits) 
and outcomes 

Explored the role of lipids and 
apolipoproteins on kidney-function38, 39 

Demonstrated an inverse association 
between thyroid stimulating hormone and 

thyroid cancer29 

Note: Rare variants <1% minor allele frequency (MAF), Low frequency variants 1-5% MAF, Common variants 

>5% MAF 

HUNT: Trøndelag Health Study, HRC: Haplotype Reference Consortium, LDL-C: Low density lipoprotein 

cholesterol, LOF: Loss-of-function, MI: Myocardial infraction, TC: Total cholesterol, TOPMed: Trans-Omics for 

Precision Medicine, UM: University of Michigan, WGS: Whole-genome sequencing 
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Figure 5: Overview of HUNT genetics, phenotypic resources and discoveries. 

EHR: Electronic health records, GWAS: Genome-wide association study, HUNT: Trøndelag Health Stud

WGS: Whole genome sequencing, HRC: Haplotype Reference Consortium, LDL-C: Low density lipoprote

cholesterol, LOF: Loss-of-function, TOPMed: Trans-Omics for Precision Medicine 

 
Causal inference and family effects 
 

The high degree of relatedness in the HUNT Study offers a unique opportunity to use family-base

designs to investigate causal associations. Mendelian randomization (MR), which uses genetic variants 

instrumental variables to investigate modifiable (non-genetic) factors, was first proposed using parent-

offspring40. Alleles that are inherited from each parent are randomly determined during the meiotic proce

This random allocation is essential to providing reliable comparisons in MR studies. However, due to the

of genotyped family data, previous studies applied MR on the population-level, where the random alloca

alleles is only approximate. We were able to use the ~15 000 families in HUNT to perform MR as origina

proposed - in family-based designs36. Using this approach in HUNT, we showed empirically that MR esti

from samples of unrelated individuals for the association of taller height and lower BMI increase educatio

attainment, were likely induced by population structure, assortative mating or dynastic effects. We obser

clear associations in within-family MR analyses in HUNT or in a replication cohort of 222 368 siblings fro

23andMe36. This approach has since grown in popularity and, together with HUNT, many cohorts now 

contribute to the investigation of causal associations with family-based designs37. 

 
Further leveraging the family structure information in HUNT, we have performed and have future

opportunities to investigate causal effects between family members, for example parent-offspring effects

assortative mating and sibling effects43. These study designs have not been previously possible due to t

 

udy, 

otein 

sed 

ts as 

cess. 

the lack 

cation of 

inally 

stimates 

ational 

erved no 

from 

re 

cts41, 42, 

o the lack 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 25, 2021. ; https://doi.org/10.1101/2021.12.23.21268305doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.23.21268305


 

  
 

of genotyped family data and this has both limited causal inference (as mentioned above) and the ability of 

typical GWAS to distinguish between direct and indirect genetic effects37. HUNT data allows for study designs 

to disentangle these sources of genotype-phenotype associations in humans. In one such example, we used 

26 057 mother–offspring and 9 792 father–offspring pairs to investigate whether adverse environmental factors 

in utero increased future risk of cardiometabolic disease in the offspring. We observed that adverse maternal 

intrauterine environment, as proxied by maternal SNPs that influence offspring birthweight, were unlikely to be 

a major determinant of late-life cardiometabolic outcomes of the offspring41. 

 
Contribution to collaborative studies 
 

We contribute to genetic studies worldwide through participation in consortia focused on a variety of 

diseases including cardiovascular disease44, 45, lipids46, 47, type 2 diabetes48, osteoporosis49, decline in kidney 

function50, Alzheimer’s disease51, bipolar disease52, intracranial aneurysms53, insomnia54, respiratory health55 

and sleepiness56. We also contributed HUNT data to studies of anthropometric traits57, alcohol and nicotine 

use58, 59, COVID-1960, phenome-wide discovery61, and genetic risk prediction62, among others. We believe that 

team science by consortia61 fulfills the goals of the HUNT study and moves the science fastest towards new 

discoveries and improved human health. 

 
Summary 
 
 Together, the multifaceted genetic discovery strategy incorporating genotyping, sequencing, and 

imputation-based approaches in HUNT has aided the identification of likely causal genes and variants for 

disease and human traits. It has also proved to be a valuable resource for genetically informed methods of 

causal inference, supporting the identification of modifiable risk factors. We owe this success to the willingness 

and high participation rates of the people of Trøndelag, the vast phenotyping collected by decades of HUNT 

researchers, and access to digitized public health care systems. We anticipate that the rich data collection will 

continue to be a unique dataset for future opportunities in longitudinal and family-based designs, genetic 

discoveries, Mendelian randomization, meta-analysis and polygenic score validation, well into the future. 

 
HUNT Data Access 
 

Researchers associated with Norwegian research institutes can apply for the use of HUNT data and 

samples with approval by the Regional Committee for Medical and Health Research Ethics. Researchers from 

other countries may apply if collaborating with a Norwegian Principal Investigator. Information for data access 

can be found at https://www.ntnu.edu/hunt/data. The HUNT variables are available for browsing on the HUNT 

databank at https://hunt-db.medisin.ntnu.no/hunt-db/. Use of the full genetic data set requires the use of an 

approved secure computing solution such as the HUNT Cloud (https://docs.hdc.ntnu.no/). Data linkages 

between HUNT and health registries require that the principal investigator has obtained project-specific 
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approval for such linkage from the Regional Committee for Medical and Health Research Ethics, Norway and 

each registry owner. GWAS summary statistics from publications including HUNT are available from NTNU 

Open Research Data (https://dataverse.no/dataverse/root) and the Willer lab 

(http://csg.sph.umich.edu/willer/public/). 

Ethics 

The genotyping in HUNT and work presented in this cohort profile was approved by the Regional Committee 

for Ethics in Medical Research, Central Norway (2014/144, 2018/1622, 152023). All participants signed 

informed consent for participation and the use of data in research. 
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