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ABSTRACT 
 
Deep learning (DL) and machine learning (ML) models trained on long-term patient 
trajectories held as medical codes in electronic health records (EHR) have the 
potential to improve disease prediction. Anticoagulant prescribing decisions in atrial 
fibrillation (AF) offer a use case where the benchmark stroke risk prediction tool 
(CHA2DS2-VASc) could be meaningfully improved by including more information 
from a patient’s medical history. In this study, we design and build the first DL and 
ML pipeline that uses the routinely updated, linked EHR data for 56 million people in 
England accessed via NHS Digital to predict first ischaemic stroke in people with AF, 
and as a secondary outcome, COVID-19 death. Our pipeline improves first stroke 
prediction in AF by 17% compared to CHA2DS2-VASc (0.61 (0.57-0.65) vs 0.52 
(0.52-0.52) area under the receiver operating characteristics curves, 95% confidence 
interval) and provides a generalisable, opensource framework that other researchers 
and developers can build on. 
 
 
MAIN 
 
Recent advances in artificial intelligence can provide the basis for improving medical 
predictions1. In particular, advances in modelling large sequences of text using deep 
learning (DL) and natural language processing2,3 has opened up the possibility of 
harnessing long-term patient trajectories held as medical codes in electronic health 
records (EHR)4,5. Unlike conventional statistical and machine learning (ML) models, 
DL models can learn representations by directly taking long, individual sequences of 
medical codes stored in EHRs as inputs and could potentially identify complex, long-
term dependencies between medical events6. To date, the improved performance of 
these DL models on their selected prediction tasks is promising4,5 but there has been 
limited comparison against prediction tools used routinely in clinical practice with 
comparisons typically made to other DL or ML methods. A direct comparison is 
important to demonstrate clearly where and by how much DL and ML can offer 
improvements and to help in integrating these methods (where appropriate) into 
routine clinical practice. 
 
Anticoagulant prescribing decisions in atrial fibrillation (AF) offer a use case where 
the benchmark stroke risk prediction tool (CHA2DS2-VASc7) used routinely in clinical 
practice could be meaningfully improved by including more information from a 
patient’s medical history. AF is a disturbance of heart rhythm affecting 37.5 million 
people globally8 and significantly increases ischaemic stroke risk9. Anticoagulants 
reduce the risk of stroke10 and are recommended for people with AF and a high risk 
of stroke, broadly defined as a CHA2DS2-VASc >=2 based on the National Institute 
for Health and Care Excellence (NICE) threshold11,12. The CHA2DS2-VASc score 
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benefits from being easy to calculate and interpret, however, it only measures 7 
variables (age, sex, history of congestive heart failure, hypertension, 
stroke/TIA/thromboembolism, vascular disease and diabetes) and NICE’s own 
evidence review highlights the need for improved stroke risk assessment13. It shows 
that whilst CHA2DS2-VASc is good for identifying people potentially at risk of stroke 
(high sensitivity) it is poor at identifying people who may not have a stroke (low 
specificity)14. The ability of CHA2DS2-VASc to discriminate an individual’s future 
stroke risk is also only moderate (pooled area under the receiver operating 
characteristics curve (AUC) of 0.67 across 27 studies14) and potentially lower for 
predicting first ever stroke based on information at the point of AF diagnosis where 
available evidence is significantly limited. Recent research has also observed that 
pre-existing use of antithrombotics, particularly anticoagulants, is associated with 
lower odds of people with AF dying from COVID-1915,16. A model that could improve 
prediction of first stroke in people with AF and also identify those at greatest risk of 
COVID-19 death would be a potentially valuable new tool to inform anticoagulant 
prescribing decisions.   
 
In this study, we design and build the first DL and ML pipeline that uses the routinely 
updated, linked EHR data for 56 million people in England accessed via NHS 
Digital’s Trusted Research Environment (TRE)17. We use this pipeline to predict first 
ischaemic stroke in people with AF (mean follow-up time 7.2 years), and as a 
secondary outcome, COVID-19 death, using individual sequences of medical codes 
from the entire primary and secondary care record. 
We compare the performance of our DL and ML pipeline directly against the 
CHA2DS2-VASc score to support translation to clinical practice and demonstrate a 
17% improvement on predicting first stroke in AF. 
The code for our pipeline is generalisable, opensource and designed to provide a 
proof-of-concept framework that other researchers and developers can build on. 
 
 
RESULTS 
 
Nationwide deep learning and machine learning pipeline 
 
We built our DL and ML pipeline within NHS Digital’s TRE for England which 
provides secure, remote access to routinely collected, linked, person level EHR data 
for over 56 million people17. Available data sources include primary care, secondary 
care, pharmacy dispensing, death registrations and COVID-19 tests and vaccines.  
 
