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Wastewater sequencing uncovers early, cryptic SARS-CoV-2 variant transmission  1 
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 84 
Summary 85 
  86 
As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for 87 
public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, 88 
especially in areas with limited resources, participation, or testing/sequencing capacity, which 89 
can also introduce biases. SARS-CoV-2 RNA concentration in wastewater successfully tracks 90 
regional infection dynamics and provides less biased abundance estimates than clinical testing. 91 
Tracking virus genomic sequences in wastewater would improve community prevalence 92 
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estimates and detect emerging variants. However, two factors limit wastewater-based genomic 93 
surveillance: low-quality sequence data and inability to estimate relative lineage abundance in 94 
mixed samples. Here, we resolve these critical issues to perform a high-resolution, 295-day 95 
wastewater and clinical sequencing effort, in the controlled environment of a large university 96 
campus and the broader context of the surrounding county. We develop and deploy improved 97 
virus concentration protocols and deconvolution software that fully resolve multiple virus strains 98 
from wastewater. We detect emerging variants of concern up to 14 days earlier in wastewater 99 
samples, and identify multiple instances of virus spread not captured by clinical genomic 100 
surveillance. Our study provides a scalable solution for wastewater genomic surveillance that 101 
allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.  102 
 103 
Introduction 104 
 105 
SARS-CoV-2 continues to evolve, producing diverse new lineages1. Emerging variants of 106 
concern (VOCs) and variants of interest (VOIs) demonstrate increased transmissibility, disease 107 
severity, and/or immune escape2. Timely and accurate quantification of local prevalence of 108 
SARS-CoV-2 variants is thus essential for effective public health measures. However, existing 109 
strategies for variant detection based on virus genome sequencing of biospecimens obtained from 110 
clinical testing (“clinical genomic surveillance”) are expensive, inefficient, and have sampling 111 
bias because of systemic healthcare disparities, particularly in poor and underserved 112 
communities3–5.  113 
 114 
In contrast, PCR-based wastewater surveillance of SARS-CoV-2 RNA is not subject to clinical 115 
testing biases and can track temporal changes in overall SARS-CoV-2 prevalence in a region 6–8, 116 
but cannot identify epidemiological transmission links or monitor virus lineage prevalence, 117 
which require genome sequence information. Virus genome sequencing from wastewater 118 
(“wastewater genomic surveillance”) has the potential to cost-effectively capture community 119 
virus spread9,10, acting as a surrogate to clinical surveillance in elucidating lineage geospatial 120 
distributions and track emerging SARS-CoV-2 variants (including new variants for which 121 
targeted assays do not yet exist), and provide genome sequence data needed for transmission 122 
network analysis and interpretation11. 123 
 124 
However, wastewater genomic surveillance is technically challenging10. Low viral loads, heavily 125 
fragmented RNA, and PCR inhibitors in complex environmental samples lead to poor 126 
sequencing coverage12,13. Obtaining high quality sequences from samples with low viral load and 127 
elevated levels of PCR inhibitors remains an outstanding technical challenge in implementation 128 
of wastewater genomic surveillance at scale. Additionally, tools for SARS-CoV-2 lineage 129 
classification, such as pangolin14 and UShER15, were designed for clinical samples containing a 130 
single dominant variant, and cannot estimate relative abundances of multiple SARS-CoV-2 131 
lineages in samples with virus mixtures such as wastewater.  132 
  133 
Here, we report a high-resolution approach to study community virus transmission using 134 
wastewater genomic surveillance, leveraging several technical advances in wastewater virus 135 
concentration and nucleic acid sequencing, and a computational tool for resolving multiple 136 
SARS-CoV-2 lineages in short-read sequence data from a mixed sample (lineage deconvolution). 137 
We obtained near 95% genome coverage even for samples with low viral load, compared with 138 
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40% or below from previous studies11-13, a key advance that allowed us to build a robust pipeline 139 
to monitor virus lineage prevalence in community wastewater.  140 
 141 
Because places of communal living, such as university campuses, are considered key sites for 142 
virus spread and represent well-controlled and relatively isolated environments, they are ideal for 143 
comparing the relative utility of clinical and wastewater genomic surveillance16. Accordingly, we 144 
conducted a high-resolution, longitudinal wastewater genomic surveillance effort at the 145 
University of California San Diego (UCSD) campus, in parallel with clinical genomic 146 
surveillance from nasal swabs in the local community, from November 2020 to September 2021: 147 
ten months that effectively capture the surges in the region caused by the three main VOCs (as 148 
determined by US CDC) in the United States, Epsilon, Alpha and Delta1. In more recent San 149 
Diego-wide data collected from September 2021 to February 2022, we studied ongoing 150 
transmission of the Delta variant and the rapid spread of the Omicron variant and its sublineages.  151 
 152 
Our wastewater genomic surveillance approach identified VOCs up to 2 weeks prior to detection 153 
through clinical genomic surveillance, even though a large proportion of clinical SARS-CoV-2 154 
samples are sequenced in San Diego relative to other cities in the United States. In addition to 155 
providing a detailed history of community virus spread, wastewater genomic surveillance also 156 
identified multiple instances of cryptic community transmission not observed through clinical 157 
genomic surveillance. Matching wastewater and clinical genome sequences provided 158 
epidemiological information identifying specific transmission events. Our results demonstrate 159 
the viability of wastewater genomic surveillance at scale, enabling early detection and tracking 160 
of virus lineages and guiding clinical genomic surveillance efforts. This work informed public 161 
health guidance and interventions on the UCSD campus as well as San Diego county in real 162 
time, and our data and analyses were disseminated to both public health officials as well as the 163 
general public via custom dashboards (see Data Availability for links).   164 
 165 
Results 166 
 167 
To directly compare wastewater genomic surveillance to clinical surveillance, we conducted a 168 
large-scale SARS-CoV-2 genome sequencing study from wastewater samples collected daily 169 
from 131 wastewater samplers covering 360 campus buildings, in many cases reaching single 170 
building-level resolution. To identify epidemiological transmission links and monitor lineages in 171 
the population, we sequenced all SARS-CoV-2 positive clinical and wastewater samples from 172 
campus using a miniaturized tiled-amplicon sequencing approach. During this period of this 173 
study, we collected and analyzed 21,383 wastewater samples: 19,944 wastewater samples from 174 
the UCSD campus, and, for comparison, 1,475 wastewater samples from the greater San Diego 175 
area, including the Point Loma wastewater treatment plant (the primary wastewater treatment 176 
plant for the county with a catchment size of 2.3 million people) and 17 public schools spanning 177 
four San Diego school districts17. We compared sequencing of 600 campus wastewater samples 178 
to 759 genomes obtained from campus clinical swabs (46.2% of all positive tests on campus), all 179 
processed by the CALM and EXCITE CLIA labs at UCSD. In addition, we compared 31,149 180 
genomes obtained from clinical genomic surveillance of the greater San Diego community  to 181 
sequencing of 837 wastewater samples collected from San Diego county (including those from 182 
the UCSD campus) during the same period.  183 
 184 
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 185 
High-resolution spatial sampling reveals micro-scale community spread 186 
 187 
We implemented a GIS (geographic information system)-enabled building-level wastewater 188 
surveillance system to cover 360 buildings on the UCSD campus (Figure 1A). During the period 189 
of daily wastewater sampling, approximately 10,000 students lived on campus and 25,000 190 
individuals were on campus on a daily basis. We found that wastewater test positivity correlated 191 
strongly with the number of clinical positives (Figure 1B and Extended Data Figure 1), 192 
showing that wastewater effectively captures the community infection dynamics based on total 193 
viral load. This is also consistent with our past studies that showed SARS-CoV-2 RNA can be 194 
detected ~85% of the time downstream from buildings containing individuals known to be 195 
infected9.  196 
 197 
Unlike qPCR-based mutant surveillance, genomic surveillance using full-length virus genomes 198 
can detect which strains of SARS-CoV-2 are circulating in the population, and can identify 199 
potential transmission links between infected individuals18,19. While targeted qPCR mutant 200 
panels have the ability to detect specific lineages in wastewater, they only target a small set of 201 
mutations that must be known beforehand in addition to the development and validation time 202 
before implementation. Furthermore, they cannot provide sub-lineage resolution (for instance, 203 
BA.1 v. BA.2 sublineage of Omicron) and will fail altogether if a sublineage loses the specific 204 
mutation targeted by the qPCR assay. To test the utility of wastewater genomic surveillance for 205 
studying virus spread in the community, we obtained near complete virus genomes for 206 
wastewater samples with cycle quantification (Cq) values as high as 38 (median genome 207 
coverage: 96.49% [75.67% - 100.00%], Extended Data Figure 2). However, using two common 208 
metrics of virus diversity, Shannon entropy (a measure of the uncertainty associated with 209 
randomly sampling an allele) and richness (the number of single nucleotide variant, or SNV, 210 
sites)20, we found that SARS-CoV-2 genetic diversity is significantly greater in wastewater 211 
samples than clinical samples (Figure 1C, Mann-Whitney U test, p<0.001 for each, with effect 212 
size r=0.99, 0.97 for Shannon Entropy and Richness, respectively). This suggests that multiple 213 
virus lineages, likely shed from different infected individuals, are often present in wastewater 214 
samples.  215 
 216 

