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ABSTRACT 

Understanding the brain changes underlying cognitive dysfunction is a key priority in 

multiple sclerosis to improve monitoring and treatment of this debilitating symptom. 

Functional connectivity network changes are associated with cognitive dysfunction, but it is 

less well understood how changes in normal appearing white matter relate to cognitive 

symptoms. If white matter tracts share a similar network structure it would be expected 

that tracts within a network are similarly affected by MS pathology. In the present study, we 

used a tractometry approach to explore patterns of variance in diffusion metrics across 

white matter (WM) tracts. We investigated whether separate networks, based on normal 

variation or pathology, appear, and how this relates to neuropsychological test performance 

across cognitive domains. A sample of 102 relapsing-remitting MS patients and 27 healthy 

controls underwent MRI and neuropsychological testing. Tractography was performed on 

diffusion MRI data to extract 40 WM tracts and microstructural measures were extracted 

from each tract. Principal component analysis (PCA) was used to decompose metrics from 

all tracts to assess the presence of any co-variance structure among the tracts. Similarly, 

PCA was applied to cognitive test scores to identify the main cognitive domains. Finally, we 

assessed the ability of tract components to predict test performance across cognitive 

domains. We found that a single component which captured pathology across all tracts 

explained the most variance and that there was little evidence for separate, smaller network 

patterns of pathology. WM tract components were weak, but significant, predictors of 

cognitive function in MS. These findings highlight the need to investigate the relationship 

between the normal appearing white matter and cognitive impairment further and on a 

more granular level, to improve the understanding of the network structure of the brain in 

MS. 

 

 

 

KEYWORDS 

Multiple sclerosis, cognitive impairment, MRI, tractometry, brain connectivity

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.21268114doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.20.21268114


3 

 

1. INTRODUCTION  

 

The main pathological feature in multiple sclerosis is the demyelinating lesion, yet magnetic 

resonance imaging (MRI) measures of lesions correlate poorly with clinical symptoms, a 

finding termed the ‘clinico-radiological paradox’ (Barkhof, 1999, 2002). This is particularly 

problematic for cognitive symptoms, which affect a large proportion of people with MS, are 

disabling and associated with poor outcomes, but are poorly understood in terms of 

pathology (Sumowski et al., 2018), making cognitive dysfunction a challenge in the 

management of MS. Identifying MRI correlates of cognitive impairment in MS to understand 

pathological mechanisms is therefore a research priority to inform clinical decisions about 

diagnosis, monitoring and treatment of cognitive impairment, but a challenging one. 

 

Cognitive deficits in MS are often evaluated as a global impairment based on results of 

neuropsychological tests. However, cognitive impairment involves deficits in separate 

domains, including processing speed and memory (Charcot, 1877; Benedict et al., 2006; 

Sepulcre et al., 2006; Migliore et al., 2016; Matias-Guiu et al., 2017; De Meo et al., 2021). 

Understanding if and how different cognitive domains are susceptible to different 

underlying brain abnormalities can inform our understanding of the mechanisms of 

cognitive impairment in MS.  

 

Cognitive functions have been shown to rely on brain networks, rather than individual brain 

regions (McIntosh, 2000; Bressler and Menon, 2010). In people with MS, cognitive 

symptoms have been associated with functional network connectivity abnormalities, 

assessed by resting state fMRI (rs-fMRI, reviewed in Chard et al., 2021; Jandric et al., 2021), 

but the mechanisms causing these functional connectivity changes are not known. There is 

evidence to suggest that white matter (WM) damage can influence functional connectivity 

(Schoonheim et al., 2015; Patel et al., 2018; Tewarie et al., 2018), possibly through 

alteration of anatomical connections between functionally connected regions (Catani and 

ffytche, 2005; Dineen et al., 2009).  While WM lesions are a poor predictor of cognitive 

symptoms, tissue outside of lesions is also known to be affected by pathological processes, 

either due to secondary axonal loss from inflammatory activity in lesions, such as Wallerian 

degeneration, or to lesion-independent degeneration of axons following demyelination 
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resulting from more diffuse inflammation (Trapp et al., 1998; Bitsch et al., 2000; Trapp and 

Stys, 2009). Such damage to normal appearing white matter (NAWM) on a clinical MRI scan 

could cause damage to WM tracts connecting spatially separate but functionally connected 

regions that support specific cognitive functions. Moreover, if lesions cause damage to a 

brain network, the functioning of the entire network may be affected. 

 

A number of diffusion MRI studies (dMRI) have established associations between cognitive 

impairment and damage to NAWM in MS. These studies have largely used whole-brain 

analyses of the WM, such as tract-based spatial statistics (TBSS, Smith et al., 2006), to show 

that non-lesional damage in specific WM areas, such as the corpus callosum and cingulum, 

correlates with cognitive symptoms (e.g. Dineen et al., 2009; Sbardella et al., 2013; Meijer et 

al., 2016). More recently, there has been evidence of covarying patterns of pathology in 

white matter tracts. In healthy participants, independent component analysis (ICA) based-

approaches have demonstrated patterns of covariance between white matter tracts, 

thought to reflect shared phylogenetic and functional relationships (Wahl et al., 2010; Li et 

al., 2012). It can be expected that tracts that share characteristics and/or are part of the 

same networks are similarly susceptible to pathology. One study demonstrated this in a 

sample of secondary progressive MS patients (SPMS). Using ICA on a TBSS skeleton to 

identify patterns of covariance, possibly reflecting WM pathology, Meijer et al., (2016a) 

found eighteen components corresponding to WM tracts and visually grouped them into six 

different WM classes on the basis of anatomical features. FA values within some of these 

classes correlated with cognitive function, suggesting cognitively-relevant patterns of 

neurodegeneration (Meijer et al., 2016a).  

 

Determining whether such patterns of pathology are also present in those with relapsing-

remitting disease is necessary to identify at what stage in the disease such 

neurodegeneration occurs. While it is known that there is a greater degree of WM damage 

in SPMS (Kutzelnigg et al., 2005), people with RRMS also show both cognitive impairment 

and functional network changes, so it is plausible that they also show shared patterns of 

WM damage.  It is also important to understand whether the patterns of WM damage 

appear when using an unbiased principal component analysis, which does not rely on 

manual grouping of component classes.  
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The standard for whole brain WM analysis has long been TBSS, which works by skeletonising 

the centre of each tract, based on high average FA values, to improve registration of non-

homologous brains (Smith et al., 2006). As such TBSS does not reconstruct individual WM 

tracts, raising concerns about its anatomical accuracy (Bach et al., 2014). An alternative to 

TBSS for obtaining anatomically accurate WM tracts is tractography, which fits a diffusion 

tensor or alternative model at each voxel to trace the fibre orientation through the WM 

(Mori et al., 1999; Basser et al., 2000; Catani et al., 2002; Jeurissen et al., 2019). While 

challenging in its own right, technological developments have improved the ease and 

accuracy of individual, automated tratography (Warrington et al., 2020), and it has been 

shown that newer tracking algorithms can perform satisfactorily in the presence of MS 

lesions, and reconstruct even tracts with a high prevalence of lesions (Lipp et al., 2020). This 

makes tractography a feasible option for segmenting the brain into a large number of 

functionally meaningful WM units for investigating whether damage to non-lesioned parts 

of specific tracts can help understand cognitive symptoms in MS. 

