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Abstract

Propagation of an epidemic across a spatial network of communities is described by a
variant of the SIRmodel accompanied by an intercommunity infectivitymatrix. Thismatrix
is estimated from fluxes between communities, obtained from cell-phone tracking data
recorded in the USA between March 2020 and February 2021. We apply this model to the
SARS-CoV-2 pandemic by fitting just one global parameter representing the frequency of
interaction between individuals. We find that the predicted infections agree reasonably well
with the reported cases. We clearly see the effect of “shelter-in-place” policies introduced at
the onset of the pandemic. Interestingly, a model with uniform transmission rates produces
similar results, suggesting that the epidemic transmission was deeply influenced by air
travel. We then study the effect of alternative mitigation policies, in particular restricting
long-range travel. We find that this policy is successful in decreasing the epidemic size and
slowing down the spread, but less effective than the shelter-in-place policy. This policy can
result in a pulled wave of infections. We express its velocity and characterize the shape of
the traveling front as a function of the epidemiological parameters. Finally, we discuss a
policy of selectively constraining travel based on an edge-betweenness criterion.

Keywords: epidemiology | SIR model | COVID-19 | mobility data
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W hen plague hit Florence in August 1630, the Florentine authorities made a number
of high-stakes decisions which proved highly effective [1]. One of the reasons the
Florence Sanità could organize this responsewas the ample time they had, forewarned

as they were by the Milanese authorities in November 1629. Today’s public-health authorities
work under much more compressed timescales, as evidenced by the SARS-CoV-2 pandemic.
Long-distance travel radically changes the dynamics of spreading, which raises a number of
questions about the spatial dynamics of transmission in modern times. Epidemic outbreaks in
the last two decades have provided the scientific community with a wealth of material to study
these questions, going beyond the classic Susceptible-Infected-Recovered (SIR) theory with
perfect mixing [2–6]. Several studies have shown how the total epidemic size can be affected by
factors such as inhomogeneity in transmission rates [7–14] or in the mode of transmission [15,
16]. Classically, motion of individuals was taken into account by introducing diffusion terms
in the standard SIR equations, allowing the emergence of spatio-temporal patterns [17–20].
Recently, in the context of the SARS-CoV-2 pandemic, such approaches have been especially
valuable in order to study the effect of containment policies such as lockdown and quarantine [21,
22]. These models are, however, limited in that they do not, in principle, take long-distance
air travel into account. Several works have, therefore, considered disease spread in a network,
typically constructed from air-traffic data [19, 23, 24], where edges can connect locations
separated by large geographical distances. This approach can lead to very accurate predictions
at the country scale [25] but predictions at finer scales remain challenging. Another study
considering human mobility emphasized how spatial variation in public-health infrastructure
reflected on epidemiological parameters can affect the dynamics of spread to different countries
[26]. Data-based studies of epidemic spread and the impact of social distancing through the
analysis of social-network structure have also been very informative [16, 27–29].

A recent paper by Chang et al. [30] obtained a model for the spatio-temporal spread of a
disease at a high spatial resolution by using extensive mobile tracking information to identify
physical interactions between individuals. Chang et al. showed that the actual spread of the
SARS-CoV-2 epidemic can be well explained from the mobility data of individuals. The model
relied on the simulation of interactions among individuals on a bipartite graph where nodes,
representing locations at a very fine spatial resolution, are divided in two sets: Census Block
Groups (residential areas) and Points Of Interest (non-residential), each of them having its own
transmission rate. The model was fitted to reproduce known reported cases of COVID-19 in 10
metropolitan areas, and could then be used to make short-term predictions about the spreading
or study the effect of different mitigation strategies.

Here we take an approach similar to that of Chang et al., using mobility data to calibrate
a model for disease spread. However, we investigate this propagation at the scale of a large
country, the USA, rather than metropolitan areas. Specifically, we introduce a spatial SIR
epidemiological model in which effective transmission rates between # = 210 communities are
computed from mobility data of individuals belonging to these communities. We show that this
model captures well the spread of the SARS-CoV-2 epidemic. Remarkably, we find that a simple
model consisting of an interaction frequency dropping under the effect of lockdown, and of a
single flux matrix encoding the travel of individuals, faithfully reproduces the reported cases of
COVID-19 both globally and locally in each community. Strikingly, the SARS-CoV-2 epidemic
spreads in a delocalized fashion, infecting distant communities very quickly. Moreover, an even
simpler model with uniform transmission rates between the communities gives results very
close to the model based on mobility data, emphasizing the prevalent role air travel played
in the spread of the SARS-CoV-2 epidemic. We then study how interventions that change
travel patterns can localize epidemics. In particular, we investigate the hypothetical effect of a
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Figure 1 –Model for the spreading of SARS-CoV-2 in a network of communities in the USA. (a). One community
8 interacting with three other communities 9 , : and ;, with the transmission rates V8 9 , V8: and V8; respectively. (b)
Infectivity matrix. (c) # = 210 communities in the USA. Each community aggregates a number of Census Block
Groups (CBGs).

policy preventing long-distance travel. In addition to “flattening” the curve, spreading through
nearest-neighbor interactions creates traveling waves, which we characterize both analytically
and numerically. These results allow us to discuss which interventions are more effective,
limiting short-range contacts (a lockdown), or limiting long-range trips (a quarantine). We then
propose an alternative mitigation strategy based on an edge-betweenness criterion.

Model
We consider a metapopulation model of # communities numbered 1, 2,. . . , # . Denoting by
(0, �0 and '0 the numbers of susceptible, infected and recovered individuals in community 0,
the standard SIR equations read:

d(0
dC

= −(0
∑
1

V01
�1

"1

,
d'0
dC

= W�0,
d�0
dC

= −d(0
dC
− d'0

dC
, (1)

where V01 is the transmission rate from infected individuals in community 1 to susceptible indi-
viduals in community 0 and W is the recovery rate, assumed to be the same for all communities.
Diagonal elements of the infectivity matrix [V01] describe intracommunity infections, while
off-diagonal elements describe inter-community infections (Figure 1a-b). We also introduce
the local epidemic sizes )0 = �0 + '0. The total population in each community "0 is constant
through time,

(0 (C) + �0 (C) + '0 (C) = "0 . (2)

The model in equation (1) has been extensively studied [31–35]. We show in the Supple-
mentary Information (SI) that the dynamics can be reduced to an ODE of just one #-vector
variable, and the endemic equilibrium can be obtained by solving a transcendental equation
involving the infectivity matrix [V01].