 217 
Figure 1: Campus sampling locations and SARS-CoV-2 testing statistics. A. Geospatial 218 
distribution of the 131 actively deployed wastewater autosamplers and the corresponding 360 219 
university buildings on the campus sewer network. Building-specific data have been de-220 
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identified in accordance with university reporting policies. B. Campus wastewater and diagnostic 221 
testing statistics over the 295 day sampling period (WW = wastewater, positivity is the fraction 222 
of WW samplers with a positive qPCR signal). C.Virus diversity in wastewater and clinical 223 
samples: Boxplots of Shannon entropy (top) and richness (bottom) for each sample type. 224 
 225 
Sample deconvolution robustly recovers the abundance of SARS-CoV-2 lineages in mixed 226 
samples 227 
 228 
Wastewater systems aggregate stool, urine, and other biological waste products carrying viruses 229 
from multiple infected individuals in the community in a single location, allowing for sampling 230 
of virus mixtures that are representative of local lineage prevalence. However, existing methods 231 
for determining virus lineage from sequencing are intended for non-mixed clinical samples and 232 
can only be used to identify a single (dominant) lineage per sample. 233 
 234 
To fully capture the virus diversity in community biospecimens, we developed Freyja, a tool to 235 
estimate the relative abundance of virus lineages in a mixed sample. Freyja uses a “barcode” 236 
library of lineage-defining mutations to represent each SARS-CoV-2 lineage in the global 237 
phylogeny21(Figure 2A). To encode each sample, Freyja stores the SNV frequencies (proportion 238 
of reads at a site that contain the SNV) for each of the lineage-defining mutations (Figure 2B, 239 
top). Since SNV frequencies at positions with greater sequencing depth more accurately estimate 240 
the true mutation frequency, Freyja recovers relative lineage abundance by solving a depth-241 
weighted least absolute deviation regression problem, a mixed sample analog of minimizing the 242 
edit distance between sequences and a reference (Figure 2B, bottom). To ensure results are 243 
meaningful, Freyja constrains the solution space such that each lineage abundance value is non-244 
negative, and overall lineage abundance sums to one. Importantly, Freyja performs site-specific 245 
weighting to account for non-constant variance in measured SNV frequency across sites, 246 
enabling prioritization of information at each site as a function of sequencing depth. Read depths 247 
are log-transformed, providing robustness to common attributes of real sequencing data such as 248 
heavily skewed read depth across amplicons. 249 
 250 
To validate Freyja, we sequenced “spike-in” synthetic mixtures from five key SARS-CoV-2 251 
lineages (Lineage A, Beta, Delta, Epsilon, and Gamma) at proportions ranging from 5% to 100% 252 
in each sample, with between 1 and 5 different lineages per mixture (Figure 2C, and see Table 253 
1). We found that Freyja robustly recovered the expected lineage abundances for all mixtures, 254 
even for lineages at 5% abundance (Figure 2D, and see Extended Data Figure 3 for lineage 255 
specific predictions).To further validate Freyja, we used wastewater samples from the UCSD 256 
isolation dorms as well as Point Loma wastewater treatment plant, collection sites likely to 257 
contain mixed-lineage samples, to compare Freyja-detected lineages with qPCR testing for 8 258 
mutations associated with different variants of concern (N501Y, DelHV69/70, DelY144, K417N, 259 
K417T, E484Q, P681R and L452R, Figure 2E). We found that Freyja consistently identified the 260 
same lineages as qPCR testing, but, as expected, also identified additional lineages with SNVs 261 
not included in our qPCR panel that were known to be circulating in San Diego at the time of 262 
collection. Combined, these results show that Freyja robustly estimates viral lineage abundance 263 
from samples containing a mixture of lineages, including synthetic virus mixtures and field 264 
wastewater collections.    265 
 266 
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To compare Freyja with other wastewater analysis pipelines, we tested the performance of other 267 
wastewater deconvolution methods including the method from Baaijens et al.12, cojac22, and LCS 268 
23 using the spike-in mixtures (Extended Data Figure 4). We found that Freyja greatly 269 
outperforms other methods in terms of accuracy, false positive rate, and computational 270 
efficiency. The method from Baaijens et al. required greater than ten times more computation 271 
time per sample relative to Freyja (~13.2 minutes vs ~1.1 minutes per sample, respectively). 272 
Although cojac was fast, the small amplicon length used for the spike-in mixtures caused cojac 273 
to fail to identify most of the variants entirely, while LCS failed to return estimates within two 274 
days.    275 
 276 

