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Abstract

Background: With the introduction of DNA-damaging therapies into standard of care cancer
treatment, there is a growing need for predictive diagnostics assessing homologous
recombination deficiency (HRD) status across tumor types. Following the strong clinical
evidence for the utility of DNA-sequencing-based HRD testing in ovarian cancer, and growing
evidence in breast cancer, we present analytical validation of the Tempus|HRD-DNA test. We
further developed, validated, and explored the Tempus|HRD-RNA model, which uses gene
expression data from 16,470 RNA-seq samples to predict HRD status from formalin-fixed
paraffin-embedded (FFPE) tumor samples across numerous cancer types.

Methods: Genomic and transcriptomic profiling was performed using next-generation
sequencing from Tempus|xT, Tempus|xO, Tempus|xE, Tempus|RS, and Tempus|RS.v2 assays
on 48,843 samples. Samples were labeled based on their BRCA1, BRCA2 and selected
Homologous Recombination Repair (HRR) pathway gene (CDK12, PALB2, RAD51B, RAD51C,
RAD51D) mutational status to train and validate HRD-DNA, a genome-wide
loss-of-heterozygosity biomarker, and HRD-RNA, a logistic regression model trained on gene
expression, using several performance metrics and statistical tests.

Results: In a sample of 2,058 breast and 1,216 ovarian tumors, BRCA status was predicted by
HRD-DNA with F1-scores of 0.98 and 0.96, respectively. Across an independent set of 1,363
samples across solid tumor types, the HRD-RNA model was predictive of BRCA status in
prostate, pancreatic, and non-small cell lung cancer, with F1-scores of 0.88, 0.69, and 0.62,
respectively.

Conclusions: We predict HRD-positive patients across many cancer types and believe both
HRD models may generalize to other mechanisms of HRD outside of BRCA loss. HRD-RNA
complements DNA-based HRD detection methods, especially for indications with low
prevalence of BRCA alterations.
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Introduction

Genomic instability is an enabling characteristic of cancer that is often mediated by
deficiency in DNA damage sensing and repair processes (1). The homologous recombination
repair (HRR) pathway, which is responsible for repairing DNA double-strand breaks (DSBs) (2),
is frequently dysregulated in cancer, leading to the accumulation of genomic defects and cancer
progression (3). BRCA1 and BRCA2 are foundational to the HRR pathway and were initially
discovered due to their association with hereditary breast and ovarian cancers. Since their
discovery, screening for germline BRCA alterations has become a powerful tool for clinical risk
assessment and management (4). In addition, understanding the role of BRCA1 and BRCA2 in
HRR has led to the development of targeted therapies, such as poly-ADP ribose polymerase
(PARP) inhibitors. This class of drugs exploits synthetic lethality with the base excision repair
pathway to directly target the underlying mechanism contributing to tumorigenesis (5,6).

Genetically or epigenetically driven loss of function in BRCA1 or BRCA2 is the canonical
driver of the homologous recombination deficiency (HRD) phenotype, which is defined as the
inability to repair DSBs with HRR (7). Nevertheless, multiple genes may impact the ability of the
HRR pathway to repair DSBs. Specifically, BRCA1/2 alterations are not necessary to cause the
HRD phenotype; alterations in other HRR-related genes (i.e., RAD51C and PALB2) have also
been associated with the HRD phenotype (8). However, the set of necessary and sufficient
genetic and epigenetic alterations that drive the clinical manifestation of the HRD
phenotype—and thus potential sensitivity to DNA damaging therapies (PARP inhibitors) in
specific cancer indications—has yet to be comprehensively determined.

Additional biomarkers, outside of mutations in BRCA1/2, are needed to better
characterize the HRD phenotype and to identify patients without BRCA1/2 biallelic loss who are
most likely to benefit from DNA repair-targeting therapies. One such biomarker is the presence
of genomic scars which are created when HR-deficient cells are unable to repair DNA damage.
Genome-wide loss-of-heterozygosity measures genomic scarring by calculating the percent of
the profiled genome with loss of at least one allele. Genome-wide loss-of-heterozygosity
(gwLOH) has demonstrated clinical benefit detecting HRD in ovarian cancers when used either
independently (9) or in combination with measures of telomeric allelic imbalance and large-scale
state transitions (10). Many of these DNA-based HRD biomarkers are measured over regions in
the absence of aneuploidy, defined by loss or gains of chromosomes or chromosome arms, and
is considered a confounding variable that may inflate gwLOH (9,11–13).

An orthogonal approach is to measure genomic scars via mutational signatures (8).
Using whole-genome sequencing data, mutational signatures have suggested 20-30% more
breast cancer patients may harbor HRD than what is detectable using the BRCA1/2 genotype
alone (14–16). These methods orthogonal to BRCA1/2 status have only demonstrated utility in
breast and ovarian cancer, necessitating new approaches for other cancer types. Alternative
approaches to detect HRD include measurement of epigenetic silencing of BRCA1/2 (17–19)
and/or epigenetic or genetic loss of other gene members of the HRR pathway (5,20,21).
However, these mechanisms may be tissue specific, requiring additional research between
specific alterations and the HRD phenotype. Further, reliance on fresh tissue for whole-genome
sequencing and the measurement of multiple molecular modalities can be impractical and costly
in real-world clinical practice.
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Functional biomarkers of HRD, such as those assessing RAD51 nuclear localization
(22), have received increasing attention given the accumulating evidence for mechanisms of
resistance to platinum chemotherapy (23) and PARP inhibitors (24), suggesting that HRD is a
dynamic phenotype. DNA-based biomarkers of the HRD phenotype have a strong temporal
dependency given that a sufficient accumulation of genomic scars are needed for detection.
Additionally, genomic markers of instability may have limited reversibility and could represent
the molecular history of the tumor rather than the current state of HRR proficiency. In contrast to
DNA-based approaches, gene expression has the potential to capture the dynamic state of
HRD in a manner that is independent from genomic scarring. Transcriptional signatures have
shown promise in predicting BRCA status or genomic scars in prostate and pancreatic cancer
(25–27). However, it has yet to be demonstrated that a transcriptome-based model can
generalize across solid tumors.