 

In the present study we conduct an exploratory analysis of WM microstructure diffusion 

metrics in a large sample of RRMS patients using a tractometry approach (Bells et al., 2011). 

We use automated individual tractography to reconstruct 40 WM tracts and extract four 

diffusion metrics from the non-lesioned parts of the tracts. By conducting principal 

component analysis (PCA) of extracted metrics we can test whether their grouping reflects 

the known network structure of the brain and covarying patterns of damage across tracts. 

Exploring this can help us understand the patterns of degeneration in normal appearing 

tissue in MS. 

 

Thus, the present study aims to: 1) determine if WM tracts can be decomposed into 

components of shared covariance based on a network or pathology structure; 2) assess the 

cognitive domains structure present in common neuropsychological test data; 3) explore the 

relationship between WM tract components and cognitive domains in RRMS.  
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2. MATERIAL AND METHODS 

 

2.1 Participants 

Demographic, clinical and MRI data was collected in one study session from 102 RRMS 

patients and 27 healthy controls. This cohort has also been investigated and described in 

previous work (Jandric et al., 2021b) . All participants were between 18 and 60 years of age, 

right-handed and had no contraindications for MR scanning. Patients fulfilled additional 

eligibility criteria of having no relapses or change to treatment for 3 months prior to the MRI 

scan, and not having any comorbid neurological or psychiatric disease.  

 

Patients were recruited through the Helen Durham Centre for Neuroinflammation at the 

University Hospital of Wales and controls from the community. The study was approved by 

the NHS South-West Ethics and the Cardiff and Vale University Health Board R&D 

committees. All participants provided written informed consent to participate in the study. 

 

2.2 Cognitive Assessment  

Participants were assessed with the Multiple Sclerosis Functional Composite (MSFC) (Cutter 

et al., 1999) and the Brief Repeatable Battery of Neuropsychological Tests (BRB-N) (Amato 

et al., 2006). The BRB-N consists of the following tests: the selective reminding test of verbal 

memory, which is scored as the sum of words in long term storage (SRT L sum), the sum of 

words consistently recalled (SRT C sum) and the words recalled after a delay (SRT delayed); 

the spatial recall test of visual memory, which is scored over three consecutive trials 

(Spatial1to3) and on a delayed trial (Spatial delayed); the symbol digit modalities test 

(SDMT) of attention and concentration; the paced auditorial serial addition test of 

processing speed, with a three second delay (PASAT3) and with a two second delay 

(PASAT2); and the word list generation test (WLG) of verbal fluency. 

 

2.3 MRI acquisition 

MRI data were acquired on a 3 T MR scanner (General Electric HDx MRI System, GE Medical 

Devices, Milwaukee, WI) using an eight channel receive-only head RF coil. A high-resolution 

3D T1-weighted sequence was acquired for identification of T1-hypointense MS lesions, 
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segmentation, registration and volumetric measurements (voxel size = 1 mm x 1 mm x 1 

mm, TE = 3.0 ms, TR = 7.8 ms, matrix = 256x256x172, FOV = 256 mm x 256 mm, flip angle = 

20°). A T2/proton-density (PD)-weighted sequence (voxel size = 0.94 mm x 0.94 mm x 4.5 

mm, TE = 9.0/80.6 ms, TR = 3000 ms, FOV = 240 mm x 240 mm, 36 slices, flip angle = 90°) 

and a fluid-attenuated inversion recovery (FLAIR) sequence (voxel size = 0.86 mm x 0.86 mm 

x 4.5 mm, TE = 122.3 ms, TR = 9502 ms, FOV = 220 mm x 220 mm, 36 slices, flip angle = 90°) 

were acquired for identification and segmentation of T2-hyperintense MS lesions. A twice 

refocused diffusion-weighted spin echo echo-planar (SE-EPI) sequence with 6 volumes with 

no diffusion weighting and 40 volumes with diffusion gradients applied in uniformly 

distributed directions was acquired for tractometrics analyses (diffusion directions: Camino 

40, b = 1200 s/mm
2
, voxel size = 1.8 mm x 1.8 mm x 2.4 mm,

 
TE = 94.5 ms, TR = 16000 ms, 

FOV = 230 mm x 230 mm, 57 slices, flip angle = 90°). In addition, a 3D MT sequence (voxel 

size = 0.94 mm x 0.94 mm x 1.9 mm, TE = 1.8 ms, TR = 26.7 ms, FOV = 240 mm x 240 mm, 

flip angle = 5°) and mcDESPOT sequence (voxel size = 1.7 mm x 1.7 mm x 1.7 mm, TE = SPGR: 

2.1 ms, bSSFP: 1.6 ms, IR-SPGR: 2.1 ms,  TR = SPGR: 4.7 ms, bSSFP: 3.2 ms, IR-SPGR: 4.7 ms, 

FOV = 220 mm x 220 mm, flip angle = SPGR: [3, 4, 5, 6, 7, 8, 9, 13, 18] degrees bSSFP: [10.6, 

14.1, 18.5, 23.8, 29.1, 35.3, 45, 60] degrees IR-SPGR: 5 degrees) were acquired to obtain 

microstructure parameter maps as described in Lipp et al., (2019).   

 

2.4 MRI processing 

 

2.4.1 Structural image analysis and lesion marking 

Structural 3D T1-weighted images from patients were lesion filled, as described in previous 

work (Lipp et al., 2019), to allow better segmentation and registration of brain tissue, then 

segmented into grey matter (GM), WM and cerebrospinal fluid (CSF) using FSL’s Automated 

Segmentation Tool (FAST) (Zhang et al., 2001). Intracranial volume (ICV) was calculated with 

fslstats as the number of voxels in skull-stripped T1-weighted images. Volumetric 

measurements normalised for head size, including normalised brain volume (NBV), 

normalised GM volume (NGMV) and normalised WM volume (NAWM) were quantified from 

lesion-filled 3D T1-weighted images with FSL’s SIENAX tool (Smith et al., 2002). Lesion 

volume was calculated from binary lesion masks created as part of lesion marking. The 

lesion-filled 3D T1-weighted images were non-linearly registered to the Montreal 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.21268114doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.20.21268114


8 

 

Neurological Institute (MNI) 152 template space using FSL’s FNIRT tool and the warps saved 

for subsequent analyses. 