For this study, we constructed individual sequences of medical codes using all coded 
events from the General Practice Extraction Service Extract for Pandemic Planning 
and Research (GDPPR) and Hospital Episode Statistics on admissions (HES APC – 
primary diagnosis code) datasets. Recorded events were organised into a time 
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ordered list (earliest first) of medical codes (e.g. [SNOMED-CT code 1, ICD-10 code 
1, SNOMED-CT code 2, ICD-10 code 2…SNOMED-CT n / ICD-10 code n]) up to the 
target inclusion event (e.g. first AF diagnosis) alongside a set of static variables that 
represent demographic information (e.g. female, age at first AF diagnosis, ethnicity, 
see Figure 1). 
 
To make the analysis computationally tractable, we built a sampling module which 
creates training, validation and test sub-samples (with cohort inclusion criteria 
applied) from this transformed data. 
 

 
 
Figure 1 – overview of the key data processing steps for the DL and ML pipeline 
within NHS Digital’s TRE for England 
 
For the model components, transformer and long short-term memory (LSTM) 
network architectures were selected as blueprints for the DL models due to their 
suitability for sequence modelling both within and outside of EHRs3–5,18–20.  For the 
ML models, logistic regression, random forest and XGBoost were selected to provide 
a conventional benchmark (logistic regression) and a selection of models with 
evidence of performing well on structured, tabular data (random forest and 
XGboost)21,22. CHA2DS2-VASc scores were also calculated for each individual (see 
“Methods” section) with CHA2DS2-VASc >= 2 used as the baseline for assessing the 
prediction tasks. 
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For the ML models (logistic regression, random forest and XGBoost) individual 
sequences of medical codes were represented as one hot encoded variables for 
each unique code in the cohort sample with static variables represented as 
covariates in their continuous or categorical form. The DL models (transformer and 
LSTM) required a more sophisticated input representation and architecture (see 
Figure 2 and “Methods” section) that preserved the sequential order of medical 
codes for each individual. The same model architectures were used for all prediction 
tasks.  
 

 
 
Figure 2 – overview of the input representation and architecture for the transformer 
and LSTM DL models.  
Note, length and number of input variables are illustrative, for precise specifications 
see “Methods” section.  
 
Cohort characteristics for prediction tasks 
 
Two sample cohorts were created for the prediction tasks, an AF first stroke cohort 
(an AF diagnosis and no prior stroke diagnosis) and an AF+COVID-19 cohort (an AF 
diagnosis, no prior stroke diagnosis and a positive COVID-19 event, see “Methods” 
section for more details). 
 
From a total of 55,903,113 people registered with a GP practice in England and alive 
on January 1st 2020, 870,576 had a diagnosis of AF in their GP record (and met the 
other inclusion criteria) and 16,563 (1.9%) had a first ischaemic stroke after their AF 
diagnosis up to May 1st 2021.  
The AF+COVID-19 cohort contained 76,752 people of whom 17,822 (23.2%) died of 
COVID-19. A flow chart with inclusion criteria is included in Supplementary Figure 1 
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and a summary of the demographic and medical characteristics of both cohorts is 
included in Table 1. 

 AF first stroke cohort AF+COVID-19 cohort 
Individuals 870576 76752 

Age (mean years, +/- sd) 
  

Age at Jan 1st 2020 76 (+/- 11.8) 77 (+/- 13.6) 

Age at first AF diagnosis 69 (+/- 12.3) 69 (+/- 14.6) 

Follow-up time post AF 
diagnosis (mean years, +/- sd) 7.2 (+/- 4.9) 8.7 (+/- 6.7) 

Female 376398 (43.2%) 33664 (43.9%) 
Ethnicity    

White 832291 (95.7%) 71794 (93.5%) 
Asian or asian british 18823 (2.2%) 2794 (3.6%) 
Black or black british 8781 (1.0%) 1044 (1.4%) 

Mixed ethnicity 3131 (0.4%) 363 (0.5%) 
Other ethnic groups 6920 (0.8%) 756 (1.0%) 

Medical characteristics   

All recorded medical codes  
(mean count up to target 

inclusion event, +/- sd) 
71 (+/- 86.5) 418 (+/- 319.7) 

Unique recorded medical codes 
(mean count up to target 

inclusion event, +/- sd) 
20 (+/- 16.5) 76 (+/- 27.6) 

Ischaemic stroke 16563 (1.9%) 2524 (3.3%) 
COVID-19 event* 67208 (7.7%) 76730 (100%) 
COVID-19 death 15899 (1.8%) 17822 (23.2%) 

 
Table 1 – summary of demographic and medical characteristics for first stroke and 
COVID-19 cohort 
*The number of people with COVID-19 events is lower in first stroke cohort due to 
the date of first AF diagnosis cut-off being several years earlier (on average) than the 
first COVID-19 event date cut-off and as a result a larger proportion of people did not 
have >=5 recorded medical codes prior to this date (see “Methods” section). 
 