Here, we present an analytical validation of the Tempus|HRD platform comprising two
assays: HRD-DNA, which measures gwLOH to predict HRD status in breast and ovarian
cancers, and HRD-RNA, a logistic-regression model trained on whole-exome capture RNA
sequencing data that predicts HRD status across all other solid tumors. Using data from a
large-scale, real-world cohort, we demonstrate the capabilities of these models to accurately
detect HRD driven by BRCA1/2 loss and non-BRCA1/2 mechanisms.

Methods

IRB

All analyses were performed using de-identified data; IRB exemption Pro00042950 was
obtained from Advarra on April 15, 2020.

Sample selection

Prior to sequencing, a hematoxylin and eosin (H&E) stained slide was prepared for FFPE tumor
specimens and reviewed by a board-certified pathologist to ensure that adequate tissue, tumor
content, and sufficient nucleated cells were present to satisfy the minimum tumor content
requirement. A minimum tumor content of 20% was required to result in adequate yield at
extraction and to proceed with sequencing. Macrodissection was carried out when deemed
feasible by a pathologist to increase the tumor content of a specimen. Macrodissection was
required if the tumor percentage was less than 40%, and was performed to increase tumor
content in some instances.

Sample metadata, specifically tumor purity and cancer cohort labels, was determined by
board-certified pathologists. Sample status (i.e. primary, metastatic, lymph node) was
determined using a rule set based on heuristics between ICD-10 diagnosis codes and ICD-09
codes for anatomical biopsy site locations. Tissue sites provided by external pathology reports
were mapped to ICD-09 codes. Samples that were unambiguously primary samples (e.g.,
ovarian cancer biopsied from the ovary) were labeled as “Primary”. Samples that were
unambiguously metastatic samples (e.g., ovarian cancer biopsied from the liver) were labeled
as “Metastatic”. Samples biopsied from a regional lymph node were labeled “Intermediate -
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Lymph Involvement”. Samples with incomplete biopsy site location information provided on an
external pathology report were labeled “Intermediate - Missing Data”.

For orthogonal concordance testing between HRD-DNA and 1p FISH results, samples were
ensured to be gliomas biopsied from the brain, with at least 40% tumor purity, and curated with
positive or negative FISH results performed on chromosome 1p within 6 months of collection of
the biopsy used for xT sequencing.

DNA and RNA sequencing

A representative sample of de-identified records from 48,843 FFPE tumor samples across 42
solid tumor cancer types with DNA and RNA sequencing data were selected from the Tempus
Oncology Database. All underwent DNA sequencing based on the Tempus|xT targeted panel (n
= 48,827), Tempus|xO (n = 9), or Tempus|xE whole-exome panel (n = 17) these samples,
47,997 had RNA sequencing available. Sample preparation, DNA sequencing, and RNA
sequencing for each assay were conducted as previously described (28–32).

Of these samples, 2,058 breast cancer and 1,216 ovarian cancer FFPE tumor samples with at
least 20% tumor purity underwent tumor-normal matched DNA sequencing with the latest xT
version. These breast and ovarian samples were used for training, evaluation, and exploratory
analyses for HRD-DNA, and were all run on the latest assay version to ensure consistent probe
design and bioinformatics pipelines. Genomic data from the xT assay was analyzed for variants,
fusions, rearrangements, copy number, and loss-of-heterozygosity. For HRD-RNA, all samples
with RNA sequencing data were aligned to the Ensembl hg37 transcriptome using kallisto
(33,34). Transcript read counts were summated to the gene level and normalized for transcript
length, GC content, and library size. Batch correction was applied for samples sequenced with
different probe designs (35). All samples included in these analyses passed QC metrics,
including minimum read depth, mapping rate, and duplication rate.

HRD label annotation

Before developing the HRD-DNA and HRD-RNA models, samples were labeled as
BRCA-biallelic, HRR-wild-type (WT), or HRD-ambiguous based on their mutational status for
both BRCA1/2 and a subset of HRR-related genes. Samples with biallelic loss of BRCA1 or
BRCA2 were labeled as BRCA-biallelic. Biallelic loss was defined as either (a) homozygous
deletion, (b) a pathogenic germline or pathogenic somatic mutation with overlapping LOH of the
other allele, or (c) a co-occuring pathogenic germline and pathogenic somatic mutation.
HRR-WT samples were defined as samples that had no detected pathogenic mutations,
including variants with a low variant allele frequency (VAF), variants of unknown significance
(VUS), fusions, copy loss, or LOH in BRCA1, BRCA2, CDK12, PALB2, RAD51B, RAD51C, or
RAD51D. Samples that did not meet the criteria for the BRCA-biallelic or HRR-WT groups were
labeled HRD-ambiguous, which fell into two major categories: BRCA1/2 monoallelic loss or
HRR mutated with any alteration in CDK12, PALB2, RAD51B, RAD51C, or RAD51D. Samples
with mutations in these HRR genes were excluded from the HRR-WT group based on their
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reported associations with HRD status and enrichment for HRD+ calls in initial model iterations
(36–42). Samples from patients treated with PARP inhibitors at any point in their clinical history
were also considered HRD-ambiguous, regardless of mutation status. Additionally, samples with
BRCA reversion mutations (identified by clinical scientists) were also considered
HRD-ambiguous. These HRD-ambiguous samples were excluded from model training,
development, and evaluation, but were used for exploratory analyses. Overall, ~75% of eligible
samples were considered HRD-ambiguous (Figure 1, Supplemental Figure 1).