 

2.4.2 dMRI analysis: quantification of FA and RD maps 

Preprocessing of dMRI data in ExploreDTI (v 4.8.3 (Leemans et al., 2009)) included motion 

correction and corrections for eddy current and EPI-induced geometrical distortions. The 

latter was achieved by registering each diffusion image to its respective (skull-stripped and 

downsampled to 1.5 mm) 3D T1 image (Irfanoglu et al., 2012) using Elastix (Klein et al., 

2010), with appropriate reorientation of the diffusion-encoding vectors (Leemans and Jones, 

2009). dMRI images were further processed in FSL’s FDT tool to fit diffusion tensors and fit 

the probabilistic diffusion model using the Bedpostx tool (Behrens et al., 2003, 2007). 

Fractional anisotropy (FA) and radial diffusivity (RD) maps were normalised to MNI space 

through the application of the previously obtained warps. FA and RD maps were available 

for all participants. 

 

2.4. MTR and MWF maps 

MTR and MWF maps were calculated as described in Lipp et al., (2019), which included co-

registration with participants’ T1-weighted images. T1-weighted to MNI warps were applied 

for registration to MNI space. MTR maps were obtained for all HC and 101 MS patients, and 

MWF for 25 HC and 95 MS patients. MTR and MWF maps could not be obtained for some 

participants due to specific absorption rate (SAR) constraints of the mcDESPOT sequence, or 

due to logistical reasons.  

 

2.5 Tractography and tractometry 

Bedpostx outputs and T1-weighted to MNI registration warps were fed into FSL’s Xtract tool 

which uses standardised protocol seeding, exclusion, waypoint and termination masks to 

perform automated individual tractography to reconstruct 42 WM tracts, then uses the 

warps to register the outputs to MNI space (Warrington et al., 2020). All tracts were visually 

inspected to ensure that they had reconstructed well. In a large proportion of participants, 

both MS and HC, the fornix failed to reconstruct or was missing portions of the tract. As 

such, it was not considered for any analyses. The remaining 40 tracts yielded 

reconstructions in line with their anatomical descriptions and were retained.  
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Because the protocol masks are based on probability atlases of tracts, they are not strictly 

limited to the WM. To ensure that tract masks used for our analyses were limited to the 

WM to be suitable for tractometry analyses, we first thresholded the masked probabilistic 

tractography outputs at 0.001  and then masked the output further with the respective WM 

mask from the segmented T1 weighted scan and . These tracts were binarised and all voxels 

marked as lesions were removed to get a mask of only the non-lesioned part of the tract. 

The proportion of each tract affected by lesions in each participant was calculated by 

counting the lesion voxels in each tract relative to the voxels of the whole tract, averaged 

over all 102 participants for each tract.  

 

To obtain FA, RD, MTR and MWF metrics from each reconstructed tract, each metric was 

averaged across all voxels in the non-lesioned tract masks. Distributions of each metric in 

each tract were assessed through histogram inspection in MATLAB (v R2020a). The majority 

of the FA, RD, MTR and MWF tract maps had distributions deviating from normality so 

median values were extracted. 

 

2.5.1 Metrics dimensionality reduction 

The four WM microstructure metrics were extracted from each tract and decomposed into 

one metric using principal component analysis. This dimensionality reduction analysis was 

performed on the FA, RD, MWF and MTR metrics in RStudio v 1.4.1103 using the principal 

function (RStudio Team, 2020). Mean values were imputed for the missing MTR and MWF 

values and a dataset comprising of 4 WM metrics x 40 WM tracts x 27 or 102 participants 

(for HC and MS, respectively) was created. The four metrics were reduced to a lower 

dimensionality that explains the maximum amount of variance in the data through a PCA 

performed across participants and tracts, as described by Chamberland et al., (2019). First, a 

correlation matrix of Pearson’s r was calculated to determine feasibility of a PCA based on 

high correlations and tested with Bartlett’s test of sphericity to ensure a significant 

difference from an identity matrix. The metric principal component for further analyses was 

chosen on the basis of an inspection of the scree plot (Cattell, 1966) and eigenvalues >1. A 

metric component score for the first extracted principal component, explaining most 

variance, was calculated for each tract and participant.  
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2.5.2 Principal component analysis of WM tract covariance 

To assess whether patterns of shared covariance exist across the WM, an additional PCA, 

following the same process, was performed in HC and MS, respectively. For this PCA, the 

metric component score of the first extracted component was used as the WM 

microstructure metric for each tract.  

 

2.5.3 Regression of sources of heterogeneity in data 

To identify the sources of variance in a tract component (TC) resulting from this PCA, its 

component scores were correlated with a number of demographic and anatomical 

variables: age, sex, years of education, ICV, lesion volume, NBV, NGMV and NWMV. 

Multivariate regressions were performed to identify which of these variables explained 

most variance of the TC. First, all demographic and anatomical were inputted into a 

correlation matrix to assess the degree of multicollinearity. As there was high correlation 

between NBV, NGMV and NWMV, only NBV was included in the model, along with age, sex, 

education ICV and lesion volume. The demographic and anatomical variables that came out 

as the strongest predictors in the regression analysis were regressed out of the raw data and 

the metric dimensionality reduction and PCA of WM tract covariance steps were performed 

again. The aim of this was to explore whether any potential heterogeneity in the sample 

which could have influenced the ability of the PCA to identify different components reliably. 

A Varimax rotation was applied to the first four principal components, based on eigenvalues 

>1 and proportion variance explained, to improve interpretability.  

 

2.5.4 Cognitive test principal component analysis 

Finally, we aimed to find the cognitive domain structure in this dataset. As for the metric 

and tract PCAs, a correlation matrix was constructed based on the scores on each of the 

BRB-N tests, and on the basis of confirmed correlations between tests and a significant 

Bartlett’s test, a PCA was performed to decompose the battery tests into cognitive domains. 