In order to estimate the infectivitymatrix, we usedmobility data compiled bySafeGraph [36],
tracking the location of about 20 million USA cell phones between March 2020 and February
2021. The locations consist of more than 200 000 Census Block Groups (CBGs). Each cell
phone is assigned for physical residence the locationwhere it spent themost time, and daily visits
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Figure 2 – Model based on SafeGraph mobility data or a uniform infectivity matrix. (a) The model is fitted to
COVID-19 confirmed cases in theUSA. There is one fitting parameter per day. (b) Fitting parameters obtained. The
shape suggests a simplified model with two limiting values before and after lockdown. (c) The simplified models
obtained reproduce the spread of the SARS-CoV-2 epidemic in the community network. A direct comparison
between the local epidemic sizes predicted by the model and the reported values can be found in Figure S1. See
also Movies S1-2.

to other locations are recorded. For computational purposes, we coarse-grained the physical
locations into # = 210 communities, which are shown in Figure 1c. Let 501 be the number of
individuals from community 0 visiting community 1 per unit of time. We will assume that

501 � "0, 501 � "1, for all 0 and 1 (3)

The variation in susceptible individuals in community 0 due to new infections during the
time interval ΔC has the form:

(0 (C + ΔC) − (0 (C) =
− (0 × Pr (meeting an infected individual) × VΔC,

(4)

where V is the disease-specific transmission rate when a susceptible individual has contact with
an infected individual. There are three kinds of infection to consider: (i) the infected person
and the infector belong to the same community, (ii) an infected person visits a neighboring
community and infects a resident of this community, and (iii) a susceptible person visits a
neighboring community and gets infected by one of its residents. We will neglect the rarer
“tourist to tourist” infections, when an infected person visits a neighboring community and
infects there a visitor from yet another community. The termPr (meeting an infected individual)
can therefore be evaluated as a function of the pseudo-flux matrix [ 501] for each of the three
aforementioned cases (SI). After summation of the three contributions, we obtain:

V00 = V?, V01 = ?V
501 + 510
"0

. (5)

where ? is the frequency with which an individual is having contact with an other individual of
its community, and is assumed to be the same for all communities. Equation (5) determines the
infectivity matrix [V01] from equation (1) up to a proportionality constant, namely V?.
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Results

The model reproduces the spatial dynamics
In order to assess the validity of the infectivity matrix based on mobility data, equation (5),
we confronted the model’s predictions against COVID-19 case numbers reported in the USA
by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University [37].
Specifically, we fitted the daily V?(C) values so as tominimize the sum of squared errors between
values predicted by the model and values reported by the CSSE (Material and Methods). The
fitted V?(C) values show a steep decay during the month of March 2020, followed by a plateau
lasting until February 2021 (Figure 2b). Although we fitted the model to the real COVID-19
confirmed cases using the global quantity Ω, local epidemic sizes )0 predicted by the model
agree very well to the empirical values.

A two-phase simplified model
The time variations of V?(C) shown in Figure 2b imply a drastic decrease in the interaction
frequency among individuals across all communities. This result reflects the effect of the
shelter-in-place policies that were implemented at the beginning of the SARS-CoV-2 pandemic
in many USA states. We can use this observation to estimate the effect of these policies
quantitatively: the interaction frequency among individuals, namely ?, is about 5 times smaller
in the plateau following shelter-in-place policies than it was at the onset of the SARS-CoV-2
pandemic. Following this observation, we defined a simplified model, in which the fit with
reported cases was carried out while enforcing a softplus shape for V?(C) (Figure 2b and
Material and Methods). This simplified model reproduced the average progression of the
epidemic (Figure 2a), but it didn’t capture the three oscillations visible in the number of new
cases. We conclude that these oscillations in the number of new cases were mostly driven by a
similar oscillatory pattern in the interaction frequency as seen in Figure 2b. In Figure 2c, we
show that the number of new COVID-19 cases in each community predicted by the simplified
model follows closely the empirical values. This result suggests that the infectivity matrix
constructed from mobility data (equation (5)) is a good approximation of the “true” infectivity
matrix.

Turning down long-range interactions
The previous results suggest that the decrease in new COVID-19 cases was mostly driven by a
country-wide reduction in the interaction frequency among individuals. Here we investigate the
hypothetical effect of an alternative policy, namely a travel restriction while keeping unchanged
the interaction frequency among individuals. Specifically, we modified the infectivity matrix so
that communities separated by a physical distance larger than a prescribed cutoff do not interact:
V8 9 = 0 if 38 9 > 32 (Figure 3a). We seeded the infection in a community belonging to the state
of Washington and simulated the spread of the epidemics using a fixed interaction frequency
(V?(0) from the simplified model). As expected, we observed a reduction in the number of
daily cases 3) when the cutoff distance 32 decreased, illustrating the “curve-flattening” effect
that was targeted by travel restriction policies (Figure 3b). In this idealized scenario with a
single seed for the infection, the epidemic propagates as a traveling wave from the west coast
to the east coast (Figure 3c). However, as can be seen by comparing Figure 2a to Figure 3b,
travel restriction policies are not as efficient as lockdown policies to decrease the spread of an
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Figure 3 – Limiting long-distance travels without local lockdown. (a) Only transmission rates for communities
separated by a distance 38 9 < 32 are retained. (b) Daily new infections for increasing values of the cutoff distance.
(c) Spatial visualization of the daily new infections using a cutoff 32 = 200 km. See also Movie S3.

epidemic.

Agreement with 1D analysis of a wave
The results from the previous sections suggest the apparition of a wavefront when transmissions
are short range. To investigate this phenomenon, we consider a simplifiedmodel of communities
lying on a two-dimensional square lattice. Each community index is replaced by coordinates
(8, 9) ∈ È1, 2=É × È1, 2<É. In particular, we consider that only individuals from neighboring
communities interact together. We rewrite equation (1):

d(8, 9
dC

= −(8, 9
[
U�8, 9 + V(�8+1, 9 + �8−1, 9 + �8, 9+1 + �8, 9−1)

]
,

d�8, 9
dC

= −
d(8, 9

dC
−W�8, 9 ,

d'8, 9
dC

= W�8, 9 ,

(6)
where U (respectively V) is the intra-community (resp. inter-community) transmission rate.
After rescaling the time and space variables, and defining the rescaled recovery rate W̃ =

W/(0V), we look for wave solutions in the continuum limit by introducing the shape functions
((G, H, C) = 6(G − ẼC) and � (G, H, C) = ℎ(G − ẼC), where Ẽ = E/

√
0V represents the velocity of the

wave in rescaled time and space (see SI). The shape functions satisfy the ODE:

ℎ′′ = − Ẽ
6
ℎ′ +

(
W̃

6
− 1

)
ℎ,

6′ = − 5 + W̃
Ẽ
ℎ.