Prediction task performance 
 
The primary prediction task was to predict the binary outcome of first ischaemic 
stroke in people with AF (mean follow-up time 7.2 years). For this task, XGBoost was 
the top performing model (AUC=0.61 (0.57-0.65) with random forest a close second 
(AUC=0.60 (0.58-0.62), followed by transformer (AUC=0.58 (0.58-0.58) and logistic 
regression (AUC=0.58 (0.56-0.60) models. LSTM (AUC=0.53 (0.47-0.59) and 
CHA2DS2-VASc >=2 (AUC=0.52 (0.52-0.52) were the worst performing models (see 
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Table 2). XGBoost did not have the highest overall accuracy (0.53 (0.51-0.55) vs 
random forest with 0.56 (0.52-0.60) but did have higher sensitivity (0.68 (0.62-0.74) 
vs 0.65 (0.63-0.67)). 
 
Models were also evaluated on sub-groups to compare predictive performance 
across gender, age and ethnicities (see Supplementary Table 1). Performance was 
broadly consistent across sub-groups with the exception of potentially lower 
performance in individuals with a recorded ethnicity of “black or black british” 
(XGBoost AUC=0.30 (0.00-0.93)), “mixed ethnicity” (XGBoost AUC=0.33 (0.00-
1.00)) or “other ethnic group” (XGBoost AUC=0.49 (0.00-1.00)). 
 
Model Accuracy AUC Sensitivity Specificity Precision 
CHA2DS2-VASc 
>=2 

0.30  
(0.28-0.32)  

0.52  
(0.52-0.52) 

0.75  
(0.73-0.77)  

0.29  
(0.27-0.31)  

0.02  
(0.02-0.02)  

Logistic 
Regression 

0.56  
(0.54-0.58)  

0.58  
(0.56-0.60)  

0.61 
(0.55-0.67)  

0.56  
(0.54-0.58)  

0.03 
(0.03-0.03)  

LSTM 0.23  
(0.05-0.41)  

0.53  
(0.47-0.59)  

0.85  
(0.77-0.93)  

0.21 
(0.03-0.39)  

0.02 
(0.02-0.02)  

Random Forest 0.56  
(0.52-0.60)  

0.60  
(0.58-0.62)  

0.65  
(0.63-0.67)  

0.56  
(0.52-0.60)  

0.03 
(0.03-0.03) 

Transformer 0.43  
(0.21-0.65)  

0.58  
(0.58-0.58)  

0.74 
(0.49-0.99)  

0.42 
(0.18-0.66)  

0.03 
(0.03-0.03) 

XGBoost 0.53  
(0.51-0.55)  

0.61  
(0.57-0.65)  

0.68  
(0.62-0.74)  

0.53  
(0.51-0.55)  

0.03 
(0.03-0.03) 

 
Table 2 – summary of model performance statistics for predicting first ischaemic 
stroke after AF in all groups. 95% confidence intervals (CI) in brackets. Bold font 
marks highest performing model for each metric. 
 
For our secondary outcome, COVID-19 death, XGBoost was also the top performing 
model (AUC=0.73 (0.73-0.73), (see Table 3) followed by random forest (AUC=0.70 
(0.68-0.72, transformer (AUC=0.69 (0.67-0.71)), logistic regression (AUC=0.69 
(0.67-0.71) and the LSTM model (AUC=0.67 (0.65-0.69). CHA2DS2-VASc >=2 
(AUC=0.58 (0.58-0.58) was the worst performing model by a greater distance than in 
the stroke prediction task. XGBoost was also the top performing model for accuracy 
(0.69 (0.69-0.69) and precision (0.42 (0.42-0.42)) but had marginally lower sensitivity 
than random forest (0.81 (0.77-0.85) and CHA2DS2-VASc >=2 (0.98 (0.98-0.98), 
which labelled nearly all COVID-19 deaths. 
 
 
Model Accuracy AUC Sensitivity Specificity Precision 
CHA2DS2-VASc 
>=2 

0.37  
(0.37-0.37)  

0.58  
(0.58-0.58)  

0.98  
(0.98-0.98)  

0.19  
(0.19-0.19)  

0.27  
(0.27-0.27)  
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Logistic 
Regression 

0.68  
(0.68-0.68)  

0.69  
(0.67-0.71)  

0.70  
(0.66-0.74)  

0.68  
(0.68-0.68)  

0.40  
(0.40-0.40)  

LSTM 0.63  
(0.49-0.77)  

0.67  
(0.65-0.69)  

0.75  
(0.53-0.97)  

0.59  
(0.34-0.84)  

0.36  
(0.28-0.44)  

Random Forest 0.65  
(0.65-0.65)  

0.70  
(0.68-0.72)  

0.81  
(0.77-0.85)  

0.60  
(0.60-0.60)  

0.38  
(0.38-0.38)  

Transformer 0.67  
(0.61-0.73)  

0.69  
(0.67-0.71)  

0.72  
(0.66-0.78)  

0.66 
(0.56-0.76)  

0.39 
(0.35-0.43)  

XGBoost 0.69  
(0.69-0.69)  

0.73 
(0.73-0.73)  

0.79  
(0.77-0.81)  

0.66  
(0.66-0.66)  

0.42  
(0.42-0.42)  

 
 
Table 3 – summary of model performance statistics for predicting COVID-19 death in 
people diagnosed with AF (and no prior stroke diagnosis) in all groups. 95% CI in 
brackets. Bold font marks highest performing model for each metric. 
 