Principal components were extracted on the basis of scree plots, eigenvalues and variance 

explained. A Varimax rotation was applied for interpretability. To understand what 

influences cognitive function, the resulting rotated cognitive components (CCs) were 

correlated with the tract components and all demographic and anatomical variables, after 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.21268114doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.20.21268114


11 

 

checking multicollinearity among predictors. NBV, NGMV and NWMV correlated highly so 

the variables included were age, sex, education, ICV, lesion volume and NBV. Multivariate 

regression analyses were performed to determine the relationship between WM tract 

microstructure and cognitive domains.  

 

2.5 Statistical analyses 

All analyses were performed in RStudio v 1.4.1103 (RStudio Team, 2020) with the exception 

of analyses of demographic and clinical variables, which were analysed in SPSS version 23.0 

(IBM Corp., 2015). All variables were tested for normality through visual inspection of 

histograms and Q-Q plots and application of Kolmogorov-Smirnov tests. Variables which did 

not have a normal distribution were analysed with non-parametric tests. 

 

 

3. RESULTS 

 

3.1 Participant characteristics 

Demographic and clinical characteristics of the sample are presented in Table 1. Overall, 

patients were older and less educated than healthy controls, had lower NBV and NGMV, 

poorer upper and lower limb function, and performed worse on all cognitive tests except 

the word list generation test assessing verbal fluency.  

 

3.2 Metric dimensionality reduction 

The following results are for the MS group unless otherwise indicated. Detailed results for 

healthy controls are presented in Appendix 1. 

 

Bartlett’s test of sphericity was significant (χ
2
(6) = 155.85, p <0.001) indicating the suitability 

of performing a PCA. Based on scree plot inspection and eigenvalues >1, only the first 

principal component, which explained 60% of variance, was extracted. The component 

loadings were 0.92 for FA, -0.87 for RD, 0.88 for MWF and 0.15 for MTR, indicating that the 

main contributors to the component were FA, RD and MWF.  

 

 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.21268114doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.20.21268114


12 

 

 

3.3 Principal components of WM tract covariance  

In MS patients, a correlation matrix of all WM tracts was shown to be significantly different 

from an identity matrix using Bartlett’s test of sphericity (χ
2
(780) = 5803.14, p <0.001), 

indicating the suitability of performing a PCA to assess the covariance structure of WM 

tracts (see Figure 1A for the metric and tract correlation matrices and scree plots).  The 

scree plot showed one strong principal component (65% variance explained), but three 

additional components had eigenvalues >1 (7%, 4% and 3% variance explained, 

respectively). A Varimax rotation was therefore applied to these first four principal 

components to improve interpretability. After rotation all tracts still loaded positively on 

TC1, demonstrating a great degree of shared variable between white matter tracts.  

 

In MS patients TC1 correlated most strongly with lesion volume (r=-0.73), NGMV (r=0.41), 

and NBV (r=0.31) (see Figure 1B). A multiple linear regression model showed that the 

variance of TC1 was best explained by lesion volume (ß = -0.74, p < 0.001) in a model 

explaining 54% of variance (R
2 

= 0.54, F(6, 95) = 20.58, p < 0.001). See Table 2 for full model 

statistics.  

 

After regressing out lesion volume, correlations matrices for WM metrics and tracts, 

respectively, showed somewhat weaker correlations but still passed Bartlett’s test of 

sphericity (χ
2
(6) = 90.01, p < 0.001 for metrics, χ

2
(780) = 4347.86, p < 0.001 for tracts), and 

yielded the same PCA structure (see Figure 1C), indicating that most tracts still load 

positively onto a single component. After a component rotation of the four tracts that 

explained most of the variance (after rotation:79% cumulative variance; 30%, 25%, 21%, 

0.03% for TCs 1-4, respectively) most tracts still loaded positively on the first tract 

component, especially large WM tracts like the optic radiations, middle longitudinal fasciuli, 

forceps major, inferior fronto-occipital fasciculi, vertical occipital fasciculi and acoustic 

radiations. Similarly, the tracts which loaded most highly on TC2 were large tracts 

connecting distal areas of the brain, including the superior thalamic radiations, corticospinal 

tracts, frontal aslants, superior longitudinal fasiculi and the arcuate fasciculi. TC3 in contrast 

consisted mainly of shorter tracts, including sub-sections of the cingulum, the anterior 

commissure, forceps minor and uncinate fasciuli. Only the middle cerebellar penduncle 
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loaded highly on TC4. The principal component analysis screeplot showing a single dominant 

component and the high tract loadings of all tracts onto the first of the four rotated 

components demonstrates a high covariance between all tracts investigated. Please see 

Table 3 for full details of tract loadings on the four components. 

 

3.4 Cognitive domains 

A correlation matrix of cognitive test scores showed a large number of moderate to high 

correlations and was significantly different from an identity matrix as assessed by Bartlett’s 

test of sphericity (χ
2
(36) = 558.62, p <0.001), indicating a likely domain structure of cognition 

and confirming suitability for a PCA. Based on eigenvalues of at or near 1 and proportion 

variance explained, four components explaining 85% of variance were extracted. After a 

Varimax rotation a clear component structure emerged whereby cognitive component (CC) 

1 reflects verbal cognition and CC2 visuospatial cognition, while CCs 3 and 4 reflect 

information processing speed and executive function, respectively. The component weights 

for rotated cognitive components (CCs) were as follows: Serial Recall Test Consistent recall 

(0.87), Serial Recall Test Long term storage recall (0.82), Word List Generation Test (0.80) 

and Serial Recall Test delayed recall (0.73) for CC1; Spatial Recall Test over three trials (0.90) 

and Spatial Recall Test delayed recall (0.93) for CC2; Paced Auditory Serial Addition Test 3 

second delay (0.88) and Paced Auditory Serial Addition Test 2 second delay (0.89) for CC3; 

and Symbol Digit Modalities Test (0.84) for CC4, see Table 4.  

 

3.5 Tract components are weak predictors of cognition 

In MS, tract components were modest to weak predictors of cognitive components, as were 

demographic and MRI variables (see Table 2). The first cognitive component, CC1, was best 

predicted by TC1 (ß = 0.30, p = 0.009), sex (ß = 0.35, p = 0.010), lesion volume (ß = -0.22, p = 

0.049) and NBV (ß = -0.32, p = 0.028), in a model explaining 17% of variance (R
2 

= 0.17, F(10, 

91) = 3.04, p < 0.001). The final cognitive component, CC4, was best predicted by age (ß = -

0.27, p = 0.016) and lesion volume (ß = -0.23, p = 0.035), in a model explaining 18% of the 

variance (R
2 

= 0.18, F(10, 91) = 3.19, p = 0.002). For cognitive components 2 and 3, the 

regression models were not significant. Given the low predictive values of tract components 

on cognitive components, WM variance patterns are weakly linked to cognitive domains. 

