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Abstract 

Purpose To validate commercially available general-purpose artificial intelligence 

(AI)-based software for detecting airspace opacity in chest radiographs (CXRs) of 

COVID-19 patients. 

Materials and Methods We used the ieee8023-covid-chestxray-dataset to validate 

commercial AI software capable of detecting “Nodule/Mass” and “Airspace opacity” as 

regions of interest with probability scores. From this dataset, we excluded computed 

tomography images and CXR images taken using an anteroposterior spine view and 

analyzed CXR images tagged with “Pneumonia/Viral/COVID-19” and “no findings.” A 
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radiologist then reviewed the images and rated them on a 3-point opacity score for the 

presence of airspace opacity. The maximum probability score of airspace opacity for 

each image was calculated using this software. The difference in each maximum 

probability for each opacity score was evaluated using Wilcoxon’s rank sum test. The 

threshold of the probability score was determined by receiver operator characteristic 

curve analysis for the presence or absence of COVID-19, and the true positive rate 

(TPR) and false positive rate (FPR) were determined for the individual and overall 

opacity scores. 

Results Images from 342 patients with COVID-19 and 15 normal images were included. 

Opacity scores of 1, 2, and 3 were observed in 44, 70, and 243 images, respectively, of 

which 33 (75%), 66 (94.2%), and 243 (100%), respectively, were from COVID-19 

patients. The overall TPR and FPR were 0.82 and 0.13, respectively, at an area under 

the curve of 0.88 and a threshold of 0.06, while the FPR for opacity score 1 was 0.18 

and the TPR for score 3 was 0.97. 

Conclusion Using a public database containing CXR images of COVID-19 patients, 

commercial AI software was shown to be able to detect airspace opacity in severe 

pneumonia. 

Summary Commercially available AI software was capable of detecting airspace 
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opacity in CXR images of COVID-19 patients in a public database. 
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Introduction 

Coronavirus disease 2019 (COVID-19) has spread worldwide. This pandemic caused a 

crisis-level shortage of hospital beds in many countries. In Japan, the number of positive 

cases per day reached 25,851 (20.6/100,000) on August 25, 2021, and the 

hospitalization rate decreased to 11.8%1. Therefore, there is an urgent need to establish a 

method for the appropriate allocation of medical resources. 

 Chest radiography (CXR) is expected to be an efficient triage tool for COVID-19 

due to its low operational cost and high throughput. Although it is less sensitive than 

computed tomography (CT) for early detection of pneumonia2, it has been reported to 

be sufficiently sensitive for detecting severe disease and high-risk CXR findings such as 

bilateral opacities, multifocal opacities, and upper or middle zone opacities3. Moreover, 

artificial intelligence (AI)-based patient prognostic models have been reported4,5 and are 

expected to prove useful for clinical triage and workflow optimization. 

 In this study, we hypothesized that commercially available general-purpose AI 

software for CXR could detect airspace opacity in COVID-19 patients. As an initial 

study prior to a clinical study, we used the publicly available COVID-19 CXR database6 

to validate the software and examine its performance. 
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Materials and Methods 

We used an anonymized public dataset6 that has already been widely used for AI 

research7,8 on COVID-19. In accordance with the ethical guidelines for medical and 

health sciences research involving human subjects10,11, no review by an institutional 

review board was required. 

 Because the dataset contains both CT and CXR images, we first extracted only CXR 

images. Second, we filtered suspected or confirmed COVID-19 positive patients and 

patients with no findings as controls. Third, we excluded images that tagged “AP supine 

views” because we were more interested in detecting imaging findings in asymptomatic 

to moderately ill patients than in detecting findings in images of patients with 

pre-existing severe pneumonia. Moreover, we excluded lateral-view images. 

 A radiologist with 17 years of experience independently rated the presence of 

airspace opacity on a 3-point scale based on confidence levels. The criteria were as 

follows: opacity confidence score 1, negative; opacity confidence score 2, indeterminate 

(including ground-glass opacity and suboptimal image quality); opacity confidence 

score 3, definite airspace opacity. In this preliminary study, we did not consider the 

zones containing shadows, the number of shadows, or the size of the shadows. 

 We used commercially available AI software (Plus.CXR; Plusman LLC, Tokyo, 
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Japan; Pharmaceuticals and Medical Devices Agency certification cleared) that requires 

anteroposterior (AP) or posteroanterior (PA) CXR images as input and outputs the 

regions of interest (ROIs) that indicate “Nodule/Mass” class or “Airspace Opacity” 

class and their probability scores. In addition to the coordinates of the ROIs and the 

probability of the class, we could identify the CXR zones [right and left side of upper 

(from the apex to the inferior border of the second rib), middle (from the second to 

fourth rib), and lower (from the fourth rib to the inferior border of the lung) zones] 

where the ROIs exist. We also measured the cardiothoracic ratio as a reference value. 