DNA variant, copy number, loss-of-heterozygosity, and fusion annotations

DNA variants, copy number, loss-of-heterozygosity, and fusions were annotated using a
combination of bioinformatics pipelines and manual clinical scientist filtering, as described in
Beaubier et al. (28). A minimum 5% variant allele frequency (VAF) was used for calling variants.
All BRCA reversion mutations were identified by clinical scientists. Samples that had variants
with <5% VAF in select homologous recombination genes of interest were considered to be
HRD-ambiguous. To determine homozygous deletions, samples required either (a) evidence of
four consecutive probe regions or (b) 20% of the probed length of the gene to have evidence of
deletion. A germline or somatic variant with LOH was considered as a biallelic loss when LOH
was detected in the same probe region as the detected variant. For fusion events to pass quality
control, the fusion was required to present at least five reads of evidence within the DNA-seq
data.

Calculation of gwLOH

The gwLOH calculation required calculation of aneuploid regions followed by the calculation of
the total fraction of bases within probe regions with observed LOH. Percent probe loss was
calculated as the number of probes with evidence of LOH on a chromosome arm divided by the
total number of probes for the chromosome arm. After excluding probe regions on chromosome
arms with ≥80% probe loss or sex chromosomes, gwLOH was calculated as the total number of
sequenced bases in probe regions with LOH divided by total number of bases covered by all
probe regions within the assay. Regions with homozygous deletions were considered to have
LOH.

HRD-RNA model preprocessing and training

47,997 samples were eligible for HRD-RNA model development; BRCA-biallelic and HRR-WT
samples were stratified by cancer type and HRR mutation status and then randomly assigned at
a 12:2:1 ratio to the training, development, and evaluation sets, respectively (Figure 1B).
Normalized gene abundance values for each gene were standardized by removing the mean
and scaling to unit variance. These gene expression values were the input to a logistic
regression model with L2 regularization and weighting of the positive class. The optimal
regularization strength, positive class weighting, and number of genes was determined through
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repeated training and evaluation using the training and development sets. Each repetition used
eleven of the twelve training folds to learn the mean and variance scaling parameters and train
the model. This preprocessing and modeling pipeline was evaluated on the development set.
Each of the twelve folds in the training data was excluded exactly once. After all twelve
repetitions, the F1-scores were averaged together to create a single score for a single set of
hyperparameter values, which served as the objective function for hyperparameter tuning. 50
sets of hyperparameters were evaluated; five were randomly seeded to ensure sufficient
coverage of the hyperparameter space. During hyperparameter tuning, the next set of
hyperparameter values to evaluate was selected using Bayesian optimization based on the
mean F1-scores of the preceding hyperparameter evaluations (43). Tuning the HRD-RNA model
revealed the optimal set of hyperparameters as an inverse regularization strength of 0.0009
(strong penalty for large parameters), class weight of 11.182 (upweighting of the HRD+ class),
and 20,000 genes (Supplemental Figure 7). These hyperparameter values were used to train
the final HRD-RNA model on all twelve training folds. The HRD-RNA model was implemented in
python using the sklearn logistic regression function with default parameters except as specified
above (44).

Transformation into HRD-RNA Scores

The final HRD-RNA score was created by transforming the HRD-RNA logistic regression
log-odds values using a logistic function with a maximum value of 100, a logistic growth rate of
1, and a midpoint of 0.72. The midpoint was chosen to optimize the F1-score for distinguishing
BRCA-biallelic and HRR-WT samples on the combined training and development sets (Figure
3A). The final HRD-RNA scores have values from 0 to 100, with a score of less than 50
indicating a prediction of HRD-, and a score of greater than or equal to 50 indicating a prediction
of HRD+.

𝐻𝑅𝐷
𝑅𝑁𝐴

 𝑆𝑐𝑜𝑟𝑒 = 𝐿

1 + 𝑒
−𝑘(𝑥−𝑥

0
) = 100

1 + 𝑒−1(𝑥−0.72)  

Statistical analyses

One-way Fisher’s exact tests were used to test for enrichment, i.e. enrichment of
BRCA-monoallelic samples with HRD+ calls. To correct multiple hypothesis testing, Bonferroni
correction was used to calculate a false-discovery rate, implemented by the p.adjust() function
from the stats package in R (45,46). All correlation coefficients and p-values represent Pearson
correlations implemented by the cor.test() function from the stats package (46).

Data Availability Statement

Raw data for this study were generated at Tempus Labs. Derived data supporting the findings of
this study are available within the paper and its Supplementary Figures or available from the
authors upon request.

Results
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HRD-labels assigned based on HRR-gene mutation status

A superset of 48,843 tumor samples with targeted DNA-seq and full-transcriptome
RNA-seq was used in either model training, development, evaluation, or exploration for the
HRD-DNA or HRD-RNA models (Figure 1). Samples were labeled as either HRD+,
HRD-ambiguous, or HRD-, with HRD+ defined as BRCA-biallelic, HRD- as no mutations in
BRCA1, BRCA2, CDK12, PALB2, RAD51C, or RAD51D, and HRD-ambiguous as
BRCA-monoallelic or HRR-mutated (Methods). For reference, samples with any mutation or
LOH in were considered to be HRD-ambiguous and were not included in the model training,
development, or evaluation sets. HRD+ and HRD- labeled samples were randomized into the
training, development, and evaluation sample sets, while HRD-ambiguous samples were
considered exploratory.

Among breast cancer samples, 6.8% were annotated as BRCA-biallelic for both the
HRD-DNA and HRD-RNA models, respectively. Additionally, 10.9% and 11.5% of ovarian
cancers were annotated as BRCA-biallelic for the HRD-DNA and HRD-RNA model cohorts,
respectively (Figure 1A). These prevalences are slightly lower than what has previously been
observed for breast (7.8%) and ovarian (20%) cancers (47–49). This discrepancy may be
attributable to our requirement for biallelic BRCA alterations and cohort differences found in the
Tempus Oncology Database (49,50). Our observed prevalence of BRCA-deficiency in prostate
and pancreatic cancers is 6.5% and 2.4%, which is similar to the values reported by others:
6.2% and 3.4% respectively (51,52).