(7)

We find that the velocity of the traveling wave is bounded from below (SI):

Ẽ ≥ Ẽ2 = 2
√

1 − W̃, (8)

which is in agreement with previous reports [18, 38] and with results from marginal-stability
analysis [21, 39, 40]. Interestingly, by an independant argument, we also established (see SI)
that Ẽ ≤ Ẽ2. Therefore the traveling wave must move at velocity Ẽ = Ẽ2. This indicates that the
SIR dynamics in equation (6) falls into the Fisher-Kolmogorov-Petrovsky-Piscunov universality
class, resulting in pulled waves [41–44]. Although we have taken the continuum limit of a
nearest-neighbor model, this analysis is also valid for any finite-range infection matrix with the
appropriate rescaling of variables.
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Figure 4 – Existence of a wave with nearest-neighbors-only interactions. (a) Equation (6) is solved on a square
lattice of 2= × 2< sites. (b) Traveling front of infected individuals moving along the G direction (left to right). We
took U = V = W = 0.1, so that the rescaled recovery rate is W̃ = W/(0V) = 0.2. (c) The dynamics simulated for
different values of V. The position <(C) (((C, <(C)) = (1 + (∞)/2) of the wave is asymptotically linear in time,
hence a constant velocity Ẽ =

√
1 − W̃. (d) The simulated wave profiles (symbols) are in agreement with the profiles

predicted by equation (7) (solid lines). The corresponding S,I,R profiles are shown in Figure S2. A simulation
with V = 0.1 d−1 is shown in Movie S4.

We performed simulations of the dynamics given by equation (6) on a square lattice with a
varying aspect ratio (Figure 4a). As expected, there is a front of new infections, moving from
west to east as time progresses. A timelapse of a traveling front of infected individuals with
U = V = W = 0.1 is shown in Figure 4b. The wave position increases asymptotically linearly
with time, but the velocity Ẽ of the wave varies with W̃ (Figure 4c). The profiles obtained are in
agreement with the shape functions obtained by solving equation (7), as shown in Figure 4d.

Properties of infectivity matrices
The daily infectivity matrices constructed from the SafeGraph mobility data can be viewed as
elements of a random-matrix ensemble. Remarkably, matrix elements seem to be distributed
according to the law V8 9 = 〈V8 9 〉4b , where 〈V8 9 〉 is the mean infectivity matrix and b ≡ # (0, 1) is
a centered reduced Gaussian variable (Figure S3). The probability density of the eigenvalues is
also shown in Figure S3. A connection can be made with randommatrix theory (RMT) [45–47],
initially introduced by E. Wigner to model the spectra of the nuclei of heavy atoms, where the
interactions betweenmany nucleons are assumed to be drawn from a random ensemble. In RMT,
randommatrices are classified according to their symmetry, or according to their corresponding
level statistics (namely, the probability density of the spacing between consecutive eigenvalues)
that exhibit different degrees of level repulsion [45]. In particular, the Wigner-Dyson (WD)
statistics is typical of theGaussianOrthogonal Ensemble (inwhich eigenvalues “interact”), while
the Poisson statistics is typical of a matrix with independent eigenvalues. The level-spacing
statistics of the infectivity matrices is shown in Figure 5a. We found that they were time-
independent. Yet interestingly, the level statistics interpolates between the WD statistics and the
Poisson statistics [48]. As shown earlier, removing links between communities according to their
geographical distance results in a slower spread and a smaller epidemic size. Concomitantly,
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the level spacing distribution converges toward a Poisson statistics (Figure 5c). The crossover
from WD (entropy ( = 0.7169) to Poisson (( = 1) distribution as links between communities
are successively removed suggests an isolation policy that can lead to an effective reduction of
the epidemic size (SI). As alternative mitigation strategies, we choose to induce the transition
toward a Poisson distribution by decimating links between communities according to their
“nominal” distance or the “edge-betweenness” centrality [49–51] (Figure 5b). Figure 5d shows
how the level spacing distribution converges toward a Poisson statistics when the nominal
distance threshold is lowered. We find the edge-betweenness centrality to be more efficient in
decreasing the epidemic size. This is because decimation according to edge-betweenness first
targets links with the largest transmission rates. One could also consider a moderate policy:
instead of eliminating links completely, one could impose constraints on the flux of individuals
that are allowed to commute via central pre-determined links.

Discussion
Biological systems are inherently complex and it can be a challenge to characterize them by
a small number of parameters. In the case of epidemics, the huge number of parameters (for
example, intercommunity spread involves #2 transmission rates for # communities) can obscure
the salient mechanisms and make it difficult for policy makers to find efficient interventions.
Reducing the dimension of a model, when possible, is therefore of great value. In this article, we
have proposed a spatial SIR model with an infectivity matrix based on the local travel patterns.

Despite its simplicity (there is only one global parameter to be adjusted), we find that our
model is able to capture the spatial spread of the SARS-CoV-2 epidemic, with a delocalized
multicenter spreading caused by long-distance travelers bringing infection into far regions, then
becoming secondary centers of infection. The time evolution of the interaction frequency
reflects the shelter-in-place policies that were implemented by various USA states in the early
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stages of the SARS-CoV-2 pandemic. In fact, the rich diversity of human responses could be
summarized by a simplified model for the interaction frequency, whose asymptotes represent
the values “before lockdown” and “after lockdown”, with few assumptions about the infection
process. The individual variances between people and communities turn out to self-average,
giving a clear picture of the spread.

If a model with relatively few parameters describes the observations, one can assume that it
also describes the situation when these parameters are changed by an intervention. Therefore,
we suggest such a model could be used as the basis for efficient policies—or at least reliably to
estimate the consequences of adopting policies. As an example, we have shown the hypothetical
effect of an alternative to the shelter-in-place policy in the case of the SARS-CoV-2 pandemic.
Specifically, we have investigated a travel restriction policy in which individuals can only move
within an area of fixed radius centered around their residence. By contrast to the lockdown
policy, we find that infections spread through a well-defined wave front, traveling with a certain
velocity. This scenario might be preferable since it gives time to communities and public health
infrastructures to prepare for the onset of the epidemics, while still “flattening the curve” of
new infections (Figure 3b). We have also provided both an analytical and numerical analysis
elucidating the mechanism of formation of a wavefront. In particular, we give the velocity and
the shape of the wavefront for an epidemic spreading through nearest neighbors interactions.

Although SafeGraph mobility data [36] provide a realistic picture of people movement
between communities, one might ask what is the sensitivity of the results to the infectivity
matrix derived from the mobility fluxes. We thus considered a model with uniform transmission
rates among communities, namely V01 = V, which suppresses spatial effects. In particular, this
model leads to the natural variables a0 (see SI) to be uniform: a0 (C) = aUN(C). Surprisingly,
carrying out the same fit to the reported cases (Figure 1a-b) was only marginally inferior to
the fit carried out with the SafeGraph mobility data (see Figure S1b). By contrast, carrying
out the same fit with the infectivity matrix derived from SafeGraph mobility data but with
long-range interactions turned down resulted in a significantly different dynamics (see Figure
S1c). There are several implications of this result. (1) Although changes in the structure of the
infectivity matrix can lead to drastically different dynamics (Figures 3 and 5 and Figure S1c), it
appears that the infectivity matrix derived from SafeGraph fluxes falls in the same “universality
class” as the uniform model. This suggests that long-range movements (e.g. air traffic) played
a prevalent role in the spread of SARS-CoV-2. (2) Our choice to reduce the complexity of
the model to only one fitting parameter might not be adequate to discriminate between models
falling into the same “universality class”. Instead of fitting only one scalar ?(C) at each time
point, we also investigated the possibility of fitting the #2 transmission rates V01 (C) minimizing
the errors with reported cases (see Material and Methods and Figure S4). Although this latter
approach is clearly prone to overfitting, it shows that there exists a parametrization of the model
which reproduces very closely reported cases. We anticipate that the proper number of fitting
parameters lies in between those two extreme scenarios.