In contrast to the stroke prediction task, there was more divergence in model 
performance across sub-groups (see Supplementary Table 2). AUC was 4% 
(XGBoost) to 13% (CHA2DS2-VASc) lower for women compared to men. For people 
aged under 65, CHA2DS2-VASc, AUC was 33% higher than for people aged 65 or 
over. However, in the other models AUC was 23% (XGBoost) to 5% (Transformer / 
LSTM) lower for people aged under 65 compared to people aged 65 or over. Across 
ethnicities, performance was more consistent, with the exception of people with a 
“mixed” recorded ethnicity where AUC was on average 11% higher than for the other 
ethnic groups. 
 
DISCUSSION 
 
This study is the first to design and build a DL and ML pipeline that uses the routinely 
updated, linked EHR data for 56 million people in England accessed via NHS Digital. 
All the DL and ML models outperformed CHA2DS2-VASc for predicting first 
ischaemic stroke (AUC=0.52 (0.52-0.52)) and COVID-19 death (AUC=0.58 (0.58-
0.58)) in people with AF. However, DL models did not outperform more conventional 
ML methods, with XGBoost the top performing model for predicting first stroke 
(AUC=0.61 (0.57-0.65)) and COVID-19 death (AUC=0.73 (0.73-0.73). We also 
provide detailed performance statistics (e.g. accuracy, sensitivity, specificity, 
precision) and sub-group analysis (e.g. gender, age, ethnicity) to ensure we adhere 
to recommended guidance for reporting on DL and ML analysis in clinical 
research23,24 wherever possible and appropriate. Whilst the top performing model 
improves first stroke prediction by 17% compared to CHA2DS2-VASc (0.61 vs 0.52), 
further improvements are required before our pipeline could be considered for use in 
clinical practice.  
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Despite the rapid improvements in DL and ML, applications in routine clinical care 
remain challenging25. This is partly because DL and ML applications are developed 
on data and infrastructure which is often different to what is available in routine 
care25. NHS Digital’s TRE for England is unique in providing a platform with widely 
linked, routinely collected, population-scale data that could form the foundation of a 
nationwide DL and ML powered EHR17. Motivated by this potential we have 
successfully developed the first proof-of-concept DL and ML pipeline that deploys 
advanced DL and ML models within the unique environment of NHS Digital’s TRE for 
England. We then sought to demonstrate that this could improve a clinical use case 
where a prediction tool is already routinely used and where there is an opportunity to 
improve performance by harnessing high-dimensional information from a patient’s 
medical history. We, therefore, selected anticoagulant prescribing decisions in AF 
and tested our pipeline against the CHA2DS2-VASc score for predicting first stroke 
after AF and COVID-19 death.  
 
It is already recognised that CHA2DS2-VASc is an imprecise tool for stroke 
prediction14 and this is reflected in the differing thresholds recommended in 
international clinical guidance13,26. Our findings reinforce the challenges of precisely 
predicting stroke using CHA2DS2-VASc, particularly for predicting first ever stroke at 
the point of AF diagnosis, where the performance on discriminating between 
someone who had a stroke compared to someone who did not was little better than 
chance (an AUC of 0.50) in our study. The poor performance of CHA2DS2-VASc may 
be partly explained by its heavy weighting of previous stroke diagnoses which get 2 
points in a 7 variable, 9 point system. Our DL and ML models improved prediction 
performance, potentially by being able to use more variables (represented as 
medical codes) from an individual’s primary and secondary care record up to AF 
diagnosis. However, the sequential ordering of an individual’s medical codes did not 
appear to improve predictions as XGBoost outperformed the DL models using only 
the binary information of whether a person had a recorded medical code (one-hot 
encoding). XGBoost has been shown to perform as well as DL models on tabular 
data22 and has also been applied to a range of EHR disease prediction problems27,28. 
Despite a 17% improvement compared to CHA2DS2-VASc, the performance was still 
only moderate and supports the observation that predicting first stroke in atrial 
fibrillation is a challenging prediction problem. 
 
The performance on prediction of COVID-19 death was more encouraging and 
begins to demonstrate how our DL and ML pipeline could deliver larger 
improvements to disease prediction and be used in clinical practice. A key driver of 
the improved performance of predicting COVID-19 death is likely the inclusion of 
more medical codes due to the later, on average, target inclusion event of a positive 
COVID-19 event compared to a first AF diagnosis. This meant that DL and ML 
models had access to, on average, 76 unique medical codes from an individual’s 
medical history vs 20 in the first stroke cohort. Importantly, all the models except 
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CHA2DS2-VASc showed an AUC improvement of at least 17% (vs 12%) indicating 
that DL and ML architectures can extract incrementally valuable information from 
longer sequences.  
 