For the approximately 75% of samples that were designated as HRD-ambiguous, the
majority of samples were excluded from the HRR-WT class due to monoallelic LOH in either
BRCA1/2 or an HRR gene (Supplemental Figure 1). Samples with LOH were included in the
HRD-ambiguous class given the potential for co-occurring alternative mechanisms of
BRCA-deficiency (i.e., promoter methylation, a low variant allele frequency [VAF], or a variant of
unknown significance [VUS]), limiting the ability to apply a high-confidence HRD label.

Aneuploidy exclusion and gwLOH calculations for HRD-DNA

The HRD-DNA model was designed to predict the HRD status of breast and ovarian
tumor samples using gwLOH, excluding aneuploid chromosome arms. To detect aneuploidy and
correct for this potential confounder, we determined the optimal probe loss fraction associated
with chromosome arm deletion (and therefore excluded from the gwLOH calculation) and the
optimal gwLOH threshold to distinguish BRCA-biallelic (HRD+) samples from HRR-WT (HRD-)
samples for both breast and ovarian cancers (Supplemental Figure 2A). We found that model
performance, measured by F1-score (the harmonic mean of precision and recall), was more
sensitive to the gwLOH threshold than probe loss threshold, and optimal probe loss thresholds
were 78% and 84% for breast cancer and ovarian cancer, respectively. For biological
consistency, and given the breast cohort is approximately twice as large as the ovarian cohort, a
probe loss threshold of 80% was selected to identify chromosome arms lost due to aneuploidy
for both cohorts. The chosen probe loss threshold was validated by applying it to glioma
samples that received fluorescence in situ hybridization (FISH) to assess genetic deletion of

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.21267985doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.20.21267985
http://creativecommons.org/licenses/by-nc-nd/4.0/


chromosome 1p (Supplemental Figure 2B), which is often used to diagnose oligodendrogliomas
(53–55). Samples with negative 1p FISH results had a significantly lower fraction of probes lost
compared to 1p FISH positive (p < 2.2e-16) (Supplemental Figure 2C). The chosen probe loss
threshold of 80% achieved 89% concordance with 1p FISH results, and samples with >80%
probe loss were significantly enriched for 1p FISH positivity (Fisher’s exact test, p-value =
1e-31) (Supplemental Figure 2D). Together, these results demonstrate that the probe loss
method accurately identifies chromosome arms lost due to aneuploidy.

Finally, the training samples were used to identify the optimal gwLOH score—excluding
aneuploid chromosome arms—for calling a sample HRD+ or HRD-. The gwLOH threshold was
determined as the threshold that best distinguished the BRCA-biallelic from HRR-WT samples,
measured by F1-score. The optimal gwLOH threshold was 21% and 17% for breast and ovarian
cancer, respectively (Figure 2A). The evaluation samples were then used to evaluate the
performance of the chosen probe loss and gwLOH thresholds, yielding robust performance
metrics: sensitivity (breast = 1, ovarian = 0.921), specificity (breast = 0.963, ovarian = 1.0),
positive predictive value (PPV) (breast = 0.967, ovarian = 1.0), negative predictive value (NPV)
(breast = 1.0, ovarian = 0.857), F1-score (F1: breast = 0.983, ovarian = 0.959), and AUC (breast
= 1.0, ovarian = 0.993) (Figure 2B). The HRD-DNA model had a lower sensitivity and NPV for
ovarian cancer relative to breast cancer, suggesting there may be a greater fraction of patients
with low gwLOH that are HRD+ in ovarian cancer (Figure 2C). Finally, HRR-WT samples had
significantly lower gwLOH compared to HRD-ambiguous samples in both HRR-mutated
(Wilcoxon test; p-valuebreast = 2e-14, p-valueovarian = 4e-16) and BRCA1/2 monoallelic samples
(Wilcoxon test; p-valuebreast = 1e-10, p-valueovarian = 4e-11). Samples were predicted HRD+ at a
lower rate for HRR-WT samples (breast = 2.9%, ovarian = 0%) compared to HRR-mutated
(breast = 56.7%, ovarian = 69.3%) and BRCA1/2 monoallelic (breast = 48.8%, ovarian = 56.8%)
— suggesting other potential drivers of the HRD-phenotype (Supplemental Figure 3A). The
gwLOH biomarker accurately separated samples with BRCA1/2 biallelic loss from samples with
no evidence of mutations in BRCA1/2 or a subset of HRR genes in both breast and ovarian
cancer.

HRD-RNA model training and evaluation

BRCA-biallelic and HRR-WT samples from all cancer types were included in the training
and development sets for the HRD-RNA model, including breast and ovarian cancers (Figure
1B). The HRD-RNA model was evaluated for cancer types that included at least 3
BRCA-biallelic samples in the evaluation set (Figure 3B). Across these cancer types, the model
achieved a PPV of 25%, indicating that only a fraction of the patients predicted HRD+ exhibited
BRCA1/2-deficiency. The highest AUCs on the evaluation set were in prostate (0.98) and
pancreatic (0.98) cancer, which is unsurprising given that tumor pathogenesis in these cohorts
has been previously associated with BRCA status (56,57). For prostate and pancreatic cancers
in the evaluation and exploratory sets, there was strong separation between the BRCA-biallelic
and HRR-WT samples (Wilcoxon test; p-valueProstate = 1e-14, p-valuePancreatic = 6e-11), and
between the HRR-WT and HRD-ambiguous samples (Wilcoxon test; p-valueProstate = 4e-9,
p-valuePancreatic = 6e-8) (Figure 3C).
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While other cancer cohorts — biliary, colorectal, NSCLC, sarcoma, and cancers of
unknown primary (tumors of unknown origin) — had a lower prevalence of BRCA1/2 alterations,
previous work has suggested that these cohorts may exhibit the HRD phenotype and respond to
PARP inhibitors (Figure 1B) (58–60). We hypothesized that tumors from patients with these
cancer types may exhibit the HRD phenotype in the absence of BRCA loss. For these cohorts,
we observed lower overall performance relative to BRCA status when compared to pancreatic
and prostate cancer (Figure 3B).