During the course of our research, an epidemiological study bearing similarities with our
approach was published [55]. In that study, the authors developed a county-resolved metapop-
ulation model describing the spread of SARS-CoV-2 in the USA, informed with mobility data
from SafeGraph. Instead of calibrating the model by fitting the country-wide number of re-
ported cases as in the present study, the authors fitted their model to reproduce reported cases of
COVID-19 on a per-county basis. Furthermore, the model required fitting many time-dependent
parameters on a per-county basis, including per-county transmission rates, making the fitting
procedure very high dimensional. Finally, the dynamics of the disease spread introduced differs
from equation (1) since (, � and ' compartments were introduced for each commute channel
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8 → 9 rather than for each community. Altogether, the complexity of that model makes it less
amenable to analytical study.

In conclusion, we used a simple model of intercommunity spread of an infectious disease
to show the transition between different regimes of epidemic progression. Because of the
complexity of the infection process (e.g., variations in individuals’ responses, mutations, etc.)
and of human behavior, we are still far from a global forecasting system able to predict the spread
of different infectious agents throughout the world. As with weather forecasting, observables
must be measured in real time in order to inform complex models to yield short-term forecasts.
One salient feature in our approach is showing how such widespread measurements (namely,
the mobility data) can be integrated in a model describing the spread of an infectious agent,
and showing what types of predictions can be obtained. It is a step toward more predictive
epidemiology models, grounded in measurable quantities.

Material and Methods

Data availability
Data and scripts used in this study are available at the GitHub repository
github.com/czbiohub/epidemiology_flux_model. Except the raw mobility data, which belongs
to SafeGraph.

Mobility data
The mobility data was obtained from SafeGraph, a company that aggregates anonymized location
data from numerous applications in order to provide insights about physical places, via the SafeGraph
Community. To enhance privacy, SafeGraph excludes census block group (CBG) information if fewer
than two devices visited an establishment in a month from a given census block group. In this manuscript,
we use data extracted from the ”Social Distancing Metrics” dataset [36], with dates between February
2020 and February 2021. SafeGraph has stopped sharing mobility data under this format. However
the matrices of fluxes between our coarse-grained communities can be found in the ‘data’ folder in
our github repository. We obtained the coarse-grained communities by running a  -means clustering
algorithm to group the 220, 333 CBGs into 210 communities. We used the implementation from Scikit
Learn. We then ran a hierarchical clustering algorithm to re-index communities so that communities
close in space had close indices, as shown in Figure 1. We used the linkage function from SciPy. We
then computed for every day the “flux matrix” where each entry 501 represents the number of cell phone
whose residence CBG belongs to community 0 which visited a CBG belonging to community 1. The
average flux matrix was constructed by averaging all the daily flux matrices. We used population counts
for CBGs in agreement with the United States Census Bureau’s and available in the SafeGraph Open
Census Data (file “cbg_b01.csv”, column “B01001e1”). We checked that the population counts from the
United States Census Bureau were approximately proportional to the residential mobile-phone counts,
therefore validating mobile tracking as a proxy for actual population.

Reports on SARS-CoV-2 infections
In order to fit ourmodel, we usedUSA cases of COVID-19 reported by the Center for Systems Science and
Engineering (CSSE) at Johns Hopkins University [37] which can be accessed at the GitHub repository
CSSEGISandData/COVID-19. New cases of COVID-19 reported by the CSSE were mapped to the
closest mobility-data-derived community based on their latitude and longitude. We therefore obtained
the time evolution of SARS-CoV-2 infections through the mobility-data derived communities. Integer
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absolute new cases were converted into relative population fractions using the community population
counts obtained from the United States Census Bureau.

Model fit
Daily scales

Here we consider the SIR dynamics (see Supplementary Information):

dB0
dC
(C) = −?(C)B0 (C)

∑
1

V01 91 (C),

d 90
dC
(C) = ?(C)B0 (C)

∑
1

V01 91 (C) − W 90 (C).
(9)

We also define the chi-square at each time C:

j2(C) =
#∑
0=1

"2
0 (B0 (C + 1) − B̂0 (C + 1))2 , (10)

where "0 is the population at location 0 and (1 − B̂0)"0 is the number of reported cases at location
0. Assuming that ?(C − 1), ?(C − 2), . . . , ?(0) have been previously evaluated, the dynamics (B0, 90) is
determined up to time C, and we have:

B0 (C + 1) = B0 (C) − ?(C)
C+1∫
C

dD B0 (D)
∑
1

V01 91 (D),

90 (C + 1) = 90 (C) + ?(C)
C+1∫
C

dD

(
B0 (D)

∑
1

V01 91 (D) − W 90 (D)
)
.

(11)

To obtain the scale ?(C), we solve for:

?fit(C) = argmin(j(C)2). (12)

Simplified model

We look for a simplified model in which the scales have a functional form close to a ramp function:

?\ (C) = \3 ln
(
1 + 4−\1 (C−\2)

)
+ \4. (13)

We first set \ by fitting this function to the daily scales:

\∗ = argmin

(∑
C

(?\ (C) − ?fit(C))2
)

(14)

Then we adjust the slope of the ramp in order to minimize the error with reported cases. In particular,
we set \ = (\∗1, \

∗
2, k, \

∗
4), and we solve:

k∗ = argmin

(∑
C

j(C)2
)
. (15)

We thus define \simplified = (\∗1, \
∗
2, k

∗, \∗4), and the model for simplified scales is:

?simplified(C) = ?\simplified (C). (16)
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Daily infectivity matrices

We also considered another approach, consisting of fitting the #2 transmission rates V01 (C) at every time
C. In particular, we solve: {

V
opt
01
(C)

}
= argmin(j(C)2), (17)

subject to the constraints V01 ≥ 0. We show the results of this fit in Figure S4, however his approach is
prone to overfitting since there is #2 fitting parameters and only # data point at each time C.