 277 
 278 
Figure 2: Sample deconvolution robustly recovers relative virus abundance. A. Subset of 279 
lineage defining mutation “barcode” matrix. Each row represents one lineage (out of >1000 280 
lineages included in the UShER global phylogenetic tree), and individual nucleotide mutations 281 
are represented as columns.  B. Single nucleotide variant frequencies obtained from iVar used for 282 
recovering relative abundance of each lineage. C. Schematic of the spike-in validation 283 
experiment. D. Depth-weighted de-mixing estimates of the virus abundance versus 284 
expected/known abundance. Details on lineage specific predictions are provided in Extended 285 
Data Figure 3. E. Comparison of wastewater sample deconvolution with VOC qPCR panel, with 286 
lookup table (bottom) showing amino acid mutations corresponding to each variant.  287 
 288 
Detection of early and cryptic community transmission in wastewater 289 
  290 
SARS-CoV-2 RNA concentrations in wastewater have been shown to be an early indicator of 291 
rising COVID-19 community incidence9,24 (and see Extended Data Figure 5A), but whether 292 
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wastewater can be used to detect emerging variants, including VOCs and VOIs, prior to their 293 
observation in clinical surveillance is unknown. To test if wastewater can enable early detection 294 
of emerging lineages, we applied Freyja to our wastewater sequencing data and compared the 295 
collection date of VOC positive samples from wastewater with the collection dates of samples 296 
from clinical genomic surveillance (Figure 3A). With only 2.6% as many sequenced wastewater 297 
samples as sequenced clinical samples, we detected the Alpha and Delta VOC lineages in 298 
wastewater genomic surveillance up to 14 days prior to their first detection in genomic clinical 299 
surveillance (Epsilon was circulating at the start of wastewater collection, and thus could not be 300 
detected early). To further quantify our uncertainty in prevalence estimates, we used a fast 301 
bootstrapping approach (Extended Data Figure 6) and found that the resampled distributions 302 
did not include zero abundance. Since emerging VOC lineages may evade immune responses or 303 
lessen the effectiveness of public health interventions18, this early detection provides additional 304 
time to make necessary adjustments to existing countermeasures.     305 
 306 
To test if wastewater genomic surveillance can identify changes in the abundance of circulating 307 
lineages, we compared VOC detection rates in clinical and wastewater sequencing over time. We 308 
found that both wastewater and clinical genomic surveillance tracked changes in lineage 309 
abundance, but increases in lineage detection frequency were generally observed first in 310 
wastewater surveillance. For example, for the Epsilon variant, which was first detected in San 311 
Diego in September of 2020, we observed increases in detection frequency in wastewater 312 
approximately 5 days prior to the corresponding increase in clinical genomic surveillance data 313 
(Figure 3A, see Methods). We noticed varying periods of ongoing lineage detection across 314 
VOCs relative to clinical surveillance, possibly due to different virus shedding characteristics 315 
across lineages 25. For Epsilon specifically, elevated sampling density on the UCSD campus 316 
relative to elsewhere in the county early on in the experiment may have biased San Diego wide 317 
detection trends towards campus trends, particularly during the end of the wave. We also 318 
observed clear signatures of times with elevated travel, as seen in the pulsing of Alpha detections 319 
in wastewater around the end of holidays and school breaks. During these periods as well as 320 
other times of mass student arrival, students were mandated to test immediately upon arrival 321 
before they moved into their respective on-campus housing. In late March of 2021 following the 322 
university break, mandated clinical testing identified spread of the Alpha variant exclusively in 323 
off-campus residents (see Figure 1B), suggesting that campus mitigation protocols kept the 324 
Alpha outbreak from spreading on campus during this period.  325 
 326 
To study the effectiveness of wastewater genomic surveillance at a smaller community scale, we 327 
restricted our analysis to samples from the UCSD campus. We found that wastewater genomic 328 
surveillance consistently identified the three major VOCs (Epsilon, Alpha, and Delta) throughout 329 
their period of occurrence, despite detection gaps of one month or longer in clinical surveillance 330 
that included regular asymptomatic testing, longer than the expected signal due to extended virus 331 
shedding 26–28 (Figure 3B). During these gaps, positive samples were collected from multiple 332 
distinct locations, with most locations not repeated, suggesting that this continued detection in 333 
wastewater was not simply due to extended shedding. From mid-December to late-March, the 334 
Alpha variant was detected more than once per week on average in wastewater but was not 335 
detected by clinical surveillance. Similarly, wastewater surveillance detected continued Delta 336 
transmission from mid-April to mid-June, but no cases were identified by clinical surveillance. 337 
This explains in part the long tails of wastewater positivity on campus relative to clinical 338 
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surveillance on campus (Figure 1B), in which we control for extended shedding by excluding 339 
samples from campus isolation dorms (see Methods for details). The high wastewater positivity 340 
level in February-March 2020 extends beyond the expected duration of extended shedding, 341 
indicating that cryptic transmission likely played a significant role in campus virus spread during 342 
this period. 343 
 344 