There are also several key limitations which prevented us from maximising the 
potential performance from DL and ML architectures.  
Firstly, graphical processing units (GPUs) and some parallel computing methods are 
currently restricted on the NHS Digital's TRE for England meaning that it was not 
possible to train models on larger datasets (e.g. 10,000+) or create DL architectures 
with more layers. This also prevented us from including an individual’s full medical 
history (e.g. no repeating medical codes) and only allowed us to include the 100 
most recent medical codes up to the target inclusion event. 
Secondly, the NHS Digital TRE for England does not yet facilitate the use or creation 
of code embeddings pre-trained with other models. This transfer learning approach 
was adopted by the teams behind BEHRT4 and MedBERT5 and builds on the 
performance gains demonstrated by large language models such as BERT2 and 
GPT-329. 
Lastly, medical codes stored in structured EHR data are just one type of data 
modality and do not reflect the full diversity of an individual’s medical history. Even 
before adding new types of data to the TRE such as genetics, imaging and free text, 
there are observational values such as systolic blood pressure and cholesterol / HDL 
ratio which could be included in future models. 
 
In addition to addressing the above, the next phase of our work will aim to improve 
the clinical interpretability of our DL and ML pipeline. For this study, we chose to 
compare model performance primarily using AUC on binary outcomes (e.g. 1 for 
stroke, 0 for no stroke) to support direct comparison to CHA2DS2-VASc but our 
pipeline is capable of producing estimated probabilities which could be used by 
clinicians as confidence measures and by future researchers to assess model 
calibrations. We will also explore adding feature assessment mechanisms (e.g. 
attention visualisation30) to ML and DL models but recognise that this alone still falls 
short of the interpretability clinicians need31. It will also be important for future work to 
consider the implications of how missing data within the patients’ sequence of 
medical codes might affect the accuracy of predictions in subgroups (e.g. deprived 
versus affluent) and adapt the algorithms accordingly to ensure equity32. Lastly, we 
will explore the potential to integrate adapted survival analysis models33 which could 
allow more precise censoring of individuals and enhanced interpretability through 
mapping “nodes” to biological features.  
 
In conclusion, we designed and built the first DL and ML pipeline that uses the 
routinely updated, linked EHR data for 56 million people in England and improved 
first stroke prediction by 17% compared to CHA2DS2-VASc. Further potential 
improvements could be achieved by using higher computation training regimes, pre-
trained embeddings and more data modalities. 
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METHODS 
 
Data sources  
 
The DL and ML pipeline was created using NHS Digital’s TRE for England which 
provides secure, remote access to linked, person level EHR data for over 56 million 
people17. Available data sources include primary care, secondary care, pharmacy 
dispensing, death registrations and COVID-19 tests and vaccines. For this study, we 
constructed individual sequences of medical codes using all coded events from the 
General Practice Extraction Service Extract for Pandemic Planning and Research 
(GDPPR) and Hospital Episode Statistics on admissions (HES APC) datasets. AF 
and stroke diagnoses were determined from GDPPR and COVID-19 events and 
deaths from a combination of HES, COVID-19 Hospitalisations in England 
Surveillance System (CHESS), Public Health England’s Second Generation 
Surveillance System (SGSS), Secondary Uses Service (SUS) and Office for National 
Statistics (ONS) Civil Registration of Deaths. 
 
Cohort selection 
 
Individuals were eligible for the sample cohorts if they had five or more recorded 
medical codes [as in BEHRT4] across GDPPR and HES APC, were >= 18 years old 
and alive on January 1st 2020, had available sex, ethnicity and GP practice location 
data (based on most recent, available data across primary care (GDPPR), 
secondary care (HES APC) and death registrations (Office for National Statistics)) 
and had a diagnosis of AF (coded in GDPPR). For the AF first stroke cohort, people 
who had a stroke diagnosis (including non-ischaemic strokes) prior to their AF 
diagnosis were excluded (see Supplementary Figure 1 for a cohort inclusion 
flowchart). People with AF who had an ischaemic stroke diagnosis after their AF 
diagnosis, were only included if their stroke occurred two or more months after the 
date of their first AF diagnosis to help screen out delayed coding of cases which may 
have occurred prior to AF diagnosis.  
 