Simulations with nearest-neighbors-only interactions
The curves shown in Figure 4b-c and the symbols shown in Figure 4d were obtained by integrating
equation (6).We used the function solve_ivp from SciPy with the “DOP853” integration method. At
C = 0, we considered ( = 1 everywhere except at the sites of coordinates (0, 2<−1 − 1) and (0, 2<−1)
(see Figure 4a), where we set ( = 0 and � = 1. The Laplacian was computed using the 9-point stencil
Δdiscrete =

( 1 2 1
2 −12 2
1 2 1

)
/4. We considered periodic boundary conditions along the H direction and Dirichlet

boundary conditions along the G direction.
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Figure S1 – Supplementary figure to Figure 2 of the main text. Comparison of the model predictions with reported
values for (a) the infectivity matrix derived from SafeGraph fluxes, (b) the uniform infectivity matrix, and (c) the
infectivity matrix derived from SafeGraph fluxes truncated to geographical distances 32 < 400 km (breaking of
universality class). Local epidemic sizes )0 are shown. One symbol is associated to one given community and
one given day.
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Figure S2 – Supplementary figure to Figure 4 of the main text. Wave profiles for the values of V shown
in Figure 4d-e.
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Figure S3 – Supplementary figure to Figure 5 of the main text. (a) Mean infectivity matrix (between 2020-03-01
and 2021-02-15). Entries were pooled in squares of size 8× 8. The maximum is shown. (b) The noise distribution
suggests a log-normal distribution of each entry around its mean. (c) Eigenvalue distribution of infectivity matrices
as a function of time (pooled by 7-day windows).
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fitting procedure with infectivity matrix derived from SafeGraph mobility data. (b) Scale fitting procedure with
uniform infectivity. (c) Fitting procedure with #2 transmission rates V01 (C).
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2 Formal solution to the spatial SIR

2.1 Matrix SIR
We consider # communities affected by a growing epidemic. The spreading of the epidemic
is described by the multi-compartment SIR model. Every community 0 is characterized by the
number of susceptible individuals (0, the infected individuals �0 and the number of recovered
individuals '0. The dynamics for (0, �0 and '0 with 0 ∈ È1, #É is described by the equations

d(0
dC

= −(0
∑
1

V01
�1

"1

,

d�0
dC

= −d(0
dC
− W�0,

d'0
dC

= W�0 .

(18)

We assume that the population in each community is fixed, i.e.

(0 (C) + �0 (C) + '0 (C) = "0 = const. (19)

The boundary conditions for equation (18) are:

(0 (0) = (1 − n0)"0,

�0 (0) = n0"0,

'0 (0) = 0,
(20)

where the parameter n0 describes the initial infection (the initial number of infections per per
person in the given community).

We introduce the rescaled variables: B0 = (0/"0, 90 = �0/"0 and A0 = '0/"0. Then
equations (18) and (20) become

dB0
dC

= −B0
∑
1

V01 91,

d 90
dC

= −dB0
dC
− W 90,

dA0
dC

= W 90,

(21)

with
B0 (0) = (1 − n0),
90 (0) = n0,
A0 (0) = 0.

(22)

2.2 Solution of matrix SIR equations: the canonical basis
In order to solve equations (21) and (22), we define:

b0 (C) =
∑
1

V01 91 (C), a0 (C) =
C∫

0

dD b0 (D). (23)
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Substituting equation (23) in equation (21), we solve for B0 and obtain:

B0 (C) = (1 − n0)4−a0 (C) . (24)

We also note that A0 (C) can be written as:

A0 (C) = W
∑
1

V−1
01a0 (C), (25)

where [V−1
01
] denotes the inverse matrix such that

∑
2 V02V

−1
21
= X01. We therefore obtain the

parametrization:
B0 (C) = (1 − n0)4−a0 (C) ,
90 (C) = 1 − (1 − n0)4−a0 (C) − W

∑
1

V−1
01a0 (C),

A0 (C) = W
∑
1

V−1
01a0 (C),

(26)

as a function of a0 (C). Note that when the infectivity matrix is diagonal, namely V01 = VX01,
we recover the parametrization from reference [4]:

B(C) = B(0)D,

9 (C) = W
V

ln D − B(0)D + 1,

A (C) = −W
V

ln D,

(27)

with D(C) = 4−a(C) .
The dynamics is determined by the functions a0 (C). Starting from equation (21), wemultiply

the equations by V01 and sum, obtaining

d
dC

(∑
1

V01 91

)
+ W

∑
1

V01 91 =
∑
1

V01 (1 − n1)
da1
dC
4−a1 ⇔

db0
dC
+ Wb0 =

∑
1

V01 (1 − n1)
d
dC
(−4−a1 ) ⇔

b0 (C) − b0 (0) + Wa0 (C) = −
∑
1

(1 − n1) (4−a1 − 1) ⇔

da0
dC
+ Wa0 =

∑
1

V01 (1 − (1 − n1)4−a1 ) .

(28)

Equation (28) can be solved numerically. In the C →∞ limit, we obtain:

Wa0 (∞) =
∑
1

V01

(
1 − (1 − n1)4−a1 (∞)

)
, (29)

which is the same as setting 90 = 0 in equation (26). Equation (29) can be solved iteratively.
The size of the epidemic is given by:

Ω(C) =
∑
0

(�0 (C) + '0 (C)) ,

=
∑
0

"0

(
1 − (1 − n0)4−a0 (C)

)
,

−−−−→
C→∞

∑
0

"0

(
1 − (1 − n0)4−a0 (∞)

)
.

(30)

22

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 22, 2022. ; https://doi.org/10.1101/2021.12.22.21268059doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.22.21268059
http://creativecommons.org/licenses/by/4.0/


2.3 Solution of matrix SIR equations: SVD basis
A solution can also be written using the singular value decomposition of the infectivity matrix
V:

V01 =
∑
U

_UEU0DU1 . (31)

For a given vector x, we use the following notation: GU =
∑
0
EU0G0. From equation (28) we

thus obtain:
daU
dC
+ WaU = _U

∑
0

DU0

(
1 − (1 − n0)4

−∑
g
Eg0a0

)
. (32)

3 Initial stage of an epidemic

We again start from equation (21), which we linearize around the initial state B(0)0 = 1, 9 (0)0 = 0,
and A (0)0 = 0. To first order j and r satisfy the ODE:

d 90
dC

=
∑
1

V01 91 − W 90,

dA0
dC

= W 90 .

(33)

[V01] is a real square positive matrix. According to the Perron-Frobenius theorem, there exists
the maximal eigenvalue _l > 0, such that any other eigenvalue _U < _l, and the associated
eigenvector vl is positive. At large times, we have:

j ∼ (j(0) · vl) 4(_l−W)Cvl, (34)

where (A · B) denotes a scalar product. The epidemic grows only if the basic reproduction
number R0 =

_l
W
> 1. Furthermore, if the infectivity matrix can be factorized as V01 = 5061,

then V is of rank 1 and _l is the only non-zero eigenvalue. We then have _l =
∑
0
5060 and

vl = f.

4 Construction of the infectivity matrix from mobility data
Themobility data obtained from SafeGraph allows us to construct a pseudo-fluxmatrix in which
each entry 501 represents the number of individuals from community 0 visiting community 1
per day. Let us now consider one community 0, having (0 susceptible individuals and �0
infected individuals. The variation in susceptible individuals due to new infections during the
time interval ΔC has the form:

(0 (C + ΔC) − (0 (C) = −(0 × Pr (meeting an infected individual) × VΔC, (35)

where VΔC represents the probability to get infected when meeting an infected individual. We
now list the different contributions.