 345 
 346 

Figure 3: Freyja recovers early and cryptic transmission of SARS-CoV-2 variants of 347 
concern A. Timeline and normalized epidemiological curves for VOC detection in both 348 
wastewater and clinical sequences from San Diego County for the 3 major VOCs in circulation 349 
during the sampling period. Both Alpha and Delta are detected first in wastewater before clinical 350 
samples. Markers for clinical detections correspond to the ceiling of the daily detection count 351 
divided by 30 (e.g. 1-30 samples= one marker, 31-60 = two markers) , while wastewater markers 352 
correspond to a single detection. B. Timeline and epidemiological curves for VOC detection in 353 
the campus samples. Markers correspond to a single detection event for both clinical and 354 
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wastewater surveillance. All wastewater detections correspond to an estimated VOC prevalence 355 
of at least 10%.  356 
 357 
To study the effectiveness of wastewater surveillance in detecting and tracking other emerging 358 
variants, we aggregated all wastewater sequencing data to estimate the temporal profile of 359 
community lineage prevalence. We found that estimates of lineage abundance using wastewater 360 
enable early identification of other VOCs/VOIs, even for lineages that are rarely observed in 361 
clinical surveillance (Figure 4). For example, we detected the Mu (B.1.621) variant via 362 
wastewater genomic surveillance on July 27th, nearly four weeks prior to its first detection 363 
through clinical genomic surveillance on campus, on August 23rd (Figure 4A,C). However, 364 
despite persistent Mu detection in campus wastewater throughout July and early August, we did 365 
not detect the Mu variant in clinical or wastewater genomic surveillance on campus in 366 
September, suggesting that local community transmission did not continue. 367 
 368 
To test if Freyja continues to provide representative estimates of lineage prevalence for mixtures 369 
containing closely related lineages, we analyzed the rise of the Delta variant (B.1.617.2) and its 370 
sublineages (AY.*) in San Diego, from June-September 2021 (Extended Data Figure 5B,C). At 371 
both the UCSD campus and the Point Loma wastewater treatment plant, we identified the rapid 372 
emergence of B.1.617.2 and its sublineages (AY.*), along with low but persistent levels of the 373 
P.1 (Gamma) variant. The relative abundances of each of the variants were within 2-fold of 374 
prevalence estimates observed in clinical nasal swab data, suggesting that Freyja effectively 375 
identifies prevalence even for closely related lineages, both at the university and county-scale.  376 
 377 
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 378 
Figure 4: Deconvolution recovers a fine-grained estimate of virus population dynamics. A. 379 
Prevalence of SARS-CoV-2 variants in UCSD clinical surveillance, and B. Variant prevalence in 380 
all clinical samples collected in San Diego County. C,D. Variant prevalence in wastewater at 381 
UCSD as well as the greater San Diego County (includes wastewater samples collected from 382 
Point Loma wastewater treatment plant as well as public schools in the San Diego districts). 383 
Further analysis of Point Loma wastewater samples is shown in Extended Data Figure 5. All 384 
curves show rolling average, window ±10 days. “Other” contains all lineages not designated as 385 
VOCs. Bottom panels show number of sequenced samples per day.  386 
 387 
In more recent data from Point Loma wastewater treatment plant, we identified the Omicron 388 
variant (B.1.1.529 and descendants) at an abundance of near 1.7 % on November 27th, more than 389 
10 days prior to the first clinical detection in San Diego on December 8th (Figure 5A-B). To 390 
confirm these findings, we applied our VOC qPCR panel to the same samples and consistently 391 
detected two mutations associated with the Omicron variant (DelHV69/70 and N501Y) in 392 
samples detected after November 27th, while neither was detected in samples from earlier in 393 
November (Extended Data Table 3, P681R was included to confirm the presence of Delta).  394 
 395 
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To visualize the dynamics of competition between the Delta and Omicron variants, we analyzed 396 
wastewater collected at Point Loma from late September through early February. We found that 397 
upon introduction to the community, Omicron rapidly rose to dominance and reached roughly 398 
95% prevalence by December 26th. During the same period, the estimates for 95% Omicron 399 
abundance in clinical samples tracked via S-gene target failures (SGTFs) was January 7th, 400 
further suggesting wastewater genomic surveillance is a leading indicator of lineage dynamics 401 
for emerging variants (Figure 5A, Extended Data Figure 7). To understand the magnitude of 402 
lineage abundance, we scaled each sample by the measured virus RNA concentration of the 403 
sample (Figure 5B). We observed that the absolute amount of circulating Delta variant remained 404 
largely constant upon the introduction of Omicron, even as it appeared to decrease to a small 405 
fraction of all viruses in the community.  406 
 407 
To study the contribution of individual virus lineages to virus RNA concentration, we further 408 
analyzed the growth dynamics of Delta and Omicron sub-lineages (Figure 5C-D). We found that 409 
the many Delta lineages circulating in October and November were rapidly displaced by the 410 
BA.1 Omicron lineage, which was soon after displaced by the BA.1.1 lineage, suggesting a 411 
significant growth advantage over BA.1 and B.1.1.529. We did not observe significant levels of 412 
any other Omicron sublineages.  413 
 414 
 415 
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 416 
Figure 5: Community wastewater enables early Omicron detection and reveals lineage 417 
dynamics.  A. Prevalence of SARS-CoV-2 VOCs in wastewater collected from the Point Loma 418 
wastewater treatment plant from late September 2021 to early February 2022. B. Estimated VOC 419 
concentrations, prevalence estimates scaled by normalized viral load in wastewater. C,D. 420 
Lineage-specific estimates of prevalence and concentration. All curves show an adaptive rolling 421 
average calculated using a local linear approximation (Savitzky-Golay filter) of virus copies/L, 422 
with window size  ± 1 sampling date.  423 
 424 
Wastewater identifies both known and unknown history of campus infections 425 
 426 
Phylogenetic analysis of virus genomes can be used to identify fine-scale spatial and temporal 427 
transmission networks, but it is unknown if wastewater can be used to further refine possible 428 
sites of transmission, elucidate transmission networks (“who-infected-whom”), or identify 429 
specific infected individuals19. To investigate the scale, structure, and timing of SARS-CoV-2 430 
spread on campus, we reconstructed a maximum likelihood phylogenetic tree for each of the 431 
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major VOCs using all high-quality consensus genomes (see Methods for details) obtained from 432 
the UCSD campus, as well as reference sequences for each lineage obtained elsewhere in the 433 
United States (Figure 6A-C). In each tree, we identified many independent introductions, some 434 
of which led to extended transmission on campus. The resulting virus diversity among the VOCs 435 
present on campus enables ruling out of most transmission links and suggests campus virus 436 
spread consisted of many separate, small outbreaks. 437 
 438 
To analyze the spatial structure of virus spread, we identified collection sites for wastewater 439 
sequences connected to transmission chains on campus, with building-specific resolution 440 
(Figure 6 A-C). We observed multiple small, linked outbreaks clustered in nearby buildings. 441 
Campus isolation protocol required students in congregate living to relocate to an isolation room 442 
and linkages in the wastewater samples from buildings used for isolation reflected this co-443 
location. We also found multiple instances of successive exactly matching sequences from 444 
wastewater collected from a single building, possibly due to continued viral shedding from the 445 
same infected individuals from extended shedding in stool26–28 or a transmission chain in the 446 
building leading to multiple infections by genetically identical viruses. 447 
 448 
To study the temporal delay between clinical and wastewater lineage detection, we compared 449 
collection times of sequences from campus wastewater that match sequences from campus 450 
clinical surveillance (including non-VOC lineages). We found 20 exact sequence matches and 451 
103 near-matches (SNP distance of 3 or less) but did not observe any overall bias towards earlier 452 
or later detection in wastewater (Figure 6D), suggesting that on average, wastewater and clinical 453 
genomic surveillance identify a similar timing of individual detection events. However, despite 454 
current technical difficulties with isolating haplotypes from diverse virus mixtures, more than 455 
half of the clinical-wastewater sequence pairs demonstrate earlier detection in wastewater or are 456 
from the same date.  Importantly, since detection is often delayed or missed by clinical 457 
surveillance, detections occur first in wastewater (despite a loss of sequences due to limited 458 
haplotype recovery), further suggesting that wastewater genomic surveillance can reveal the 459 
presence of specific genome sequences prior to clinical surveillance. 460 
 461 
 462 
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 463 
Figure 6: Wastewater identifies clinically known and unknown virus transmission. A-C. 464 
Maximum likelihood phylogenetic trees for each of the dominant variants of concern using high 465 
quality samples obtained at UCSD, as well as a representative set of sequences from the entire 466 
United States. Wastewater sequences from the same sampler that differ by 1 or fewer SNPs are 467 
denoted with a red asterisk. For all sequences, consensus bases were called at sites with >50% 468 
nucleotide frequency.  Location information is provided for select outbreaks. D. Pairwise 469 
comparison of collection date for matching and near-matching wastewater and nasal swab 470 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 4, 2022. ; https://doi.org/10.1101/2021.12.21.21268143doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.21.21268143
http://creativecommons.org/licenses/by-nd/4.0/


 