Across all cohorts evaluated using the HRD-RNA model, the number of samples with
BRCA-biallelic loss in the training and development sets was positively correlated with the
F1-score (R = 0.92, p-value = 3e-3) and sensitivity (R = 0.95, p-value = 1e-3) of the model on
the evaluation set (Supplemental Figure 4). This result suggests a biological and/or modeling
constraint in cancer cohorts with few BRCA-biallelic samples — either BRCA deficiency may be
a poor surrogate for HRD status or there may be insufficient BRCA-biallelic samples to identify a
signal. The high fraction of samples that were HRD-ambiguous and predicted HRD+, i.e. 13.1%
of BRCA-monoallelic and 11.7% of HRR-mutated prostate cancers, suggests that mutations in
other HRR pathway genes or epigenetic modifications (i.e., hypermethylation) may drive the
HRD-phenotype in cancer types not traditionally associated with BRCA-status (Supplemental
Figure 3; Figure 3C).

The HRD-DNA and HRD-RNA models capture an underlying HRD-phenotype consistent with
the literature

Both the HRD-DNA model and the HRD-RNA model captured biallelic loss of BRCA1/2
with high sensitivity and specificity in BRCA-associated tumors (breast, ovarian, pancreatic, and
prostate cancer) (Figure 2B; Figure 3B). We hypothesized that some fraction of the ~75% of
samples annotated as HRD-ambiguous would be predicted HRD+ (Figure 1; Supplemental
Figure 1); these HRD-ambiguous samples had higher HRD scores (Figure 2C, Figure 3C) and a
higher frequency of predicted HRD+ compared to HRR-WT samples (Supplemental Figure 3) by
both the HRD-DNA and HRD-RNA models. Together, these findings further suggest that there is
an underlying HRD-phenotype not captured by BRCA biallelic loss alone.

Outside BRCA1/2 alterations, samples predicted HRD+ by each HRD model were
enriched for biallelic loss of HRR genes, which would suggest an alternative mechanism for the
HRD-phenotype (Figure 4A). Significant enrichment of HRD-DNA+ predictions was observed in
samples with biallelic loss in ATM (FDR = 2e-11), ATRX (FDR = 3e-3), BARD1 (FDR = 1e-3),
BRIP1 (FDR = 4e-13), CDK12 (FDR = 2e-6), FANCA (FDR = 8e-3), MRE11 (FDR = 9e-4),
PALB2 (FDR = 3e-6), or RAD51D (FDR = 2e-8). Previous studies have also demonstrated that
biallelic loss in BARD1, BRIP1, FANCA, MRE11, PALB2, and RAD51D is associated with a
higher gwLOH score in BRCA-associated cancers (9). In other cancer types, there was a lower
overall fraction of samples predicted HRD+ across HRR genes, highlighting the lower frequency
of HRD in these cancer types (Figure 4A). However, there was significant enrichment for
HRD-RNA+ predictions in samples with biallelic loss of ATRX (FDR = 9e-8), CDK12 (FDR =
4e-5), FANCA (FDR = 2e-2), PALB2 (FDR = 3e-8), and RAD51B (FDR = 5e-4). Enrichment of
HRD+ calls in samples with biallelic loss of HRR genes highlights the utility of both the
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HRD-DNA and HRD-RNA models in identifying a number of potential drivers of the HRD
phenotype that are independent of BRCA1/2 biallelic loss.

The HRD-RNA model, in contrast to the HRD-DNA model, has the potential to capture a
dynamic HRD phenotype. For example, one mechanism for PARP inhibitor resistance is via a
BRCA1/2 reversion mutation (61–63). Though rare, samples with these mutations can serve as
a test of the dynamic nature of the HRD-RNA model compared to the HRD-DNA model. In the
presented data, breast cancer samples most frequently possessed BRCA reversion mutations
(n = 7); these cases were excluded from the HRD-RNA model training and development sets.
The HRD-RNA model predicted lower HRD scores for samples with a BRCA1/2 reversion
mutation compared to samples with biallelic loss of BRCA1/2 (Wilcoxon test; p-value = 0.002),
indicating the ability of the HRD-RNA model to capture a dynamic HRD phenotype (Figure 4C).
On the other hand, there was no significant difference in the HRD-DNA score between samples
with a BRCA1/2 reversion mutation and BRCA-biallelic samples. Although five out of the seven
samples with BRCA reversions were predicted to be HRD+ by HRD-RNA, this may be
attributable to clonal BRCA reversion (mean VAF: 13.3%), resulting in clonal HRD.

Finally, given the different approaches for predicting HRD status (HRD-DNA and
HRD-RNA) and the low PPV for non-BRCA associated cancer cohorts, we compared rates of
HRD+ calls between the presented models and the literature (Figure 3B, Figure 4B). The
Classifier of HOmologous Recombination Deficiency (CHORD) method utilizes genomic
features from whole-genome sequencing data with a random forest classifier to determine
HRD-status (8). HRD prevalence across tumor types estimated by CHORD was used as a
benchmark for positivity rates predicted by HRD-DNA (breast and ovarian) and HRD-RNA (all
other cohorts), stratified by primary and metastatic status. For both primary and metastatic
cancers, there was a strong, positive correlation (HRD-DNA: R² = 0.63, p-value = 4e-4;
HRD-RNA: R² = 0.83, p-value = 1e-7) between the predicted frequency of HRD+ samples in the
presented models and the respective predicted frequency in CHORD (Figure 4C; Supplemental
Figure 5). This suggests predicted HRD+ prevalence within each cancer type is supported by
other studies.