For the AF+COVID-19 cohort, in addition to an AF diagnosis, individuals required a 
recorded COVID-19 event defined as any of a positive test (polymerase chain 
reaction or lateral flow), a coded diagnosis in primary or secondary care or a COVID-
19 diagnosis on a death certificate34. The COVID-19 death outcome included people 
with a COVID-19 diagnosis on their death certificate in any position, a registered 
death within 28 days of their first recorded COVID-19 event or a discharge 
destination denoting death after a COVID-19 hospitalisation34. Follow-up for both first 
ever stroke and COVID-19 death was conducted from date of first event (AF 
diagnosis or COVID-19 event) up to May 1st 2021. Further details on phenotyping 
algorithms used are available on GitHub 
(https://github.com/BHFDSC/CCU004_02/tree/main/phenotypes).  
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The entire eligible study population was then randomly split 80:20 into training and 
test datasets. Prevalence of first ischaemic stroke after AF was low (1.9%) which 
means the target class (stroke) was highly imbalanced in the training data. To 
address this for the training data, we created a rebalanced sample by selecting all 
stroke cases and randomly selecting (with replacement) controls at a ratio of 1 
control to 1 stroke case. This ratio was selected after initial experimentation which 
showed that DL and ML models had limited ability to discriminate (based on AUC) 
after being trained on ratios of 1-to-3 and population prevalence. The testing dataset 
was kept at the population prevalence. The same approach was adopted for COVID-
19 death which had moderate prevalence (23.2%) in people with AF.  
 
As outlined in Figure 1, a sampling module was developed to create computationally 
tractable sub-samples from the nationwide, eligible study population. Random sub-
samples of 10,000 people were selected from the rebalanced training and testing 
datasets. The training sub-sample was then split into model training data (n=8000) 
and validation data (n=2000), with the model with the highest AUC on the validation 
data selected for testing. To assess the reliability of model predictions, three 
versions of each training and test sub-sample were created with averages and 
confidence intervals reported in results.  
 
The maximum length of medical codes included for each individual was also 
adjusted to reduce computational requirements. Models were trained and tested with 
a limit of 100 medical codes which included all codes for 99% of the AF first stroke 
cohort and >75% of AF+COVID-19 cohort. 
 
Statistical analysis and model implementation 
 
The primary prediction task was to predict the binary outcome of first ischaemic 
stroke in people with AF.  
A CHA2DS2-VASc score >=2 was used as the baseline with individuals with a score 
of >=2 assigned a label of 1 (prediction of future stroke) and those <2 assigned a 
label of 0 (prediction of no future stroke). The CHA2DS2-VASc score was calculated 
for each individual in the cohort based on the scoring system outlined here7, with 
“Stroke/TIA/thromboembolism history” excluded due to the removal of individuals 
with these diagnoses from the cohort given the target prediction outcome was first 
stroke. 
 
For the ML models (logistic regression, random forest and XGBoost) individual 
sequences of medical codes were represented as one hot encoded variables for 
each unique code in the cohort sample with the static variables (female, age at first 
AF diagnosis, ethnicity) represented as covariates in their continuous or categorical 
form.  
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The DL models (transformer and LSTM) required a more sophisticated input 
representation and architecture (see Figure 2 for graphical overview). The general 
design principle was to keep the models as simplistic as possible for the proof-of-
concept with default configurations used where possible (refer to Pytorch 
documentation - https://pytorch.org/docs/stable/torch.html) and additional layers and 
modules kept to a minimum.  
 
A vocabulary of each unique medical code from all the individual sequences of 
medical codes from the cohort sample was assembled and used to create a trainable 
set of vector embeddings for each medical code. Individual sequences of medical 
codes are, therefore, input into DL models as sequences with dimensions Dm*n with 
m the max length of an individual sequence of medical codes in the cohort (limited to 
100 in this study and padded with zeros for individuals with shorter sequences) and 
n the size of the medical code vector embeddings (200 in this study). The 
transformer also has positional embeddings to ensure it has the ability to learn 
information from the relative position of the medical codes3. These sequences are 
then passed through a sequential module (recurrent gated cells for LSTM and multi-
headed attention layers for transformer) to provide a pooled representation of each 
sequence. Both the LSTM and transformer have two internal layers; two hidden 
layers for the LSTM and two encoder layers (with two attention heads) for the 
transformer. 
 
Static variables were represented and input into the models as a vector of 
continuous values and passed through a separate feed forward layer with a rectified 
linear unit activation function prior to concatenation with the pooled outputs of the 
sequential module. The concatenated layer containing sequential and static 
information is then passed through another two feed forward layers to produce a 
vector the size of the number of output labels (two for a binary outcome) that is 
converted into logits for the loss function using the LogSoftmax.  
Dropout layers (with a probability of dropout of 0.20) were included in the sequential 
module and the concatenated outputs to help prevent the model overfitting to the 
data. 
 
Training parameters were kept consistent across both LSTM and transformer 
architectures with 10 epochs, a batch size of 64 and a learning rate of 0.001 (using 
an ADAM optimizer35). Negative log likelihood was used as the loss function. Plots of 
performance metrics across the training, validation and test datasets were visually 
inspected to confirm that 10 epochs was sufficient to reach convergence on the 
prediction tasks.  
 