16 
 

samples obtained at UCSD. Positive values indicate earlier collection in nasal swabs, and 471 
negative values indicate earlier detection in wastewater.  472 
 473 
Discussion 474 
 475 
We show that improved virus concentration from wastewater, coupled with a method for 476 
resolving multiple lineages from mixed samples, captures community virus lineage prevalence 477 
and enables early detection of emerging variants, often before observation in clinical 478 
surveillance. By sequencing both clinical and wastewater samples from the UCSD campus, we 479 
detect VOCs persistently in wastewater even when their appearance in clinical samples is 480 
intermittent. However, we also found occasions when rarer lineages, like B.1.1.318, were 481 
detected in clinical samples but not in wastewater. This is not unexpected on campus since many 482 
students living off-campus did not contribute to campus wastewater but were still clinically 483 
tested as part of testing mandates and policies. In the larger San Diego community context, this 484 
suggests that we may not be able to identify lineages circulating at low prevalence (< 1%) using 485 
a single wastewater collection site. In addition, we note that clinical sequences identified from 486 
the community may not be observable in the contributing catchment, as precise geolocation of all 487 
clinical samples was not possible. On the other hand, we also observed rare lineages in 488 
wastewater not seen in clinical samples from campus or the community. Since campus testing 489 
mandates are unable to capture all cases (e.g. fully vaccinated individuals were not required to 490 
test and not all community samples were sequenced), rare lineages can be missed. 491 
 492 
The considerable benefits of wastewater surveillance may stem from biases in clinical testing, 493 
including population testing availability and compliance, university quarantine policies, and 494 
asymptomatic transmission, which may distort estimates of virus lineage prevalence from 495 
clinical samples. Wastewater offers less biased and more consistent viral lineage prevalence 496 
estimates, especially in areas with limited access and/or higher testing hesitancy rates, where 497 
limited clinical surveillance can delay detection of emerging variants. Since it requires 498 
considerably fewer samples, it is also more cost-effective than clinical testing, and could serve as 499 
a long-term passive surveillance tool. This is particularly important for developing public health 500 
interventions in low-resource and underserved communities, where widespread clinical genomic 501 
surveillance for SARS-CoV-2 remains limited. 502 
 503 
Wastewater is an information-dense resource for estimating the prevalence of specific viral 504 
lineages, providing a community wide-snapshot not only of overall infection dynamics but of the 505 
rise and fall of specific VOCs. Our method, Freyja, deconvolutes these information-rich mixtures 506 
of virus lineages. For a large catchment area, such as San Diego’s Point Loma wastewater 507 
treatment plant, which covers over 2 million residents, even limited sampling may accurately 508 
estimate lineage prevalence in the population and provide an early warning indicator of the rise 509 
of new VOCs (as evidenced by the detection of Omicron at just over 1% abundance 11 days 510 
ahead of the first local clinical observation). In addition, wastewater genomic surveillance with 511 
building-level resolution provides a detailed description of the structure and dynamics of 512 
community virus transmission, and can identify transmission links. It can be used to better direct 513 
public health interventions, and can do so in real-time when combined with fast-turnaround 514 
sequencing technologies. This high-resolution approach is of particular utility in community 515 
gathering and transit sites, such as schools and airports, as well as sites with highly vulnerable 516 
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individuals, such as nursing homes and hospitals, where spatially resolved monitoring for 517 
directing public health interventions is of great importance.  518 
 519 
As SARS-CoV-2 continues to evolve, the risk of new VOCs remains high and there is a growing 520 
need to identify these viruses ahead of their proliferation in the community. Accordingly, 521 
development of technologies that are cost-effective, reduce biases, and provide leading rather 522 
than trailing indicators of infection are essential to removing “blind spots” in our understanding 523 
of local virus dynamics. Although technical issues have made wastewater sequencing difficult to 524 
perform at scale, our key advances in virus concentration and sample deconvolution provide 525 
evidence that this approach is now viable. Continued improvements to sequencing turnaround 526 
speeds, lineage barcoding, and haplotype recovery from mixed samples will further accelerate 527 
efforts to achieve earlier identification of emerging variants and improve the precision and 528 
effectiveness of interventions.   529 
 530 
Methods 531 
 532 
Wastewater sampling 533 
  534 
High-resolution spatial sampling at the campus level 535 
131 wastewater autosamplers collecting 24h time-weighted composites were deployed across 536 
manholes or sewer cleanouts of 360 campus buildings. GIS (geographic information systems) 537 
informed analyses as well as agent-based network modeling of SARS-CoV-2 transmission on the 538 
UCSD campus enabled identification of most optimal locations for wastewater sampling. During 539 
the pilot phase (November 23-Dec 29th 2020), 68 samplers were prioritized to cover 239 540 
residential buildings identified as the highest risk areas for large outbreaks on campus as a part of 541 
an observational study of wastewater monitoring in high-density buildings 29. This was based on 542 
preliminary dynamic modeling which showed the largest potential outbreaks to occur within the 543 
largest residential buildings 9. In addition to the observational study of wastewater monitoring in 544 
these high-density buildings, a cluster randomized study was also performed concurrently. This 545 
included a randomized modified version of a stepped wedge crossover design, in which there 546 
was random assignment of manholes for wastewater sampling. Clusters of manholes associated 547 
with residential buildings were randomized to receive wastewater monitors at one of two-time 548 
steps to evaluate the impact of wastewater monitoring on outbreak size in the associated 549 
buildings. During the same time period, all students in these residences were mandated to 550 
undergo weekly diagnostic testing which was used to validate the utility of building-level 551 
wastewater monitoring. Furthermore, on-campus residences were initially focused due to the 552 
relatively static nature of the population which enabled a more robust cross-validation of the 553 
sensitivity and efficacy of the wastewater surveillance. The coverage of wastewater surveillance 554 
was then increased to cover the rest of the campus buildings (including non-residential buildings 555 
on campus) from January 2021. Four of the deployed wastewater samplers covered the 556 
designated isolation and quarantine buildings on campus. 557 
 558 