23

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 22, 2022. ; https://doi.org/10.1101/2021.12.22.21268059doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.22.21268059
http://creativecommons.org/licenses/by/4.0/


4.1 Intra-community contributions
The contributions coming from infected individuals in the same community are:

(0 × ?0
�0∑

1

510 + "0

× VΔC,

= ?0VΔC(0 �0
1
"0

(
1 − 5∗0

"0

)
+ o

(
5∗0
"0

)
,

(36)

where we have introduced 5∗0 =
∑
1 501, and the parameter ?0 representing the frequency with

which an individual is interacting with other individuals in community 0. Here �0/( 5∗0 + "0)
is the probability to meet an infected individual when interacting with an individual in the
community.

4.2 Inter-community contributions: incoming visitors
The contributions to the infections in community 0 from infected individuals visiting from
another community 1 are:

(0 × ?0
510

5∗0 + "0

�1

"1

× VΔC,

= ?0VΔC(0 �1
510

"0"1

(
1 − 5∗0

"0

)
+ o

(
5∗0
"0

)
,

(37)

where we have assumed that 510 �1/"1 is the number of infected visitors from 1.

4.3 Inter-community contributions: returning natives
The contributions coming from individuals from community 0 infected while visiting another
community 1 are:

501
(0

"0

× ?1
�1

5∗1 + "1

× VΔC,

= ?1VΔC(0 �1
501

"0"1

(
1 − 5∗1

"0

)
+ o

(
5∗1
"0

)
,

(38)

where we have assumed that 501(0/"0 is the number of susceptible visitors from 0 visiting
community 1.

Neglecting the 5∗0/"0 terms, we obtain after adding all contributions:

d(0
dC

= −(0
∑
1

V01
�1

"1

, (39)

with:
∀0 ∈ È1, #É, V00 = V?0,

∀0 < 1, V01 = V
501?1 + 510?0

"0

.
(40)

Note that in general, the matrix [V01] is not symmetric. In the manuscript, we make the
assumption that the interaction frequency is the same in all communities, namely ?0 = ?.
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5 Spreading with a wave of infection

5.1 ODE for the wave profile
We consider the SIR model on a 2d lattice, with infections limited to nearest-neighbors, and
with uniform population "0 = " . For the sake of simplicity, we will consider the rescaled (,
�, ' variables with ( + � + ' = " = 1. We write:

d(8, 9
dC

= −(8, 9
(
U�8, 9 + V

(
�8−1, 9 + �8+1, 9 + �8, 9−1 + �8, 9+1

) )
,

d�8, 9
dC

= −
d(8, 9

dC
− W�8, 9 ,

d'8, 9
dC

= W�8, 9 ,

(41)

where 8 and 9 denote the indices along the first and second dimensions. We introduce the
discrete laplacian:

Δ�8, 9 =

(
�8−1, 9 + �8+1, 9 − 2�8, 9

)
+

(
�8, 9−1 + �8, 9+1 − 2�8, 9

)
;2

,

where ; is the lattice spacing. Equation (41) becomes:
d(8, 9

dC
= −V(8, 9

(
0�8, 9 + ;2Δ�8, 9

)
,

d�8, 9
dC

= −
d(8, 9

dC
− W�8, 9 ,

d'8, 9
dC

= W�8, 9 ,

(42)

where 0 = 4 + U/V. In this study, we will consider U = V, so 0 = 5. In the continuum we have:

mC( = −V(
(
0� + ;2(m2

G + m2
H )�

)
,

mC � = −mC( − W�,
mC' = W�,

(43)

Limiting ourselves to solutions which only depend on one space variable, namely ((C, G, H) =
((C, G), and after rescaling the time variable, C ← C (0V)−1, the space variable, G ← G;0−1/2, and
the recovery rate, W ← (0V)W, we obtain:

mC( = −(
(
� + m2

G �

)
,

mC � = (

(
� + m2

G �

)
− W�.

(44)

We are interested in the traveling front solutions, namely ((G, C) = 6(G − EC) and � (G, C) =
ℎ(G − EC), where E is the velocity of the traveling waves. Here, 6(I) and ℎ(I) are the shape
functions for the propagating front. Making those substituations in equation (44), we obtain the
ODE:

5 ′ = −E
6
5 +

(
W

6
− 1

)
ℎ,

ℎ′ = 5 ,

6′ = − 5 + W
E
ℎ.

(45)
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5.2 Velocity selection
The solution to equation (45) specifies the shape functions 6 and ℎ for a traveling front solution
with velocity E. We now characterize what are the admissible velocities. We start by computing
the jacobian of the function on the right-handside of equation (45):

� =
©«
− E
6

W

6
− 1 −Wℎ−E 5

62

1 0 0
−1 W

E
0

ª®®¬ , (46)

and its characteristic polynomial:
%(_) = det(� − _�),

= −_2
(
_ + E

6

)
+

(
_ − W

E

) Wℎ − E 5
62 + _

(
W

6
− 1

)
.

(47)

The fixed points of the ODE in equation (45) are of the form (0, 0, 6), with 6 ∈ [0, 1]. At
those points, there is one zero eigenvalue, and two eigenvalues satisfying the equation:

_ + 1 − W/6
_

= −E
6
. (48)

The fraction of susceptible individuals ((G, C) is a decreasing function of C. Thus it forbids
any oscillatory behavior in the shape function 6(I). Therefore the two eigenvalues must be real,
which results in the condition:

Δ =
E2

62 − 4
(
1 − W

6

)
≥ 0 ⇔ E ≥ 26

√
1 − W

6
. (49)

The function in the right-handside of the inequality is an increasing function of 6. Fur-
thermore, the fixed point (0, 0, 1) must belong to the front solution since it corresponds to
the unstable initial condition with only susceptible individuals. Therefore, enforcing that all
admissible fixed points have real eigenvalues yields the condition:

E ≥ E2 = 2
√

1 − W. (50)

5.3 Upper bound on the velocity
Since ( ≤ 1, by retracing the steps from equation (41) to equation (44) we have that:

mC � ≤ m2
G � + (1 − W)� . (51)

Let us define �̃, which is a solution to
mC �̃ = m

2
G �̃ + (1 − W) �̃ . (52)

Starting from the same initial condition, � (0, G) = �̃ (0, G), we must have at all times:
� (G, C) ≤ �̃ (G, C). (53)

The function q(G) = (1 − W)G satisfies the condition [41] q′(G) ≤ q′(0) for all G ∈
[0, 1], therefore equation (52) falls into the Fisher-Kolmogorov-Petrovsky-Piscunov (FKPP)
universality class [41–44]. In particular, for a step initial condition, �̃ (C, G) evolves into a
moving front with velocity E = E2 = 2

√
q′(0) = 2

√
1 − W.