NHS Digital’s TRE for England runs on a Databricks cluster with Runtime 6.4 for 
Machine Learning and an i3.xlarge 30.5GB memory, 4 core worker. At the time of 
analysis, there were no GPUs available nor were Spark ML’s parallelized helper 
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functions whitelisted for use. Data preparation, analysis and model building was 
performed using Python 3.7 and Spark SQL (2.4.5) with Databricks. The logistic 
regression and random forest models were built using the Python sklearn package 
(0.24.2) and fit with their default configurations (refer to sklearn documentation - 
https://scikit-learn.org/stable/modules/classes.html), with the exception of max 
iterations being set to 3000 for the logistic regression model. XGboost was built 
using the xgboost package (0.90) and fit with a “binary:logistic” objective and the 
remaining parameters as their default configuration. Both DL models were built with 
the PyTorch package (1.9.0). Accuracy, AUC, sensitivity, specificity and precision 
were estimated for each model using the sklearn. Summary tables were created 
using R version 4.0.3.  
 
For any further specifications please refer to the code on GitHub 
(https://github.com/BHFDSC/CCU004_02/tree/main/code).  
 
 
Ethical and regulatory approvals 
 
The data used in this study are available in NHS Digital’s TRE for England, but as 
restrictions apply they are not publicly available 
(https://digital.nhs.uk/coronavirus/coronavirus-data-services-updates/trusted-
research-environment-service-for-england). The CVD-COVID-UK/COVID-IMPACT 
programme led by the BHF Data Science Centre (https://www.hdruk.ac.uk/helping-
with-health-data/bhf-data-science-centre/) received approval to access data in NHS 
Digital’s TRE for England from the Independent Group Advising on the Release of 
Data (IGARD) (https://digital.nhs.uk/about-nhs-digital/corporate-information-and-
documents/independent-group-advising-on-the-release-of-data) via an application 
made in the Data Access Request Service (DARS) Online system (ref. DARS-NIC-
381078-Y9C5K) (https://digital.nhs.uk/services/data-access-request-service-
dars/dars-products-and-services). The CVD-COVID-UK/COVID-IMPACT Approvals 
& Oversight Board (https://www.hdruk.ac.uk/projects/cvd-covid-uk-project/) 
subsequently granted approval to this project to access the data within the TRE for 
England. The de-identified data used in this study were made available to accredited 
researchers only. Analyses were conducted by approved researcher (AH) via secure 
remote access to the TRE. Only summarised, aggregate results were exported, 
following manual review by the NHS Digital ‘safe outputs’ escrow service, to ensure 
no output placed in the public domain contains information that may be used to 
identify an individual17. The North East-Newcastle and North Tyneside 2 research 
ethics committee provided ethical approval for the CVD-COVID-UK/COVID-IMPACT 
research programme (REC No 20/NE/0161).  
 
Patient and public involvement 
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The UK National Institute for Health Research-BHF Cardiovascular Partnership lay 
panel comprising individuals affected by cardiovascular disease reviewed and 
approved this project. 
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Supplementary Figure 1 – cohort inclusion flowchart showing the number of 
individuals excluded at each step  
 
 
 
SUPPLEMENTARY TABLES 
 

Model Female Male <65 
years 

old 

>=65 
years 

old 

White Asian or 
asian 
british 

Black or 
black 
british 

Mixed 
ethnicity 

Other 
ethnic 
group 

AF+COVID-19 event** 
(Jan 1st 2020 – May 1st 2021) 

(n = 76,752)

Registered with a GP practice 
in the UK

(n = 55,903,113)

>= 18 years old and alive on 
Jan 1st 2020

(n = 44,528,760)

Available sex, ethnicity and 
GP location data
(n = 37,727,546)

Diagnosis of AF
(n = 1,134,155)

AF first stroke cohort*

(n = 870,576)

(n = 11,374,353)

Individuals excluded at step

(n = 6,801,214)

(n = 36,593,391)

(n = 263,579)

(n = 793,824)

*Excludes individuals with <5 recorded medical codes, any type of stroke diagnosis prior to 
AF diagnosis or within two months of AF diagnosis or after May 1st 2021 study end date. 
**Excludes individuals without a recorded positive COVID-19 event.
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CHA2DS2-
VASc >=2 

0.51 
(0.49-
0.53) 

0.53 
(0.51-
0.55) 

0.50 
(0.44-
0.56) 

0.51 
(0.49-
0.53) 

0.52 
(0.52-
0.52) 

0.60 
(0.44-
0.76) 

0.43  
(0.00-
1.00) 

0.19  
(0.00-
0.64) 

0.20 
(0.12-
0.28) 

Logistic 
Regression 

0.59 
(0.57-
0.61) 

0.58 
(0.54-
0.62) 

0.58 
(0.56-
0.60) 

0.58 
(0.54-
0.62) 

0.58 
(0.56-
0.60) 

0.54 
(0.50-
0.58) 