Wastewater composites were collected from the 131 samplers every day for the on-campus 559 
residence buildings and Monday through Friday for the nonresidential campus buildings. 19,944 560 
wastewater samples were collected and analyzed for the presence of SARS-CoV-2 RNA via RT-561 
qPCR between November 23rd 2020 and September 20th 2021. During this time, 9700 students 562 
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lived in campus residences and 25,000 worked on campus on a daily basis. Between October 563 
2020 to January 1st 2021, all on-campus residents were mandated to test on a bi-weekly (once 564 
every 2 weeks) basis and on a weekly basis from January 2nd 2021 (start of the Winter term). 565 
However, fully vaccinated individuals were not mandated to test on a regular basis. Campus 566 
protocols required SARS-CoV-2 positive students living in congregate housing to relocate to 567 
designated isolation housing. Accordingly, our analysis of wastewater positivity (Figure 1B) did 568 
not include isolation housing samplers, in order to control - as best as possible, a small number 569 
of students in non-congregate housing spaces were allowed to isolate “in-place”, for example -  570 
for possible repeat detection due to extended shedding from infected individuals. Automated, 571 
localized wastewater-triggered notifications were sent to the residents/employees of buildings 572 
associated with a positive wastewater signal which further led to a surge in testing uptake rates 573 
by 2 to 40-fold in the associated buildings.  574 
  575 
Wastewater sampling at the county level 576 
24h flow-weighted composites were collected thrice a week from the main pump station for the 577 
Point Loma wastewater treatment plant, the primary treatment plant serving the greater San 578 
Diego county with a catchment size of approximately 2.3 million. 132 wastewater samples were 579 
collected between February 24th 2021 to February 7th, 2022.  580 
 581 
Wastewater sample processing and viral genome sequencing 582 
 583 
Sample processing 584 
SARS-CoV-2 RNA was concentrated from 10ml of raw sewage and processed as described 585 
elsewhere7. In brief, the viral RNA was concentrated using an automated affinity capture 586 
magnetic hydrogel particle (Ceres Nanosciences Inc., USA) based concentration method after 587 
which the nucleic acid was extracted and sample eluted in 50uL of elution buffer. The extracted 588 
RNA was then screened for SARS-CoV-2 RNA via real-time RT-qPCR for 3 gene targets (N1, 589 
N2 and E-gene). PMMoV (pepper mild mottle virus) was also screened to adjust for changes in 590 
load. Positive wastewater samples were sequenced within 1-2 weeks of collection, comparable to 591 
the delay for clinical samples. To cross-validate the ability of the deconvolution tool in reliably 592 
resolving mixtures of strains in wastewater, the wastewater samples from the county as well as 593 
the ones from the isolation dorms on campus (where multiple infected individuals were isolating) 594 
were also run through a PCR panel targeting 8 mutations associated with the strains designated 595 
as VOCs. The mutations screened for in wastewater using RT-qPCR included N501Y, 596 
DelHV69/70, DelY144, K417N, K417T, E484Q, P681R and L452R (Promega Corp. Cat# 597 
CS3174B02).  598 
 599 
Miniaturized wastewater SARS-CoV-2 amplicon sequencing  600 
The Swift Normalase® Amplicon Panels (SNAP) kit (PN: SN-5X296 (core) COVG1V2-96 601 
(amplicon primers), Integrated DNA Technologies, Coralville, IA) was used on RNA from 602 
wastewater samples that were positive for SARS-CoV-2 RNA to prepare the multiplex NGS 603 
amplicon libraries and indexed using the SN91384 series of dual indexing oligos, yielding up to 604 
1536 index pairs per pool. A miniaturized version of the protocol was used with the following 605 
modifications: the Superscript IV VILO (Thermo Fisher, Carlsbad, CA) cDNA synthesis 606 
reaction was scaled down to ~1/12 the normal reaction volume with 0.333uL of enzyme mix and 607 
1.333uL of RNA being used. The multiplex amplicon amplification and Ampure XP bead 608 
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purification steps were scaled down ~1/6 the normal reaction volume. The Index adapter PCR 609 
reaction and Ampure XP bead purification steps were scaled down to ~2/13 the normal reaction 610 
volume.  The final library resuspension volume was 29uL. 1uL of each library was pooled for an 611 
initial shallow NGS run on a MiSeq (Illumina, San Diego, CA) using a Nano flow cell.  This 612 
equal volume pool was used to estimate the differential volumes required for similar read depths 613 
across samples using a NovaSeq SP or S4 flow cell (Illumina, San Diego, CA). Between 5uL and 614 
0.2uL of library material, depending on the data provided from the MiSeq Nano run, was 615 
pipetted into a single pool for the NovaSeq run. Transfer volumes were capped at 5uL to reduce 616 
pipetting time and because these types of “high volume” samples typically contained a higher 617 
proportion of likely adapter dimers that inhibit flow cell performance for all samples. A 618 
Dragonfly Discovery (SPT Labtech, UK) was used to dispense reaction master mixes or water 619 
depending on the step.  A BlueWasher (BlueCatBio, MA) was used for high throughput 620 
centrifugal 384-well plate washing during the AmpureXP bead reaction cleanup steps. An IKA 621 
MS3 Control linear plate mixer (IKA Works Inc, Wilmington, NC) set to 2600 RPM for 5’ was 622 
used to resuspend the AmpureXP beads during the rehydration steps. A Mosquito Genomics HV 623 
16 channel robotic liquid handler (SPT Labtech, UK) was used to dispense the RNA, the reaction 624 
master mixes, and prepare the equal volume pools for the initial MiSeq Nano (Illumina, San 625 
Diego, CA) balancing runs.  A Mosquito X1 single channel “hit picker” robotic liquid handler 626 
(SPT Labtech, UK) was used for the final library balancing for the NovaSeq (Illumina, San 627 
Diego, CA) NGS lanes. 628 
 629 
Sequencing data were analyzed using the C-VIEW (COVID-19 VIral Epidemiology Workflow) 630 
platform for initial QC and SARS-CoV-2 lineage assignment and phylogenetics. In brief, 631 
sequencing reads are aligned with minimap230, and primer sequences trimming and quality 632 
filtering is applied using the iVar trim method20. Sequencing depth and single nucleotide variant 633 
(SNV) calls are obtained using samtools mpileup31 and the iVar variants method20.  634 
 635 
Controls were included at all stages of sample processing (viral concentration, extraction, qPCR 636 
and sequencing) to assess potential inhibition and cross-contamination. Most of the sample 637 
processing steps were performed by liquid handling robots for consistency and to minimize 638 
human error. Replicates were included for all wastewater samples. If any of the controls failed or 639 
indicated cross-contamination, the entire batch was rerun. The clinical samples and wastewater 640 
samples were processed separately for sequencing due to significant differences in viral load 641 
between the two sample types. 642 
 643 
Virus diversity 644 
As reported previously20, virus SNVs were used to characterize the populations derived from 645 
wastewater and clinical samples. Richness was defined as the total number of SNV sites, and 646 
mean Shannon entropy  was defined as 647 
 648 