Because of the inequality in equation (53), any moving front � must move at a velocity
smaller than the velocity of the moving front �̃. Otherwise, the � front would eventually pass
the �̃ front, which violates equation (53). Therefore, the velocity of the � front must satisfy:

E ≤ E2 . (54)
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Figure S5 – Traveling wave solutions to equation (44). (a). Position of the moving front as a function of time,
<(C), for values of W = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.98. (b) Fitted velocities collapse on the
theoretical E = E2 .

5.4 Pulled wave
Combining equations (50) and (54), we obtain that anymoving front resulting from equation (44)
moves at velocity E = E2 = 2

√
1 − W. Therefore it falls in the FKPP universality class and it is a

pulled wave.
We have solved numerically equation (44) for several values of W, starting from the initial

condition: ((0, G) = 1, � (0, G) = 0, ∀G > 0 and ((0, 0) = 0, � (0, 0) = 1. In Figure S5a, we
show the position of the moving front as a function of time. The position of the moving front,
<(C), was defined such that ((C, <(C)) = (1 + (∞)/2. Clearly, after a transient regime, the
solution evolves into a moving front. We plotted the velocity E as a function of W in Figure S5b,
which agrees with the theoretical prediction E = E2 = 2

√
1 − W.

5.5 Shape of the traveling front
Since a traveling front solution must travel at velocity E2, it follows that the shape is uniquely
determined by the recovery rate W. The shape functions 6 and ℎ satisfy the ODE:

5 ′ = −
2
√

1 − W
6

5 +
(
W

6
− 1

)
ℎ,

ℎ′ = 5 ,

6′ = − 5 + W

2
√

1 − W
ℎ.

(55)

The shape of the traveling front must be such that:
lim
I→−∞

6(I) = lim
C→+∞

((C, G) = (∞,

lim
I→−∞

ℎ(I) = lim
C→+∞

� (C, G) = 0.
and


lim
I→+∞

6(I) = ((0, G) = 1,

lim
I→+∞

ℎ(I) = � (0, G) = 0,
(56)

We determine the residual fraction of susceptible individuals, (∞, using the parametrization
in equation (27) with D = 4−a, and solving:

1 = 4−a∞ + Wa∞. (57)

Since the last equation is solved numerically, it is useful to derive two bounds. First, the
condition (∞ > 0 yields the condition a∞ < a∗∗ = 1/W. Second, the function 4−G + WG − 1 is
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Figure S6 – Shape of the SIR traveling waves: (a) 6(I) and (b) ℎ(I), obtained by solving equation (55) for values
of W = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

strictly negative in the interval ]0, a∞ [, with a minimum reached at a∗ = − ln W. Thus we have
a∗ < a∞ < a∗∗.

Following the stability analysis introduced hereabove, (0, 0, 6) is an unstable fixed point
of the trajectory (the jacobian has one positive eigenvalue) as long as 6 < W. Therefore,
-)
5
= (0, 0, 1) is a stable fixed point of the trajectory (the jacobian has only negative eigenvalues),

whereas -)
8
= (0, 0, (∞) is an unstable fixed point. We can therefore solve the ODE in

equation (55) with the initial condition - = -8 and let the trajectory converge toward - 5 . Wave
shapes for several values of W are shown in Figure S6.

6 Level statistics and connectedness

6.1 The level spacing distribution of the flux matrix
We consider the level statistics of the symmetric matrix �01 = ( 501 + 510)/("0"1), where 501
is the number of people residing in community 0 visiting community 1 during one day and "0

is the total population of site 0, see equation (19). The symmetric flux is related to the infectivity
matrix through V01 = ?V�01"1, where the factor ?V is estimated by a fit to the SafeGraph
mobility data over  = 353 days from March 1st 2020 to February 16th 2021 and is given by
?V = 0.05 ± 0.02, as is shown in Figure 2b of the main text. Following common practices in
the treatment of random matrices [45], the diagonal elements � (:)00 of the  matrices of size
#×# were drawn from a generic gamma distribution with mean `(:)0 = (# − 1)−1 ∑

1≠0 �
(:)
01

and variance `(:)0 /2 {: = 1, 2, . . . ,  }. To obtain the unfolded spectra [45], the eigenvalues
�0: are re-scaled as

n0: = #�̄ (�0: ), 0 = 1, 2, . . . , #, : = 1, 2, . . . ,  (58)

where � (�) is the empirical level staircase function � (�) ≡ (# )−1 ∑
0: Θ(� − �0: ) (i.e. the

cumulative eigenvalue probability function) and �̄ is its smoothed interpolation [52–54]. The
nearest level spacings B0: ≡ n0+1,: − n0,: are then normalized so that the average level spacing
across the entire spectrum is equal to one for all values of ::

B̄0: =

#−1∑
0=1

B0:/(# − 1) = 1. (59)

Figure S7a shows the level spacing distribution of the unfolded spectrum, ?(B)≡#−1
B

∑#B

8=1 X(B−
B8), where #B is the number of independent spacings (for  matrices, #B =  (#−1)). The level
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statistics of the full matrix, Figure S7a, is significantly different than the level statistics obtained
after all the links of distance larger than 170 km have been omitted (Figure S7b). Clearly, the
empirical distribution ?(B) interpolates between the Wigner-Dyson distribution of the GOE
ensemble (more precisely, the Wigner surmise [45]) that exhibits linear level repulsion typical
of extended correlated states:

?(B) = (Bc/2)4−B2c/4 (B≥0), (60)

and the Poisson distribution describing independent localized states:

?(B) = exp(−B) (B≥0) (61)

In both equations (60) and (61), the average level spacing is normalized to unity: 〈B〉 =∫ ∞
0 dB B?(B) = 1.
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Figure S7 – The unfolded level spacing B8 = Y8+1 − Y8 . (a) The level spacing distribution of the full matrix,
i.e. without removing any links. (b) The level spacing of the truncated matrix 32≤170 km. Here Y8 = �̄ (�8)
{8 = 1, 2, . . . , #}, where �̄ (�) is the smoothed energy staircase function. The GOE level spacing (equation (60))
is plotted in red and the Poisson (equation (61)) in black. (c) The relative epidemic size Ω/Ω0 as a function of
32 . The estimated relative error is ΔΩ/Ω0 = 7 %. Ω0 denotes the unrestricted epidemic size. (d) The entropy
((SafeGraph) as a function of the cutoff distance 32 in the range 170-12000 km. The maximal value of 32
corresponds to a full flux matrix.