0.24 
(0.00-
0.73) 

0.56 
(0.00-
1.00) 

0.34 
(0.10-
0.58) 

LSTM 0.53 
(0.49-
0.57) 

0.53 
(0.45-
0.61) 

0.52 
(0.48-
0.56) 

0.52 
(0.46-
0.58) 

0.53 
(0.47-
0.59) 

0.55 
(0.37-
0.73) 

0.26 
(0.00-
0.85) 

0.24 
(0.00-
0.93) 

0.57 
(0.35-
0.79) 

Random 
Forest 

0.62 
(0.60-
0.64) 

0.60 
(0.58-
0.62) 

0.61 
(0.57-
0.65) 

0.60 
(0.58-
0.62) 

0.60 
(0.58-
0.62) 

0.65 
(0.41-
0.89) 

0.29 
(0.00-
0.98) 

0.34 
(0.00-
1.00) 

0.56 
(0.01-
1.00) 

Transformer 0.58 
(0.52-
0.64) 

0.57 
(0.53-
0.61) 

0.58 
(0.52-
0.64) 

0.58 
(0.54-
0.62) 

0.58 
(0.58-
0.58) 

0.51 
(0.37-
0.65) 

0.32 
(0.00-
1.00) 

0.52 
(0.00-
1.00) 

0.34 
(0.16-
0.52) 

XGBoost 0.61 
(0.55-
0.67) 

0.60 
(0.58-
0.62) 

0.59 
(0.57-
0.61) 

0.61 
(0.57-
0.65) 

0.61 
(0.59-
0.63) 

0.59 
(0.34-
0.84) 

0.30 
(0.00-
0.93) 

0.33 
(0.00-
1.00) 

0.49 
(0.00-
1.00) 

 
Supplementary Table 1 – summary of model performance statistics (AUCs) for 
predicting first ischaemic stroke after AF in sub-groups. 95% confidence intervals 
(CI) in brackets. Bold font marks highest performing model for each metric. 
 
 
 
 
 
 
 
 
 
 
 
 

Model Female Male <65 
years 

old 

>=65 
years 

old 

White Asian or 
asian 
british 

Black or 
black 
british 

Mixed 
ethnicity 

Other 
ethnic 
group 



 22 

CHA2DS2-
VASc >=2 

0.54 
(0.54-
0.54)  

0.62 
(0.62-
0.62)  

0.68 
(0.64-
0.72)  

0.51 
(0.51-
0.51)  

0.58 
(0.58-
0.58)  

0.60 
(0.60-
0.60)  

0.61 
(0.57-
0.65)  

0.71 
(0.69-
0.73)  

0.64 
(0.58-
0.70)  

Logistic 
Regression 

0.66 
(0.64-
0.68)  

0.71 
(0.69-
0.73)  

0.60 
(0.58-
0.62)  

0.65 
(0.63-
0.67)  

0.69 
(0.67-
0.71)  

0.69 
(0.59-
0.79)  

0.69 
(0.57-
0.81)  

0.76 
(0.68-
0.84)  

0.73 
(0.61-
0.85)  

LSTM 0.64 
(0.60-
0.68)  

0.69 
(0.69-
0.69)  

0.59 
(0.49-
0.69)  

0.62 
(0.56-
0.68)  

0.67 
(0.65-
0.69)  

0.67 
(0.61-
0.73)  

0.67 
(0.65-
0.69)  

0.75 
(0.53-
0.97)  

0.69 
(0.67-
0.71)  

Random 
Forest 

0.67 
(0.65-
0.69)  

0.73 
(0.71-
0.75)  

0.62 
(0.60-
0.64)  

0.66 
(0.64-
0.68)  

0.70 
(0.68-
0.72)  

0.71 
(0.61-
0.81)  

0.66 
(0.62-
0.70)  

0.80 
(0.72-
0.88)  

0.76 
(0.68-
0.84)  

Transformer 0.66 
(0.64-
0.68)  

0.70 
(0.68-
0.72)  

0.62 
(0.56-
0.68)  

0.65 
(0.63-
0.67)  

0.69 
(0.67-
0.71)  

0.68 
(0.62-
0.74)  

0.64 
(0.58-
0.70)  

0.80 
(0.76-
0.84)  

0.76 
(0.70-
0.82)  

XGBoost 0.71 
(0.69-
0.73)  

0.74 
(0.72-
0.76)  

0.53 
(0.49-
0.57)  

0.69 
(0.69-
0.69)  

0.73 
(0.73-
0.73)  

0.74 
(0.70-
0.78)  

0.69 
(0.67-
0.71)  

0.76 
(0.52-
1.00)  

0.76 
(0.66-
0.86)  

 
Supplementary Table 2 – summary of model performance statistics (AUCs) for 
predicting COVID-19 death after AF in sub-groups. 95% confidence intervals (CI) in 
brackets. Bold font marks highest performing model for each metric. 
 