 649 
where  is the SNV frequency of at the i-th site, of  total sites. For statistical testing, a Mann-650 
Whitney U test was performed using all wastewater samples that were not sampled from the 651 
same source within a 10 day period in order to ensure independence across samples, as well as 652 
all clinical samples. Effect size was calculated using the rank-biserial correlation, 653 
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 where   is the Mann-Whitney test statistic and  and  are the 654 
numbers of wastewater and clinical samples, respectively.  655 

 656 
Wastewater sample deconvolution 657 
 658 
To infer relative abundance within a wastewater sample, we used a “barcode” matrix containing 659 
the lineage defining mutations for each known virus lineage, 660 
 661 

 662 
 663 
where  denotes the i-th lineage, at mutation j. Lineage defining mutations were obtained from 664 
the UShER global phylogenetic tree using the matUtils package15.  Similarly, we let  and  665 
encode the frequency of each mutation and the corresponding sequencing depth (using the log-666 
transform  to adjust for large differences in depth across amplicons, which 667 
we use to control for heteroskedasticity and down-weight the importance of sites with little or no 668 
sequencing depth), 669 
 670 

  671 
 672 
We were then able to write this as a constrained (weighted) least absolute deviations problem 673 

  674 
which yields the “demixing” vector  that specifies the relative abundances of 675 
each of the known haplotypes. Analysis was only performed on samples with greater than 70% 676 
coverage, with the exception of March samples from UCSD for which all samples with greater 677 
than 50% coverage were used. Constrained minimization was performed in Python using the 678 
cvxpy convex optimization package32,33.  Mapping of lineages to variant WHO lineages (VOCs, 679 
VUMs, etc.) was performed using curated lineage data from outbreak.info1. We note that the 680 
Epsilon variant received different maximum escalation levels at CDC and WHO, which assigned 681 
VOC and VOI status, respectively. Since the Epsilon variant was widespread in California and 682 
much of the United States, we use the more “local” CDC designation.  683 
 684 
Fast-bootstrapping method 685 
Bootstrapping was performed at the nucleotide level by resampling each site based on a 686 
multinomial distribution of read depth across all sites, where the event probabilities are 687 
determined by the fraction of the total sample reads found at each site, followed by a secondary 688 
resampling at each site according to a multinomial distribution (i.e. binomial when there was 689 
only one SNV at a site), where event probabilities were determined by the frequencies of each 690 
base at the site, and the number of trials is given by the sequencing depth. 1000 resamplings and 691 
demixings were performed for all samples. 692 
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 693 
Spike-in mixture experiment 694 
RNA was isolated from supernatants of a mammalian cell culture infected with one of five 695 
strains of SARS-CoV-2. (A, B.1.1.7, B.1.351, P.1, or B.1.617.2). 696 
  697 
RNA concentration standardization 698 
Virus concentration was quantified by the UCSD EXCITE COVID testing laboratory using the 699 
Thermo COVID-19 Test kit (PN:A47814, Thermo Scientific Corporation, Carlsbad, CA).  The 700 
median Cq values (N-gene, Orf1ab, & S-gene (where applicable)) was calculated and used to 701 
determine how much the RNA needed to be diluted with water to reach a Cq value of 23.  A post 702 
dilution RT-qPCR reaction was performed and used to calculate the final dilution of the more 703 
concentrated samples to the new target value of Cq 23.296.  The number of freeze thaw cycles 704 
between RNA samples was kept the same.  705 
  706 
Virus Mixing 707 
RNA standardized in the prior section was used to make a volumetric mixing array (final volume 708 
10uL) using a Mosquito X1 HV robotic liquid handler (SPT Labtech, UK).  Pairwise mixes of 709 
5:95, 10:90, 20:80, 60:40, and 50:50 were made for each virus lineage and in both directions.  710 
Equal mixes (20%) for each of the five test strains were made.  25% mixes and 33% mixes were 711 
made for a subset of possible combinations and controls of 100:0 were prepared.  See Extended 712 
Data Table 1 for complete array. Corrected estimates of the fraction of each virus lineage based 713 
were performed using the final measured Cq values for each pure virus lineage sample to control 714 
for issues encountered during the dilution step (repeat Cq measurements had a coefficient of 715 
variation of  0.007, Extended Data Table 2). Across all 95 mixtures, we observed a coefficient 716 
of variation of 0.016. Since initial virus concentrations are controlled for using measured Cq 717 
values, we expect remaining lineage specific bias (see Extended Data Figure 3) is likely due to 718 
experimental inconsistencies encountered during mixture creation.  719 
 720 
Deconvolution method performance comparison 721 
A subset of the spike-in mixtures (1 of each type, for a total of 95 mixtures) was used to compare 722 
Freyja, cojac (using VOC definitions from the public cojac github repository; Lineage A and 723 
Epsilon definitions were created manually), the Kallisto-based method from Baaijens et al. 2021, 724 
and LCS. Kallisto was run using 10 cores (with no bootstrapping), and LCS was run using 16 725 
cores, both on an Intel Xeon processor (2.2GHz). LCS was run for 48 hours, but failed to 726 
complete. Timing was performed using the “time” command, and included all steps after 727 
alignment, trimming, and sorting. Times correspond to total CPU time.  728 
 729 
 730 
Estimation of delay in detection frequency 731 
Estimation of the lag time between epidemiological curves for wastewater and clinical 732 
surveillance of the Epsilon variant in San Diego was performed by identifying the shift with 733 
maximal cross-correlation. All time points leading up to the time of initial peak in detection 734 
frequency were included for both wastewater and clinical data.  735 
 736 
Phylogenetic analyses 737 
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Reconstruction of maximum likelihood trees was performed on all SARS-CoV-2 VOC genomes 738 
with 10x (10 reads or greater per site) genome coverage >95% and quality score >20 obtained 739 
from UCSD campus sampling, using IQtree34. This analysis included 150 (112 clinical, 38 740 
wastewater) Epsilon, 49 (37 clinical, 12 wastewater) Alpha, and 160 (136 clinical, 24 741 
wastewater) Delta lineage genomes from UCSD, in addition to 60 Epsilon, 20 Alpha, and 39 742 
Delta randomly selected genomes from elsewhere in the United States. We used iVar 20 to 743 
identify consensus sequences for all San Diego samples. Bases were only included in the 744 
sequence if there was a consensus base at the site (>50% nucleotide frequency). We also masked 745 
known homoplasic sites prior to tree reconstruction35. Analysis of temporal comparison was 746 
performed on 608 samples (443 clinical, 165 wastewater, all lineages were included) with 10x 747 
genome coverage >95% and quality score >20 from UCSD. Sample collection SNP distances 748 
were calculated without considering ambiguous bases and gaps.  749 
 750 
Code availability 751 
Freyja is hosted publicly on github (https://github.com/andersen-lab/Freyja) and is available 752 
under a BSD-2-Clause License. Freyja is accessible as a package via bioconda  753 
(https://bioconda.github.io/recipes/freyja/README.html) in container form via dockerhub 754 
(https://hub.docker.com/r/andersenlabapps/freyja). COVID-19 VIral Epidemiology Workflow 755 
(C-VIEW) is  available at https://github.com/ucsd-ccbb/C-VIEW as an open-source, end-to-end 756 
workflow for viral epidemiology focused on SARS-CoV-2 lineage assignment and 757 
phylogenetics. 758 
 759 
Data Availability 760 
All raw wastewater sequencing data is available via the NCBI Sequence Read Archive under the 761 
BioProject ID PRJNA819090. Consensus sequences from clinical and wastewater surveillance 762 
are all available on GISAID. Spike-in sequencing data is available via google cloud 763 
(https://console.cloud.google.com/storage/browser/search-reference_data). The UCSD campus 764 
dashboard can be accessed at https://returntolearn.ucsd.edu/dashboard/ . The county wastewater 765 
data from Point Loma are available through the public dashboard that can be accessed at 766 
https://searchcovid.info/dashboards/wastewater-surveillance/. The SEARCH genomic 767 
surveillance dashboard is available at https://searchcovid.info/dashboards/sequencing-statistics/.  768 
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Extended Data: 
 
Extended Data Table 1: Platemap of spike-in mixtures used for method validation 
 

 1 2 3 4 5 6 

A 5% Delta: 95% A 10% Delta: 90% A 20% Delta: 80% A 40% Delta: 60% A 50% Delta: 50% A 100% A 

B 5% Delta: 95% Beta 10% Delta: 90% Beta 20% Delta: 80% Beta 40% Delta: 60% Beta 50% Delta: 50% Beta 100% Delta 

C 5% Delta: 95% Gamma 10% Delta: 90% Gamma 20% Delta: 80% Gamma 40% Delta: 60% Gamma 50% Delta: 50% Gamma 100% Beta 

D 5% Delta: 95% Alpha 10% Delta: 90% Alpha 20% Delta: 80% Alpha 40% Delta: 60% Alpha 50% Delta: 50% Alpha 100% Gamma 

E 5% Beta: 95% A 10% Beta: 90% A 20% Beta: 80% A 40% Beta: 60% A 50% Beta: 50% A 100% Alpha 

F 5% Beta: 95% Delta 10% Beta: 90% Delta 20% Beta: 80% Delta 40% Beta: 60% Delta 50% Beta: 50% Delta 

20% A: 20% Delta: 20% 

Beta: 20% Gamma: 20% 

Alpha 

G 5% Beta: 95% Gamma 10% Beta: 90% Gamma 20% Beta: 80% Gamma 40% Beta: 60% Gamma 50% Beta: 50% Gamma 

25% Delta: 25% Beta 

: 25% Gamma: 25% 

Alpha 

H 5% Beta: 95% Alpha 10% Beta: 90% Alpha 20% Beta: 80% Alpha 40% Beta: 60% Alpha 50% Beta: 50% Alpha 
25% Delta: 25% Beta: 

25% Gamma: 25% A 

I 5% Gamma: 95% A 10% Gamma: 90% A 20% Gamma: 80% A 40% Gamma: 60% A 50% Gamma: 50% A 
25% Delta: 25% Beta: 