There were a few notable deviations in predicted HRD prevalence across tumor types.
First, the HRD-DNA model reported an HRD+ prevalence of 52% and 61% in primary breast
and ovarian cancer, while CHORD presented 54% and 30%, respectively. This difference may
be due to the fact that patients sequenced by Tempus are often later-stage and have received
more lines of therapy. Moreover, other groups have reported ovarian cancer HRD+ prevalence
in the 40-50% range (64,65). In metastatic breast cancer, CHORD reported an HRD+
prevalence of 12%, while the HRD-DNA model predicted 46%. Upon further inspection of the
cohort used by CHORD, 13.5% of all metastatic breast cancer samples were triple-negative
(TNBC), the breast subtype for which HRD positivity is highest (66). By contrast, the Tempus
cohort is enriched for TNBC samples given that these patients have few treatment options and
worse outcomes, and are thus more likely to undergo Tempus NGS testing. Indeed, nearly 24%
of Tempus breast cancers are TNBC, and, as a result, models predicting HRD status using
Tempus data should be expected to report a higher HRD+ prevalence compared to CHORD.

HRD-DNA and HRD-RNA are robust to confounders
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The limit of detection (LOD) for both the HRD-DNA and HRD-RNA models was determined by
calculating the sensitivity of both models across different tumor purities. The LOD was set as the
lowest tumor purity at which the positive predictive value (PPV) was greater than 70%. For the
HRD-DNA model, PPV was calculated using all breast or ovarian samples that had either
BRCA1/2 biallelic loss or were BRCA-WT. A tumor purity threshold was set at 40% based on the
PPV threshold (Supplemental Figure 6). For the HRD-RNA model, PPV was calculated using all
samples, including breast and ovarian samples, that had either BRCA1/2 biallelic loss or were
BRCA-WT and were in the evaluation set. A tumor purity threshold was set at 30% based on the
PPV threshold (Supplemental Figure 6). These data indicate that the HRD-DNA and HRD-RNA
models are performant among samples with at least 40% and 30% tumor purity, respectively.

To test whether model performance is tissue-site dependent, the evaluation set was
stratified by sample status - primary, metastatic, lymph node, or unknown (Supplemental Table
1). For both HRD-DNA and HRD-RNA, model performance was similar in each sample
stratification. For HRD-DNA, F1-score ranged from 0.933-1.0 and sensitivity ranged from
0.875-1.0. For HRD-RNA, F1-score is higher in primary (0.741) compared to metastatic (0.591)
samples, mostly driven by higher sensitivity in primary samples (0.690) compared to metastatic
(0.448) samples. However, AUC was similar between primary (0.956) and metastatic (0.953)
samples, compensated for the higher specificity in metastatic (0.994) samples over primary
(0.990) samples. Overall, HRD-DNA and HRD-RNA performance is robust to biopsy site.

Finally, to establish reproducibility across sequencing runs, experiments were run to
demonstrate inter- and intra-assay concordance for the HRD-DNA and HRD-RNA models. To
demonstrate intra-assay concordance for the HRD-DNA model, 32 samples were sequenced in
triplicate in the same DNA sequencing run using the same reagent lot with different barcodes
(Figure 6A). There was a significant correlation for all run comparisons (.87 < R² < 0.97 across
all comparisons, p-value < 1e-11), demonstrating intra-assay concordance. To demonstrate
inter-assay concordance for HRD-DNA, 34 samples were sequenced in triplicate on different
days, using different instruments, different lab technicians, and at least two manufacturing
reagent lots (Figure 6B). There was a significant correlation for all run comparisons (.89 < R² <
0.98 across all comparisons, p-value < 1e-12), demonstrating high intra-assay concordance. To
orthogonally validate HRD-DNA gwLOH calls, 34 samples were run via Omni2.5 BeadChip copy
number array at an external lab (67). The HRD-DNA score was calculated from both sets of
copy calls and was highly correlated (R² = 0.75, p-value = 3.9e-7; Figure 6C).

To demonstrate intra-assay concordance for the HRD-RNA model, 6 samples were
sequenced in duplicate in the same RNA sequencing run using the same reagent lot with
different barcodes (Figure 6D). There was a significant correlation of the raw RNA output (R² =
0.98, p-value = 4.4e-4), demonstrating intra-assay concordance. To demonstrate inter-assay
concordance for the HRD-RNA model, 6 samples were sequenced in duplicate on different
days, using different instruments, different lab technicians, and at least two manufacturing
reagent lots (Figure 6E). There was a highly significant correlation of the raw RNA output (R² =
0.99, p-value = 6.9e-5), demonstrating intra-assay concordance.
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Discussion

Here, we present two models, HRD-DNA and HRD-RNA, that predict the HRD status of
clinical FFPE samples. While the models were trained and evaluated on their ability to predict
BRCA1/2-biallelic from HRR-WT samples, HRD+ samples were also enriched for biallelic loss of
other HRR genes, and predicted frequencies of HRD+ samples across cancer cohorts are
largely in agreement with what has been reported in the literature. The models’ ability to detect
an HRD phenotype rather than solely BRCA-loss is critical outside of the so-called non-BRCA
associated tumors (breast, ovarian, pancreatic and prostate). Such HRD detection tools also
present an opportunity to identify alternative drivers of the HRD phenotype, and potential
indications beyond those reported in the literature. For example, we found high rates of HRD in
sarcomas and mesotheliomas, where RNA-based approaches may be particularly useful.
Together, these models provide new biomarkers for HRD-status in solid tumor samples.