Figure 1 shows a CXR image overlaid with the AI output results. Note that the threshold 

settings used for the display were disabled. The bounding box shows the name of the 

detected class, the probability score, and the zone where the shadow exists. Figure 1a 

shows an image with an opacity confidence score of 1 for visual evaluation, showing a 

pale infiltration to the frosted shadow. Figure 1b shows an image with an opacity 

confidence score of 2, which shows a dense airspace opacity shadow with bilateral 

upper lung zone predominance. 

 Statistical analyses were performed using Python 3.6, Numpy (version 1.18.1), 

Pandas (version 1.0.2), scikit-learn (version 0.22.2. post 1), and Scipy (1.4.1). The 

probability scores of all images and images with each opacity score were reported as 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 29, 2021. ; https://doi.org/10.1101/2021.12.22.21268176doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.22.21268176
http://creativecommons.org/licenses/by/4.0/


medians and interquartile ranges (IQRs). 

 We assessed the differences in probability scores using Wilcoxon’s test. P values of 

≤0.05, were considered statistically significant. Receiver operator characteristic (ROC) 

curves were generated from the presence or absence of COVID-19 and probability 

scores for all images, and the area under the ROC curve (AUC) and threshold values 

were determined. The true positive rate (TPR) and the false positive rate (FPR) for the 

individual and overall capacity scores were calculated using the calculated thresholds. 

 

Results 

Of the 950 images in the dataset, 866 were CXRs; from 504 COVID-19 and 18 normal 

images, 342 COVID-19 images and 15 normal images were finally available for 

analysis. Figure 2 shows the image selection flowchart and its breakdown. 

 Opacity confidence scores of 1, 2, and 3 were found in 44, 70, and 243 images, 

respectively, of which (75%), 66 (94.2%), and 243 (100%), respectively, were from 

patients with COVID-19. Figure 3 shows a box-and-whisker plot of the results of the 

quantitative and probability scores. The medians for overall and opacity confidence 

scores of 1, 2, and 3 were 0.35 (IQR: 0.11-0.55), 0.02 (IQR: 0.00-0.03), 0.11 (IQR: 

0.04-0.25), and 0.47 (IQR: 0.33-0.59), respectively. There was a significant difference 
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between the probability scores of confidence scores 1, 2, and 3 (p < 0.001).  

 Figure 4 shows the ROC curve generated for the diagnosis of COVID-19 using all 

images. The AUC was 0.88. Figure 5shows the heat map of the confusion matrix for all 

images and for those with scores of 1, 2, and 3 when the threshold was set to 0.06. The 

TPR and FPR for each score are shown in Table 1. 

 

Discussion 

During the COVID-19 pandemic, many countries experienced a depletion of medical 

resources, whose efficient distribution has become a challenge. Although CXR is 

reported to have a lower initial diagnostic sensitivity for COVID-19 than that associated 

with CT2, it is widely used for patient monitoring and screening because of its 

advantages such as the equipment’s low cost and simplicity, transportability to the 

bedside, short imaging time, and ease of decontamination. In this study, we showed that 

COVID-19 lung lesions can be detected using commercially available AI software. We 

discuss whether this model can be used for efficient COVID-19 practice and the 

additional research needed to use it. 

 In this study, we showed that the presence of airspace opacity can be evaluated 

using the maximum probability score calculated by our model. The results also suggest 
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that our model is consistent with the qualitative evaluation of shadows based on visual 

assessment by radiologists. Liang et al. analyzed prognostic factors, including the 

presence of CXR and CT abnormalities, as imaging information along with clinical 

information and the severity and reported that CXR was a statistically significant 

independent prognostic factor8. Other reports have revealed that the CXR severity score, 

calculated from the CXR shadow quality and shadow coverage, is a predictor of 

hospital admission12, intubation8,12 oxygen administration3,13, and death8,14. Sasaki et al. 

compared consolidation with ground-glass attenuation (GGA) scoring and reported that 

GGA scoring was not a predictor of oxygen administration1313. Considering the 

learning cost for raters to perform uniform image evaluation and the human cost and 

time cost for reading images, the use of AI-based evaluation criteria is considered worth 

exploring. 