Please see Table 2 for full statistical results. 
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4. DISCUSSION 

 

In this study we combined PCA with tractometry to determine whether cognitive 

performance in people with MS relates to one or many patterns of white matter tract 

pathology. A decomposition approach of microstructure metrics from WM tracts showed a 

high degree of covariance across most tracts, indicating a global WM structure rather than a 

network-specific structure. This global WM microstructure component was largely explained 

by lesion volume, but retained largely a single covariance pattern even after this factor was 

regressed out. Cognitive domains were only weakly explained by WM microstructure 

components. This demonstrates that changes in white matter microstructure in people with 

MS is dominated by a single pattern of pathology, which is weakly associated with impaired 

cognition.  

 

4.1 Metric dimensionality reduction  

Tract decomposition was based on several diffusion metrics combined into one, consisting 

of FA, RD and MWF. Traditionally FA is used in MS studies of cognition, but FA has been 

shown to be susceptible to many factors, including myelination, axonal density and 

orientational dispersion of fibre populations in a voxel (Beaulieu, 2014; De Santis et al., 

2014; Lazari and Lipp, 2021). A multimodal approach is a useful alternative for obtaining 

more comprehensive information about WM microstructure, and has been shown to 

produce a sensitive component measure of WM microstructure when several metrics are 

combined in a tractometry approach (Chamberland et al., 2019; Geeraert et al., 2020; 

Bosticardo et al., 2021).  

 

Such dimensionality reduction has been shown to overcome the problem of multiple 

comparisons of data containing overlapping information while maintaining good sensitivity 

of WM microstructure (Chamberland et al., 2019; Geeraert et al., 2020; Bosticardo et al., 

2021). Recently is has been shown to provide a more sensitive measure of MS pathology for 

connectomics approaches than the number of streamlines traditionally used (Bosticardo et 

al., 2021).  
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4.2 WM microstructure organisation 

A number of studies have demonstrated functional network changes (Chard et al., 2021, 

Jandric et al., 2021a) and patterns of grey and white matter pathology associated with 

cognitive impairment in MS (Meijer et al., 2016a; Steenwijk et al., 2016; Colato et al., 2021). 

Such network changes are thought to be driven by the degradation of structural connections 

between network regions (Catani and ffytche, 2005; Dineen et al., 2009; Schoonheim et al., 

2015). So far, only one study has shown covarying patterns of WM abnormalities in MS, but 

several other studies have shown that WM tracts share features which may make them 

similarly susceptible to pathology (Wahl et al., 2010; Li et al., 2012, Meijer et al., 2016a). 

Understanding the nature of WM degeneration holds the key to elucidating the relationship 

between functional and structural connectivity and is an important aim in mapping the 

pathology of cognitive impairment in MS. Thus, in this study we aimed to assess whether 

WM tracts can be decomposed based on shared pathological or other features, and 

whether the resulting components reflect known functional network structures. 

 

Our results provide limited evidence of separate covariance structures of WM tracts in MS 

patients. A single dominant component consisting of all tracts was found in both people 

with MS and healthy controls, although with somewhat different tract loadings. In MS the 

main component was largely explained by lesion volume. Even though lesions were masked 

out of each tract and only non-lesioned tissue was included in the analyses, inflammatory 

activity in lesions is known to have an effect on surrounding tissue and Wallerian and 

retrograde degeneration is known to occur in remote areas from the lesions (Trapp et al., 

1998; Bitsch et al., 2000; Trapp and Stys, 2009).  After regressing out this predictor, the tract 

pattern covariance was still shared between all tracts (i.e. no separate patterns of pathology 

emerged).  

 

A rotation of the first four components (explaining most of the variance in the data) 

revealed that some tracts loaded more strongly on these components than others. The first 

component consisted of all the tracts, but those which loaded most highly on this 

component were large associations tracts connecting distant regions of the brain like the 

inferior fronto-occipital fasciculus, middle longitudinal fasciculus, optic radiations and 

vertical occipital fasciculus. Similarly, the second component consisted of association and 
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projection tracts connecting distant brain regions, including the superior thalamic radiation, 

corticospinal tract and superior longitudinal fasciculus. The third and fourth component 

consisted of smaller tracts, including commissural tracts, such as the forceps minor and 

middle cerebellar penduncle. While this suggests differences between types of tracts which 

will be important to investigate further, these results lack the granularity to draw 

conclusions about brain networks supported by the tracts in each component. For instance, 

the first and second components consist of high loadings from tracts which together 

connect most of the brain. Moreover, most tracts loaded positively on most of the four 

extracted components, suggesting considerable overlap. This, coupled with the dominant 

first component prior to rotation, suggests that our results first and foremost show some 

global aspect of WM microstructure rather than distinct covariance patterns reflecting 

known functional networks.  

 

There are a number of possible reasons for why pathology patterns associated with 

functional networks may not have emerged. First, white matter may not show a strong 

network structure or patterns of covarying pathology. We also found only one dominant 

tract component in healthy controls, and thus no evidence of a network structure in the 

white matter (see Appendix 1). Studies which do report patterns of WM pathology have 

grouped tracts into classes manually, rather than statistically based on shared features (Li et 

al., 2012, Meijer et al., 2016a). However, despite manual grouping, each class determined 

by Meijer et al., (2016a) did show that both FA values and component loadings within a 

class were associated with cognition, suggesting possible shared damage within a class. 

Second, patterns of WM pathology may only emerge at later stages of the disease. While 

network changes measured by rs-fMRI are common in RRMS and occur even in clinically 

isolated syndrome (CIS, reviewed in Jandric et al., 2021), they have been shown to be more 

pronounced in progressive MS (Meijer et al., 2018; Rocca et al., 2018). It is therefore 

feasible that if there is shared susceptibility to MS pathology in the WM, like in the grey 

matter, it comes more pronounced as the disease advances. This would need to be tested in 

longitudinal studies or large cross-sectional studies with both RRMS and SPMS samples. 

Third, patterns of pathology may only become apparent when looking at regions within 

tracts and not, as assessed in this study, across whole tracts. It is known that many major 

tracts support several separate functions, for example the interior fronto-occipital fasciculus 
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is involved in cognition and sensorimotor functions as well as other behaviours (Sarubbo et 

al., 2013). Indeed, Li et al., (2012) found different FA covariance patterns for different 

segments of the corpus callosum. In support of this point, a recent study found that WM 

tract metrics of volume and microstructural integrity from specific section of specific tracts, 

including subsections of the corpus callosum, superior longitudinal fasciculus and the 

striato-prefrontal and striato-parietal pathways, better predict cognitive test performance 

than global tractography and lesion measures, and also better than whole tract measures 

(Winter et al., 2021). This lack of granularity in our data may therefore account for the weak 

component structure that emerged after rotation. Further studies comparing regional ICA 

and PCA approaches can help to determine the extent to which each of these factors is at 

play.  