The basis for the HRD-DNA model, gwLOH, is known to have different manifestations
across tumor types, necessitating cancer-specific thresholds for calling a sample HRD+. For
breast and ovarian cancers, there were sufficient BRCA-biallelic samples to set a threshold for
HRD-DNA to predict HRD-status. However, other cohorts either had too few BRCA-biallelic
samples or little difference in gwLOH between BRCA-biallelic and HRR-WT samples,
necessitating an alternative approach. For solid tumor indications outside of breast and ovarian,
the HRD-RNA model predicts HRD-status using a logistic regression model trained on bulk
RNA-seq data from solid tumor FFPE samples. Breast and ovarian cancer had the highest
prevalence of BRCA-biallelic samples (Figure 1); despite these being the dominant cancer
cohorts for HRD+ samples, we assumed that the transcriptional signature of BRCA1/2
mutations and HRD would be consistent across tumor types for predictive power of HRD
independently of tumor type. The positive relationship between the number of BRCA-biallelic
samples within a tumor type and the model F1-score highlights that model performance, as
benchmarked by BRCA mutation status, is superior in cohorts with higher prevalence of BRCA
alterations. Cancer types with lower prevalence of BRCA-biallelic samples and a low PPV
suggest that biallelic BRCA-loss may not be driving tumorigenesis. While p53 loss has been
observed to confound gwLOH measurements (9), there is little understanding of confounding
factors for RNA-based HRD approaches. Future work should focus on uncovering alternative
causes of HRD, and disambiguating the differences in performance across cancer cohorts with
the potential co-occurence of other tumor drivers where biallelic loss of BRCA may be a
passenger rather than driver mutation.

The HRD-DNA and HRD-RNA models not only capture BRCA-biallelic samples but also
demonstrate enrichment for samples labeled as HRD-ambiguous (Figure 2C, Figure 3C) with
biallelic loss of other HRR genes (Figure 4A). While ATM was the most commonly lost HRR
gene in ovarian, breast, and other cancers, and occurred at a rate similar to BRCA1/2-
deficiency, HRD+ calls were enriched only in the HRD-DNA model, suggesting that ATM loss
may be uniquely associated with a high gwLOH phenotype in breast and ovarian cancer but not
HRD in other cancer types. In metastatic castration-resistant prostate cancer, clinical trials have
shown little to no clinical benefit of PARP inhibitors in ATM-mutated patients over standard of
care treatment (5,68). Other mutations were uniquely enriched in HRD+ predicted cases of
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breast and ovarian cancers (BARD1, BRIP1, MRE11, RAD51D) and other indications
(RAD51B), suggesting additional unique drivers of HRD that may be cancer-cohort specific.
Monoallelic copy loss of HRR genes was highly prevalent and could not be included in the
HRD-ambiguous category without compromising the statistical power of the HRR-WT cohort.
Future work should explore the association between specific alterations (i.e. SNPs, LOH,
deletions), pathogenicity (VUS), contexts (i.e. germline, somatic), and genes (i.e. BRCA1/2,
HRR genes) with HRD calls to better understand mechanisms driving the HRD+ predictions.

In both the HRD-DNA and HRD-RNA models, samples with biallelic loss of ATRX,
CDK12, FANCA, and PALB2 were enriched for HRD+ predictions across tumor types. Both
FANCA and PALB2 have been associated with increased gwLOH scores (9). Mutations in
CDK12 have been shown to confer sensitivity to PARP inhibitors in breast and ovarian cell lines
(36) and clinical trials in prostate cancer (5). PALB2 has been recognized to play a role in HRR
through interactions with BRCA1/2 (40) and, more recently, PALB2 has been implicated as
another potential genomic biomarker for HRD (39,69,70). Biallelic loss of ATRX has been
associated with increased gwLOH in breast but not ovarian or other cancer cohorts (9). ATRX
mutations have been shown to inhibit homologous recombination repair in cell lines (71–73), are
linked to PARP inhibitor sensitivity in patient-derived xenografts (74), are associated with higher
PARP1 expression in clinical glioblastoma tumors (75), and have shown sensitivity to
DNA-damaging treatment in pediatric high-grade glioma patients (76). Overall, these
pan-cancer models of HRD highlight the ability to accurately capture the HRD phenotype and
thus generate new hypotheses for other potential genetic drivers of HRD.

Notably, the HRD-RNA model predicted samples with BRCA-reversions to have a
significantly lower HRD-RNA score than BRCA-biallelic samples, which was not true of
HRD-DNA. This result suggests an RNA-based measure of HRD may capture dynamic changes
in HRD phenotype upon tumor evolution. Given that PARP inhibitor resistance can be caused by
a number of mechanisms that cannot be detected by DNA alone (77), future work should
explore the utility of RNA-based approaches for both identifying HRD samples and tracking the
emergence of resistance.

Whole-genome sequencing (WGS) is challenging and expensive to implement in
real-world clinical practice, but WGS-based models have emerged as a potentially
comprehensive tool to capture HRD. We demonstrated a strong correlation between the
predicted frequency of one such WGS-based method, CHORD, and HRD+ frequencies from the
presented models in both primary and metastatic samples. Deviations (i.e., ovarian and breast
cancer) can be partially explained by differences in HRD rates among different subtypes and
enrichment of subtypes with higher rates of HRD+ samples in the Tempus Oncology Database.
One notable deviation from the predicted rates of HRD+ samples is in pancreatic cancer where,
for both metastatic and primary samples, the predicted rates for HRD-RNA are lower than
CHORD. Reported rates of HRD in pancreatic cancer vary between 3 and 30% (27,78), where
RNA-based approaches have been shown to be prognostic and identify other genetic drivers of
HRD (27). Given clinical trials have demonstrated no survival benefit using olaparib to treat
pancreatic cancer patients with germline BRCA alterations, there remains a poor understanding
of HRD manifestation in pancreatic cancer (79).
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Significantly higher rates of HRD+ in mesothelioma (metastatic) and sarcoma (primary
and metastatic) were seen with the presented models compared to CHORD. PARP inhibitors
are currently being explored in combination with immune checkpoint inhibitors in mesothelioma
(80), where improved response was observed in patients with germline mutations in HRR genes
(81). However, little work has been done exploring the role of HRD as a biomarker in sarcomas.
A recent study demonstrated improved response to PARP inhibitors in patient-derived
soft-tissue xenografts with high PARP1 expression (82). Collectively these observations may
suggest that HRD-RNA captures a unique HRD signature in tumors that cannot be captured by
genomic sequencing. Both mesothelioma and sarcoma present new cohorts to explore HRD as
a potential biomarker, but more data would be needed to determine the role of HRD and its
value as a biomarker in these indications.