 There are two possible strategies for creating an AI-based, image-based prognostic 

model. The first is to create a model that uses the severity scores provided by 

radiologists for learning. Li et al. developed a model to calculate the pulmonary 

radiography severity score (PXS) using the radiologist’s CXR-finding score as a 

reference standard and showed that the PXS correlated with the occurrence of intubation 

or death within three days44. The other is to create a model that learns prognostic 
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features from the image itself. Jiao et al. reported a prognostic model differentiating 

critical (induction of ventilation, intensive care unit admission, or death) from 

non-critical disease, using imaging and clinical data as their inputs55. They also 

reported that the addition of clinical information improved the accuracy of 

prognostication. Our model adopted the former approach, and we believe that this 

approach is preferable during the COVID-19 pandemic. 

 We believe that there are two advantages to a model that uses radiologist-derived 

severity scores for learning. First, they can be “explainable AI.” Because the 

interpretation of AI output results is ultimately the responsibility of humans, the task of 

image review by clinicians remains. Second, it is easy to create new models using 

existing models in a situation where factors that affect the clinical course, such as 

vaccination, antibody cocktail therapy, and mutant strains with different toxicities, 

emerge consecutively. It is expected that a model for extracting one-stop prognostic 

features from CXR using AI will need to be developed for each cohort. Conversely, it is 

relatively easy to create a new prognostic model by varying the threshold value of the 

model that extracts the probability and area of findings from images. 

 This preliminary study had several limitations. First, we used public data. The image 

quality varied, and there were some missing clinical data. In fact, the team that created 
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this database advises not to use them to determine diagnostic performance15. However, 

because we used public data not used for training for validation, the impact of database 

bias4 is expected to be small. Second, images were evaluated by a single person. 

Although there is interobserver variability in the diagnosis of pneumonia16 , in this study, 

each group of confidence scores by a single radiologist could be separated by AI-based 

probability scores with significant differences. The clinical significance of the overlap is 

unclear, but it is a potential consideration for future research. Third, we did not evaluate 

all the lesions extracted by our model. This is because there is no gold standard such as 

CT, and it is difficult to perform a detailed evaluation because of differences in the 

image quality and size compared to those of DICOM format images for diagnosis. This 

is an issue for consideration in future research. 

 In conclusion, our hypothesis that commercially available AI-based software could 

detect opacity regions in CXRs of COVID-19 patients was proved. We hope to conduct 

clinical research and develop a prognostic model using the output results of this AI to 

help in the treatment of COVID-19 infections.  
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 Table 1. TPR and FPR for all images and the images of opacity confidence score 1, 2, 

3, respectively (threshold of probability score = 0.06) 
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 All images 

(n = 357) 

Opacity confidence score 

 1 (n = 44) 2 (n = 70) 3 (n = 243) 

TPR 0.82 0.09 0.63 0.97 

FPR 0.13 0.18 0.0 0.00 

Abbreviations: FPR, false positive rate; TPR, true positive rate. 
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Figure legends 

Figure 1. Examples of chest radiography (CXR) images of patients with COVID-19 

overlaid with the artificial intelligence output results. Note that the threshold setting 

used for the display has been disabled. The bounding box shows the name of the 

detected class, the probability score, and the zone (right and left sides of the upper, 

middle, and lower zones) where the shadow exists. The cardiothoracic ratio (CTR) as a 

reference value is also shown. Figure 1a shows pale airspace opacity to ground glass 

opacity in the right upper to lower zone. Figure 1b shows dense airspace opacity with 

collapse and pale airspace opacity to ground glass opacity in both lungs. Some 

“Nodule/Mass” classes were also detected with a relatively low probability. doi: 

10.6084/m9.figshare.1227500966, CC BY 3.0. 

Figure 2. Flowchart for selecting images from a database. 

 

Figure 3. The maximum value of probability for each image obtained by the artificial 

intelligence model was differed significantly among the opacity confidence scores of 1, 

2, and 3 based on visual assessment (p < 0.001). The box in the boxplot shows the 

median and interquartile range (IQR), with the whiskers extending to points within 1.5 
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IQR of the IQR boundary. Gray dots indicate data points, and diamonds indicate 

outliers. 

 

Figure 4. Receiver operating characteristic curve shows the performance of the 

probability obtained with artificial intelligence for predicting COVID-19. AUC: area 

under the curve. 

 

Figure 5. Heat maps of the confusion matrices for all images and each opacity 

confidence score are shown. The matrix in each figure is as follows: top left, true 

negative; bottom left, false positive; top right, false negative; bottom right, true positive. 

The numbers in the matrix indicate the number of images in each block. 
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Figure 1a 

 

 

Figure 1b.  
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Figure 2. 
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Figure 3. 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 29, 2021. ; https://doi.org/10.1101/2021.12.22.21268176doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.22.21268176
http://creativecommons.org/licenses/by/4.0/


Figure 4. 

 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 29, 2021. ; https://doi.org/10.1101/2021.12.22.21268176doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.22.21268176
http://creativecommons.org/licenses/by/4.0/


Figure 5. 
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