6.2 KL divergence and the level spacing entropy
To quantify the difference between Figure S7a and Figure S7b, we have calculated the Kullback-
Leibler divergence between the empirical spacing distribution, ?(B), and the Poisson distribution

� (SafeGraph| |Poisson) = 1 +
#B∑
8=1

?(B8) log[?(B8)] = 1 − ((SafeGraph) (62)

where � is the KL divergence and ( is the entropy of ?(B). The KL divergence of the full
matrix is then � ' 0.11. The KL divergence of the truncated matrix, that shows significantly
less level repulsion, and is closer to Poisson statistics, is smaller than that of the full matrix by a
factor of three: � ' 0.04. The KL divergence between the GOE and the Poisson distributions
is

� (GOE| |Poisson) = c
2

∫ ∞

0
3BB exp(−B2c/4)

[
log(Bc/2) − cB2/4 + B

]
,

= (log c − W� )/2,
= 0.283057,
≡ �0

(63)
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where W� = 0.57721 . . . is the Euler constant. Therefore, in terms relative to �0 we ob-
tain: �/�0 = {0.39, 0.12} for the full and the truncated matrices respectively. Thus,
� (SafeGraph| |Poisson) is smaller than �0 and approaches zero as links are being removed.
Equivalently, since (i) the entropy of the Poisson distribution is equal to its average 〈B〉 = 1 and
(ii) the entropy of Wigner-Dyson distribution is 1− �0 ' 0.72, the level spacing entropy varies
in the range 1 − �0 < ((SafeGraph)≤1 and it approaches unity as links are removed and the
states get localized.

The entropy as a function of the cutoff distance 32 is shown in Figure S7d. The distribution
?(B) is found by (i) removing all links of distance larger than 32 (ii) unfolding the spectra
of the ensemble of  truncated matrices and (iii) repeating the procedure for each value
of 32. The corresponding size of the epidemic Ω(∞) and its error ΔΩ are estimated by
solving equations (29) and (30) for each one of the truncated matrices and then calculating
the mean and standard deviation over  samples. In the numerical computation we assumed
a recovery rate W = 0.125 d−1 and initial fraction of infections n = 10−4 uniform for all
the communities. The epidemic size Ω/Ω0 as a function of 32, relative to the value of the
unrestricted epidemic size Ω0 (i.e. for the case of a full untruncated matrix), is shown in
Figure S7c. Thus, a cutoff distance of 32 ' 500 km leads to a 10 % reduction in the epidemic
size. Similarly, 32 ' 200 km reduces the epidemic size by 25 %. These results are in accordance
with the time evolution of the epidemic as is presented in Figure 3b of the main text.

6.3 Connectedness and epidemic size
The crossover from Wigner-Dyson to Poisson distribution as links between communities are
being successively removed, suggests a policy of isolation which can lead to an effective
reduction of the epidemic size. Edges connecting vertices 0 and 1 can be removed in several
ways. For example, (i) according to the geographical distance 3 (0, 1) as has already been
done in section 6.2, (ii) according to the “nominal” distance |0 − 1 |, or (iii) by using the edge-
betweenness centrality index, as proposed by Girvan and Newman [49]. Note, that in each one
of these cases, one can as well consider a moderated mitigation policy: instead of eliminating
links completely, one can impose constraints on the flux of people that are allowed to commute
via central pre-determined links.
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Figure S8 – (a) The epidemic size Ω/Ω0 versus the relative number of cuts #2/#/(# − 1) for the 3 mitigation
methods: distance cutoff, bandwidth, and edge-betweenness centrality. Ω0 is the epidemic size for #2 = 0. (b) A
comparison of the entropy versus the relative number of cuts for the three mitigation method.

To study mitigation according to the nominal distance |0 − 1 |, we consider the ensemble
of banded matrices �01 with half-bandwidth �≡max�01≠0 |0 − 1 |, such that the number of
non-zero diagonals is 2� + 1 irrespective of the underlying physical distance. The increase of
Ω/Ω0 as a function of �, along with a corresponding decrease of the entropy ((SafeGraph),
is shown in Figure 5d of the main text. Comparing to Figure 5c of the main text, a reduction
of 10 % in Ω/Ω0 amounts to entropy values of ( = {0.94, 0.98} for the geographical and
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nominal cutoffs, respectively. One may argue that mitigation based on “nominal” distance is
meaningless, because such a distance changes under the permutations of sites. Indeed, a certain
linkmay either be kept as is, or be omitted, according to an arbitrary re-ordering of communities.
However, performing such permutation only reshuffles the matrices of the random ensemble
among themselves. Consequently, for  , #�1, the level statistics and the resulting epidemic
size are hardly affected.

Centrality indices have been used for detecting the modular structure of social and biological
networks [49, 50]. The edge-betweenness centrality of edge (0, 1) is defined as [51]: � (0, 1) =∑
CB fCB (0, 1)/fCB, where (C, B) stands for “target” and “source” vertices, respectively. Here, fCB

are shortest paths going C←B and fCB (0, 1) are such paths which, in addition, go along edge
(0, 1). The entries fCB are weighted by the flux that they can carry (otherwise, unweighted
paths take only binary values fCB = 0, 1). The summation is carried over all (C, B) pairs
that are different from (0, 1). As observed in [49], edges running between loosely-connected
communities should have high values of �.

The scheme proposed in [49] for identifying communities in a network is as follows: (i)
calculate � for all edges of the network (ii) remove the edge with highest � (iii) re-calculate �
for all edges affected by the removal. (iv) Repeat from step (ii) until no edges remain. Here, we
are using the same procedure for mitigating the epidemic. There are few practical modifications
though:

• Edge-betweenness is calculated for the mean matrix �01 =
∑
: �
(:)
01
/ . The removal of

links is then applied to each matrix separately.

• For a faster computation of step (ii), edges are removed in chunks rather than one-by-one.
This is done with the help of the efficient shareware package MatlabBGL that is able to
rank all the edges of � in a single instance. The initial size of a chunk is 10000 (about
1 % of the total number of links in �) and it then decreases adaptively.

• The computation terminates when the resulting KL divergence is sufficiently close to
zero. Our modified procedure is clearly sub-optimal. We found, however, that compared
to the exhaustive search (i)-(iii), the results almost don’t change because the variations of
the KL divergence at the initial stages are relatively small.

The entropy ((SafeGraph) and the size of epidemic Ω/Ω0 as a function of the number of
removed links, #2 (i.e. number of cuts), are shown in Figure S8. The size of epidemic drops
abruptly when the relative number of cuts 2 ≡ #2/#/(# − 1) exceeds the value 2 = 0.6 (from
a relative size of 95 % at 2 = 0.6 to 75 % at 2 = 0.7). This drop is accompanied by the increase
of entropy around the same value of 2. Thus, mitigation based on edge-betweenness performs
better than either the distance or the nominal cutoffs, none of which exhibits a similar abrupt
crossover. The betweenness index outperforms the other two methods mainly because it is
sensitive to the flux that is flowing through links. The “transition” at 2 = 0.6 is expected to
become much sharper as # � 1 approaches the thermodynamic limit. The evolution of ?(B)
as links are gradually being removed is demonstrated in movies S5-S7.
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