 

4.3 Relationships between WM microstructure and cognition 

We found shared variance in WM microstructure across all tracts – this was present in 

people with MS, despite the heterogeneity of the disease, and determined links to cognitive 

performance. A large body of literature has now demonstrated associations between WM 

microstructure metrics and cognitive test performance in MS (Dineen et al., 2009; Inglese 

and Bester, 2010; Hulst et al., 2013; Sbardella et al., 2013; Llufriu et al., 2014, Meijer et al., 

2016b). We identified four cognitive domains: verbal cognition, visuospatial cognition, 

information processing speed and executive function, consistent with the known domain 

structure of the BRB-N (Sepulcre et al., 2006; De Meo et al., 2021).  

 

We found that the first and main tract component was related to specific cognitive domains, 

but overall these associations were weak. This component, together with sex, lesion volume 

and normalised brain volume, explained less than 20% of the variance of the verbal 

cognitive domain. This tract component is made up of most of the tracts investigated, but 

those which load most highly are long association tracts which connect most of the brain. 

Interesting, tracts which connect the occipital cortex to the rest of the brain load highly onto 

this tract component. It may seem as an unexpected finding that tracts associated with 

visual function predict a cognitive domain without a visual element, but it’s important to 

consider that we found all tracts to correlate highly with each other, so this correlation 

between the tract component and cognition is not specific to visual tracts. Nevertheless, 
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damage to the occipital cortex, including atrophy and functional connectivity abnormalities, 

(in line with known pathology within the optic nerve, i.e. optic neuritis) is commonly 

reported in MS (Pagani et al., 2005; Calabrese et al., 2007; Tona et al., 2014), so the present 

finding may reflect a non-cognitively specific marker of MS pathology, albeit weakly, as the 

tract component only explained a small proportion of this cognitive domain. Lesion volume 

and atrophy measures were also weak predictors of cognitive domain variance, confirming 

the clinical-radiological paradox and the need for more advanced brain pathology measures 

in the study of cognitive impairment in MS.  

 

The weak relationship between test performance on the different cognitive domains and 

WM tract components contrasts with previous evidence linking WM microstructure in MS to 

cognitive function (Dineen et al., 2009; Inglese and Bester, 2010; Hulst et al., 2013; Sbardella 

et al., 2013; Llufriu et al., 2014, Meijer et al., 2016b). This may be due to our use of whole 

tract measures. There is evidence to suggest that spatial topography is important for 

cognitive deficits and that some tracts in particular are involved in supporting cognitive 

function. Most of the early diffusion studies of cognition in MS report correlations between 

cognitive performance and diffusion metrics in specific regions of tracts, despite analyses 

being conducted over a whole brain WM skeleton. Those which are commonly reported 

across the literature are the corpus callosum, cingulum and forceps major and minor 

(Dineen et al., 2009; Sbardella et al., 2013; Llufriu et al., 2014). In addition, in another study 

of the sample investigated in the present study, WM metric differences between cognitively 

impaired and non-impaired patients were found mainly in the corpus callosum and 

cingulum (Jandric et al., 2021b). This possibility of spatial specificity has not been formally 

established through a meta-analysis to date and is therefore speculative. However, it is 

supported by recent graph theory studies which have found associations between structural 

connectome metrics in certain networks and cognitive function rather than across the 

whole connectome (Llufriu et al., 2017, 2019; Koubiyr et al., 2019; Has Silemek et al., 2020). 

The third tract component identified in this study had had loadings from sections of the 

cingulum and forceps minor, yet did not explain a great deal of variance of cognitive 

domains. However, this tract component also consisted of a large number of other tracts 

with high loadings, so is non-specific to the cingulum and corpus callosum. Future work 

should focus on establishing if certain WM tracts in particular, e.g. those connecting key hub 
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regions of the brain, are more important for cognitive function and more susceptible to 

pathology. 

 

4.4 Limitations  

Our study is not without limitations. Few previous studies have used data decomposition 

approaches to WM metrics, and those that have used independent component analysis 

(ICA), which aims to separate sources of signals (Li et al., 2012, Meijer et al., 2016a). In both 

studies the WM skeleton fed into the ICA returned components which reflected individual 

tracts or sub-sections of tracts. Grouping of tracts was in both cases done manually, 

introducing the risk of bias. In contrast, we used PCA to identify shared variance within 

orthogonal components. This minimises the risk of bias and may also better reflect normal 

variation in white matter structure. By comparing dominant components between control 

and patients we were able to evaluate whether such structures are to be expected. 

However, the possibility should be considered that tract components are not actually 

orthogonal, perhaps due to the known multifunctional nature of WM tracts, and 

independent component analysis would in this case have been a more suitable approach. 

We could also have used factor analytic techniques, but PCA has been shown to produce 

very similar results to factor analysis when the communalities of variables investigated are 

greater than 0.7, which was the case in this study (Guadagnoli and Velicer, 1988). This 

nascent research area requires further detailed work to determine the optimal analysis 

strategy to identify patterns of white matter pathology. In doing so they can help to 

understand whether there are networks that are susceptible to MS disease and how these 

might change over time.  

 

4.5 Conclusions and future directions 

In this study we have demonstrated that a single dominant component explains the 

variation in microstructure of white matter in people with MS and in healthy controls. We 

demonstrate that in people with MS this may relate to the distal effects of WM lesions. 