HRD-DNA and HRD-RNA are highly performant in differentiating BRCA-biallelic from
HRR-WT samples and enriching for other genomic events in the HRR pathway. HRD-DNA and
HRD-RNA together suggest that while biallelic loss of BRCA1/2 may be sufficient to detect the
majority of cases of the HRD-phenotype in breast and ovarian cancer, more work is needed to
identify the relationship between genotype and HRD in other cohorts. HRD-RNA has the
potential ability to disambiguate this relationship by determining a pan-cancer signature of HRD
that can be applied to cancer cohorts. This may be most valuable as a precision medicine tool in
tumor indications with a lower frequency of biallelic BRCA loss. Further work is warranted to
determine potential HRD driver events and clinical implications of HRD status across cancer
indications. Importantly, future prospective clinical studies are required to assess the clinical
utility of the presented HRD biomarkers for predicting response to DNA-damage targeting
therapies.
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Main text figures and captions

Figure 1. Sample composition for model training, development, evaluation, and
exploratory sets by HRR mutation status and cancer type. (A) HRD-DNA. (B) HRD-RNA. To
train, develop and evaluate the HRD-DNA and HRD-RNA models, BRCA1/2 biallelic loss and
HRR-WT samples were randomized into the training, development and evaluation sets, while
samples with BRCA1/2 monoallelic loss or HRR alterations (monoallelic or biallelic) in a select
number of genes, were assigned to the exploratory set. Samples in the evaluation set were
used to test final model performance. Samples in the exploratory set were used to determine
overall rates of samples called HRD+ and enrichment of HRR mutations in HRD+ calls.
Development sets were only utilized in the HRD-RNA test. Percentages were calculated as a
function of the total samples in each cancer cohort for each test.
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Figure 2. The HRD-DNA model predicts HRD status from gwLOH. (A) Thresholds for calling
a sample HRD+ for breast and ovarian cancer were set based on the maximum F1-score within
samples in the training set. (B) Metrics used to assess HRD-DNA performance within the
evaluation set. (C) Distribution of gwLOH scores across different HRR genotypes in the
evaluation cohort. HRR mutated samples contain samples with either monoallelic or biallelic
loss in a select number of HRR genes. Values in the box represent the median gwLOH
percentage within each HRR genotype (**** p-value < 0.0001 for Wilcoxon test). Dotted lines
are the thresholds chosen in (A) for each cancer type. Statistical differences between HRR-WT
and BRCA biallelic loss were not shown, but all were significant (p-value < 0.0001 for Wilcoxon
test).
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Figure 3. The HRD-RNA model determines HRD-status for cancer cohorts outside breast
and ovarian cancer using a logistic regression model trained on RNA-seq data. (A) The
threshold for calling a sample HRD+ was set as the raw RNA score that had the maximum F1
score on the training and development samples. For final reporting, the raw score was
transformed to the final HRD-RNA, where a score of 50 represents the chosen threshold
(Methods). (B) Metrics used to assess HRD-RNA model performance across cancer cohorts for
samples within the evaluation cohort. (C) Distribution of HRD-RNA scores across different HRR
genotypes in the evaluation cohort for cancer indications with > 3 BRCA-deficient samples in the
evaluation cohort. Dotted line represents the threshold chosen in (A). Values in the box
represent the median HRD-RNA score. Differences determined by Wilcoxon test (* p-value <
0.05, **** p-value < 0.0001). Statistical differences between HRR-WT and BRCA biallelic loss
were not shown  . Statistical differences between HRR-WT and BRCA biallelic loss were not
shown, but all were significant (p-value < 0.0001 for Wilcoxon test). AUC: Area Under the
Curve. NPV: Negative Predictive Value.
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Figure 4. The HRD-DNA and HRD-RNA models are enriched for a HRD-phenotype and are
concordant with published HRD+ rates. (A) Enrichment for HRD+ calls in samples with
biallelic loss of HRR genes for breast cancer and ovarian cancer (HRD-DNA), and other cancers
(HRD-RNA). Enrichment was calculated using a Fisher’s exact test comparing samples from the
HRD-ambiguous and HR-WT samples that has biallelic loss of specific HRR gene versus all
other samples. Significance was determined as p-value < 0.05. (B) Distribution of GWLOH
percentage (top) and HRD-RNA scores (bottom) of breast cancer samples with BRCA1/2
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reversion mutations. Significance shown for two-sided Wilcoxon-test. (C) Predicted rates of
HRD+ samples across cancer types compared to published rates (CHORD), stratified by
primary and metastatic samples.
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Figure 5. Inter- and intra-assay concordance for the HRD-DNA and HRD-RNA models. (A)
Intra-assay concordance of HRD-DNA for 32 samples each run in triplicate. (B) Inter-assay
concordance of HRD-DNA for 34 samples each run in triplicate. (C) Correlation between
HRD-DNA and Omni 2.5 BeadChip array based genome-wide LOH. (D) Intra assay
concordance of HRD-RNA for 6 samples each run in duplicate. (E) Inter assay concordance of
HRD-RNA for 6 samples each run in duplicate. Dotted lines are identity lines.
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