25% A: 25% Alpha 

J 5% Gamma: 95% Delta 10% Gamma: 90% Delta 20% Gamma: 80% Delta 40% Gamma: 60% Delta 50% Gamma: 50% Delta 
25% Delta: 25% A: 25% 

Gamma: 25% Alpha 

K 5% Gamma: 95% Beta 10% Gamma: 90% Beta 20% Gamma: 80% Beta 40% Gamma: 60% Beta 50% Gamma: 50% Beta 
25% A: 25% Beta: 25% 

Gamma: 25% Alpha 

L 5% Gamma: 95% Alpha 10% Gamma: 90% Alpha 20% Gamma: 80% Alpha 40% Gamma: 60% Alpha 50% Gamma: 50% Alpha 
33% Delta: 33% Beta: 

33% Gamma 

M 5% Alpha: 95% A 10% Alpha: 90% A 20% Alpha: 80% A 40% Alpha: 60% A 50% Alpha: 50% A 
33% Delta: 33% Beta: 

33% Alpha 

N 5% Alpha: 95% Delta 10% Alpha: 90% Delta 20% Alpha: 80% Delta 40% Alpha: 60% Delta 50% Alpha: 50% Delta 
33% Delta: 33% Alpha: 

33% Gamma 

O 5% Alpha: 95% Beta 10% Alpha: 90% Beta 20% Alpha: 80% Beta 40% Alpha: 60% Beta 50% Alpha: 50% Beta 
33% Alpha: 33% Beta: 

33% Gamma 

P 5% Alpha: 95% Gamma 10% Alpha: 90% Gamma 20% Alpha: 80% Gamma 40% Alpha: 60% Gamma 50% Alpha: 50% Gamma Neg 

 
 
Extended Data Table 2: Consistency of Lineage A Cq values across repeated measurements 
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Replicate Number Cq N Gene Cq Orf1ab Cq S Gene Cq RNAseP Average 

1 31.228 30.807 30.045 29.581 30.693 

2 30.783 29.77 29.546 29.49 30.033 

3 31.201 30.622 29.733 29.745 30.519 

4 30.621 30.953 29.578 28.925 30.384 

5 31.188 30.073 29.366 28.745 30.209 

6 30.604 29.788 29.829 28.797 30.074 

7 30.308 30.335 29.573 29.149 30.072 

8 30.738 30.36 29.711 28.79 30.269 

9 31.144 29.97 30.045 28.79 30.386 

10 31.122 30.822 29.566 29.671 30.503 

11 31.825 29.763 29.833 29.134 30.474 

12 31.434 30.18 29.773 29.133 30.462 

13 31.209 29.793 29.402 29.559 30.135 

14 30.641 30.181 29.816 29.833 30.213 

15 30.744 29.371 29.695 29.257 29.937 

16 30.396 29.728 29.441 28.428 29.855 

17 30.957 29.449 29.913 28.242 30.107 

18 30.791 30.113 29.601 29.277 30.169 

19 31.561 29.839 29.943 29.06 30.448 

20 31.434 29.711 29.568 28.864 30.238 

 
  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 4, 2022. ; https://doi.org/10.1101/2021.12.21.21268143doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.21.21268143
http://creativecommons.org/licenses/by-nd/4.0/


 

29 
 

Extended Data Table 3: Omicron surveillance at Point Loma Wastewater Treatment Plant 
 

Collection 
Date 

Avg. 
Estimated 
Omicron 

Abundance 
(%) 

qPCR Detection 

DelHV69/70 N501Y P681R 

10/04/21 0   x 
10/06/21 0   x 
10/10/21 0   x 
10/11/21 0   x 
10/13/21 0     x 
10/17/21 0     x 
10/18/21 0     x 
10/20/21 0     x 
11/12/21 0     x 
11/22/21 0     x 
11/27/21 1.726 x x x 
11/28/21 1.967 x x x 
12/1/21 2.439 x x x 
12/5/21 17.11 x x x 

12/6/21 19.764 x x x 

12/12/21 50.65 x x x 

12/16/21 67.14 x x x 

12/20/21 79.135 x x x 

12/21/21 80.567 x x x 
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Extended Data Figure 1: Relationship of daily UCSD campus wastewater sampler 
positivity and campus clinical positives. Black line indicates the linear fit to the data, with 
bootstrap 95% confidence interval shown in gray.   
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Extended Data Figure 2: Relationship between genome coverage and cycle quantification 
values. 10x genome coverage (fraction of sites with 10 reads or greater) remains high, even for 
Cq values of nearly 38. Points indicate median value in each bin, while error bars indicate the 
median absolute deviation.   
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Extended Data Figure 3: Lineage-specific prediction of variant abundance in spike-in 
validation samples. A. Schematic of “spike-in” sample design. B-F. Lineage specific prediction. 
Proportions of each lineage in the sample are shown as a pie chart marker (Grey = Lineage A, 
Orange = Alpha, Pink = Beta, Turquoise = Delta, and Purple = Gamma) with error bars 
indicating the standard deviation from the mean, across four replicates.   

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 4, 2022. ; https://doi.org/10.1101/2021.12.21.21268143doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.21.21268143
http://creativecommons.org/licenses/by-nd/4.0/


 

33 
 

 
Extended Data Figure 4: Freyja more accurately estimates virus abundance, with fewer 
false positives. A-B. Estimated vs expected fraction of each lineage in the mixture. The Kallisto-
based approach from Baaijens et. al shows a wider range of estimates for each known mix 
fraction, and generally underestimates the fraction. C. False positives with abundance greater 
than 0.5%.   
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Extended Data Figure 5: The rise of the Delta variant during Summer 2021. A. Mean 
SARS-CoV-2 viral gene copies/L of raw sewage (blue) collected from the Point Loma 
Wastewater Treatment Plant and caseload (gray) reported by the county during the same period. 
SARS-CoV-2 concentrations were normalized by PMMoV (pepper mild mottle virus) 
concentration to adjust for load changes. B. Lineage distribution in UCSD campus wastewater. 
C. Monthly lineage averages for wastewater collected at Point Loma Wastewater Treatment 
Plant during the Delta surge (N= 5, 20, 25, 7) 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 4, 2022. ; https://doi.org/10.1101/2021.12.21.21268143doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.21.21268143
http://creativecommons.org/licenses/by-nd/4.0/


 

35 
 

Extended Data Figure 6: Quantification of deconvolution uncertainty in first detection of  
VOCs. A-D. Bootstrap distributions of Freyja abundance estimates obtained by resampling read 
data from each sample corresponding to the first detection of that VOC in San Diego. Two 
samplers were found to contain Delta on the same day. First detections were also confirmed 
using a VOC qPCR panel, as shown in Figure 2 and Extended Data Table 3. 95% Confidence 
intervals for variant prevalence for each first detection event: A. Alpha: (0.232, 0.278), B. Delta: 
(0.336, 0.397), C. Delta: (0.676, 0.772),  D. Omicron: (0.017, 0.021).    
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Extended Data Figure 7: Estimated proportion of Omicron sequences in clinical data. 
Omicron estimates tracked via S-gene target failure, SGTF (characteristic of Omicron lineage 
BA.1 and its descendants) qPCR assays for clinical samples in San Diego between November 
27th, 2021-February 7th, 2022. First detection of Omicron through clinical genomic sequencing 
in San Diego was December 8th. Dotted line shows a rolling average with a window size of 
seven days.  
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