These covarying patterns of WM tract variance showed a weak relationship with cognitive 

function. The study raises several questions about whether, or not, there is a structure to 

the pathological changes underlying cognitive impairment in MS. Future research should 

therefore consider whether the effects of lesions spread between tracts and at what stage 
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this may start to impact upon cognitive function. By doing so we can develop a greater 

understanding of why spatially heterogeneous damage may lead to similar impairments to 

affect the lives of people with MS.  
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Table 1. Demographic, clinical and neuropsychological characteristics 

 HC  

(n=27) 

RRMS 

(n=102) 
Inferential test results 

Age, yr (median, range) 37.00 (23-59) 45.00 (18-60) 
U = 958.00, p = .015 

Male/female, n 12/15 33/69 
χ
2
(1) = 1.37, p = .241 

Education years (median, 

range) 

19.00 (12-30) 15.00 (10-30) 
U = 613.50, p < .001 

Mean disease duration, yr 

(median, range) 

N/A 12.24 (1-39) 
N/A 

Timed 25 Foot Walk Test 

(median, range) 

4.35 (3.2-5.4) 5.25 (3.6-26.8) 
U = 572.50,  p < .001 

9-Hole Peg Test (median, 

range) 

18.65 (15.35-

23.00) 

21.75 (16.35-

59.50) 
U = 537.50,  p < .001 

SRT L sum (median, range) 
0.00 (-1.26-1.37) -0.54 (-4.72-1.47) 

U = 914.00,  p = .009 

SRT C sum (mean, SD) 
0.00 (1.00) -0.88 (1.22) 

t(49.06) = 3.86, p < .001 

SRT delayed (median, range) 
0.06 (-2.13-1.16) -0.49 (-4.31-1.15) 

U = 881.00,  p = .004 

Spatial1to3 
0.00 (1.00) -0.74 (1.20) 

t(47.76) = 3.29, p = .002 

Spatial delayed 
0.11 (-2.45-1.14) -0.91 (-2.96-1.14) 

U = 794.00,  p = .001 

SDMT 
0.00 (1.00) -0.88 (0.98) 

t(40.14) = 4.09, p < .001 

PASAT3  

(median, range) 

-0.03 (-2.61-1.26) -1.32 (-8.26-1.42) 
U = 692.00,  p < .001 

PASAT2 0.17 (-1.71-2.29) -0.77 (-4.45-2.41) 
U = 768.00,  p < .001 
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Independent samples t-tests were used for comparisons of variables with a normal distribution. Mann-

Whitney U tests were used for variables which were not normally distributed. Sex, being a categorial variable, 

was tested with the chi-squared test. Cognitive test scores are reported as Z-scores. 

 

Abbreviations: HC = healthy controls; PASAT2 = paced auditory serial addition test 2 second delay; PASAT3 = 

paced auditory serial addition test 3 second delay; RRMS = relapsing remitting multiple sclerosis; SD = standard 

deviation; SDMT = symbol digit modalities test; Spatial1to3 = spatial recall test average score over three trials; 

Spatial delayed = spatial recall test score at the delayed trial; SRT delayed = serial recall test scores at the 

delayed trial; SRT L sum = serial recall test long term storage sum of scores; SRT L sum = serial recall test 

consistent recall sum of scores; WLG = word list generation test. 

WLG 0.00 (1.00) -0.24 (0.88) 
t(37.48) = 1.14, p = .263 

Normalised brain volume, L 

(mean, SD) 

1.56 (0.07) 1.51 (0.08) 
t(41.94) = 3.33, p = .002 

Normalised grey matter 

volume, L (median, range) 

0.81 (0.72-0.89) 0.77 (0.61-0.89) 
U = 755.00,  p < .001 

Normalised white matter 

volume, L (median, range) 

0.76 (0.68- 0.81) 0.74 (0.66- 0.83) 
t(40.43) = 1.56, p = .127 
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Table 2. Predictors of WM tract covariance and cognitive domains 

Dependent 

variable 

Predictors Model statistics 

Unrotated tract 

component 1 

Age: ß = 0.03, p = 0.727 

Sex: ß = 0.13, p = 0.186 

Education: ß = -0.03, p = 0.690 

ICV: ß = -0.03, p = 0.721 

Lesion volume: ß = -0.74, p < 0.001 

NBV: ß = 0.01, p = 0.451989 

 

R2 = 0.54, F(6, 95) = 20.58 , p < 0.001 

CC1: Verbal 

cognition 

TC1: ß = 0.30, p = 0.009 

TC2: ß = -0.07, p = 0.444 

TC3: ß = 0.14, p = 0.120 

TC4: ß = 0.08, p = 0.379 

Age: ß = -0.01, p = 0.957 

Sex: ß = 0.35, p = 0.010 

Education: ß = 0.06, p = 0.558 

ICV: ß = 0.12, p = 0.365 

Lesion volume: ß = -0.22, p = 0.049 

NBV: ß = -0.32, p = 0.028 

 

R2 = 0.17, F(10, 91) = 3.04, p < 0.001 

CC2: 

Visuospatial 

cognition 

TC1: ß = -0.01, p = 0.938 

TC2: ß = -0.13, p = 0.191 

TC3: ß = 0.08, p = 0.442 

TC4: ß = -0.11, p = 0.290 

Age: ß = -0.32, p = 0.009 

Sex: ß = 0.10, p = 0.482 

Education: ß = 0.09, p = 0.358 

ICV: ß = 0.01, p = 0.963 

Lesion volume: ß = -0.04, p = 0.708 

NBV: ß = -0.04, p = 0.800 

 

R2 = 0.05, F(10, 91) = 1.50, p = 0.153 

 

CC3: 

Information 

processing 

TC1: ß = 0.06, p = 0.628 

TC2: ß = 0.12, p = 0.236 

TC3: ß = 0.24, p = 0.017 

TC4: ß = -0.16, p = 0.101 

Age: ß = 0.18, p = 0.127 

Sex: ß = -0.14, p = 0.318 

Education: ß = -0.02, p = 0.839 

ICV: ß = -0.10, p = 0.493 

Lesion volume: ß = 0.04, p = 0.739 

NBV: ß = 0.20, p = 0.197 

 

R
2 

= 0.06, F(10, 91) = 1.65, p = 0.106 

CC4: Executive 

function 

TC1: ß = -0.02, p = 0.870 

TC2: ß = 0.05, p = 0.604 

TC3: ß = 0.15, p = 0.101 

TC4: ß = 0.03, p = 0.747 

Age: ß = -0.27, p = 0.016 

Sex: ß = -0.03, p = 0.851 

Education: ß = 0.07, p = 0.443 

ICV: ß = -0.02, p = 0.872 

R2 = 0.18, F(10, 91) = 3.19, p = 0.002 
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Lesion volume: ß = -0.23, p = 0.035 

NBV: ß = 0.13, p = 0.352 

 

Significant predictors are presented in italics. Significance threshold p < 0.05 applied unless otherwise 

indicated. Abbreviations: CC = cognitive component , NBV = normalised brain volume, NWMV = normalised 

white matter volume, TC = tract component, WM = white matter 
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Table 3. Tract loadings on each component derived from the tract PCA, after regressing 

out significant predictors of tract variance and applying Varimax rotation 

 

TC1 TC2 TC3 TC4 

Tract Loading Tract Loading Tract Loading Tract Loading 

or_l 0.77 str_l 0.89 cbp_r 0.77 mcp 0.84 

mdlf_l 0.75 cst_l 0.86 ac 0.73 vof_r 0.26 

or_r 0.75 str_r 0.82 cbd_r 0.72 ac 0.25 

fma 0.75 cst_r 0.78 cbt_r 0.70 fma 0.23 

mdlf_r 0.74 fa_l 0.73 cbt_l 0.67 ar_r 0.23 

ifo_r 0.72 fa_r 0.68 cbp_l 0.67 or_r 0.23 

vof_l 0.70 af_l 0.66 fmi 0.65 cst_r 0.23 

ar_l 0.70 slf1_l 0.65 uf_l 0.64 atr_r 0.21 

vof_r 0.69 slf3_l 0.65 cbd_l 0.63 atr_l 0.18 

ar_r 0.68 af_r 0.63 uf_r 0.60 mdlf_r 0.16 

ifo_l 0.67 slf2_r 0.62 atr_l 0.59 ifo_r 0.14 

ilf_r 0.67 slf2_l 0.59 atr_r 0.58 ilf_l 0.12 

slf2_l 0.62 atr_l 0.59 ilf_l 0.55 fmi 0.12 

af_r 0.62 slf3_r 0.59 ifo_l 0.50 af_r 0.09 

slf1_r 0.61 atr_r 0.56 ilf_r 0.46 or_l 0.09 

slf3_r 0.60 mdlf_r 0.47 mdlf_l 0.44 slf3_r 0.08 

ilf_l 0.58 slf1_r 0.44 ifo_r 0.43 cbt_r 0.08 

slf2_r 0.58 ifo_l 0.44 fa_l 0.39 ilf_r 0.07 

af_l 0.56 ifo_r 0.43 slf1_l 0.39 str_r 0.06 

cbd_l 0.56 cbd_l 0.42 fma 0.38 uf_r 0.04 

uf_r 0.55 fmi 0.41 slf2_l 0.37 slf2_r 0.03 

cbt_l 0.54 mdlf_l 0.40 or_l 0.37 ifo_l 0.02 

slf3_l 0.53 or_r 0.40 ar_l 0.37 vof_l 0.02 

fa_r 0.52 ilf_r 0.39 af_l 0.34 str_l 0.02 

fmi 0.49 uf_r 0.37 mdlf_r 0.33 cbd_r 0.02 

cbd_r 0.47 uf_l 0.37 fa_r 0.33 cbd_l 0.01 

uf_l 0.45 cbd_r 0.35 vof_l 0.33 cbt_l 0.00 

slf1_l 0.44 or_l 0.35 slf1_r 0.32 mdlf_l 0.00 

cbt_r 0.44 ar_r 0.32 slf3_l 0.32 slf3_l -0.03 

cbp_l 0.42 cbp_l 0.31 af_r 0.31 cst_l -0.03 

fa_l 0.38 cbp_r 0.27 slf3_r 0.30 slf1_r -0.03 

atr_r 0.31 ilf_l 0.21 or_r 0.29 af_l -0.04 

atr_l 0.31 fma 0.21 slf2_r 0.28 cbp_l -0.04 

cbp_r 0.31 vof_r 0.15 vof_r 0.21 fa_r -0.04 

cst_r 0.24 ar_l 0.14 ar_r 0.17 slf2_l -0.05 

mcp 0.22 cbt_l 0.13 str_r 0.16 cbp_r -0.05 

str_r 0.19 vof_l 0.11 cst_r 0.14 slf1_l -0.06 

str_l 0.14 cbt_r 0.11 mcp 0.13 uf_l -0.07 

cst_l 0.08 ac 0.04 cst_l 0.09 fa_l -0.12 

 

Abbreviations: ac = anterior commissure; af = arcuate fasciculus; ar = acoustic radiation; atr = anterior thalamic 

radiation; cbd = cingulum subsection, dorsal; cbp = cingulum subsection, peri-genual; cbt = cingulum 
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subsection, temporal; cst = corticospinal tracr; fa = frontal aslant; fma = forceps major; fmi = forceps minor; ifo 

= inferior fronto-occipital fasciculus; ilf = inferior longitudinal fasciculus; mcp = middle cerebellar peduncle; 

mdlf = middle longitudinal fasciculus; or = optic radiation; slf1-3 = superior longitudinal fasciculus 1-3; str = 

superior thalamic radiation; uf  = uncinate fasciculus; vof = vertical occipital fasciulus. Left and right 

hemisphere tracts are denoted with _l and _r, respectively.  
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Table 4. Cognitive component weights in MS patients 

 Cognitive RC1 Cognitive RC2 Cognitive RC3 Cognitive RC4 

SRT L sum 0.82 0.16 0.10 0.36 

SRT C sum 0.87 0.18 0.21 0.24 

SRT delayed 0.73 0.25 0.29 0.37 

Spatial1to3 0.15 0.90 0.23 0.06 

Spatial delayed 0.10 0.93 0.01 0.15 

SDMT 0.20 0.17 0.27 0.84 

PASAT3 0.17 0.18 0.88 0.20 

PASAT2 0.25 -0.06 0.89 0.11 

WLG 0.80 -0.05 0.17 -0.29 

 

Abbreviations: PASAT2 = paced auditory serial addition test 2 second delay; PASAT3 = paced auditory serial 

addition test 3 second delay; SDMT = symbol digit modalities test; Spatial1to3 = spatial recall test average 

score over three trials; Spatial delayed = spatial recall test score at the delayed trial; SRT delayed = serial recall 

test scores at the delayed trial; SRT L sum = serial recall test long term storage sum of scores; SRT C sum = 

serial recall test consistent recall sum of scores; WLG = word list generation test. 
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Figure 1. Metric and tract principal component analysis in healthy controls 

Figure 1A shows the correlation matrices and scree plots for the PCA ran on the four white matter 

microstructural metrics (left) and the white matter tracts based on the first component from the metric PCA 

(right). Those metrics marked with a yellow line load most on principal component 1. All tracts loaded 

positively on tract principal component 1. Figure 1B shows correlations between rotated tract principal 
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component 1 (TC1) and demographic and anatomical variables. Variable marked with a black line, lesion 

volume, was a significant predictor of the principal tract component from Figure 1A in multiple linear 

regression models. Figure 1C shows the correlation matrices and scree plots for metric and tract PCAs after 

lesion volume was regressed out. 

 

Abbreviations: FA = fractional anisotropy; RD = radial diffusivity; MWF = myelin water fraction; MTR = 

magnetisation transfer ratio; ICV = intracranial volume; NBV = normalised brain volume; NGMV = normalised 

grey matter volume; NWMV = normalised white matter volume 
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