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Abstract 

Chagas disease, caused by Trypanosoma cruzi, is an endemic parasitical disease of Latin 

America, affecting 7 million people. Although most patients are asymptomatic, 30% develop 

complications, including Chronic Chagasic Cardiomyopathy (CCC), which ranges from 

moderate to severe stages depending on the cardiac ejection fraction. The pathogenic process 

remains poorly understood, although genetic and epigenetic factors have already been 

proposed.  

Based on bulk RNA-seq and EPIC methylation data, we investigated the genetic and epigenetic 

deregulations present in the moderate and severe stages of CCC. We identified 4 main 

biological processes associated with the pathology development, including immune response, 

ion transport, cardiac muscle processes and nervous system. An in-depth study of the 

transcription factors binding sites in the differentially methylated regions corroborated the 

importance of these processes. We also conducted a methylation study on blood to identify 

potential biomarkers for CCC. Our data revealed 198 differentially methylated positions 

(DMPs) that could serve as biomarkers of the disease, of which 61 are associated with disease 

severity. 
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Introduction 

Chagas disease is a neglected disease caused by the protozoan Trypanosoma cruzi. This 

parasite is endemic in 21 Latin America countries, where it affects around 7 million people by 

means of an insect vector, Reduviidae. With migratory flows, this disease can now be found in 

non-endemic countries and spread by congenital contamination or blood transfusion (1), 

notably in North America (2) (n>300,000), Europe (3) (n>100,000), Japan (4) (n>4,000) or 

Australia (5) (n>1,000). The clinical course of the disease comprises an acute and a chronic 

phase. For the majority of the patients, the acute stage is asymptomatic and lasts 4 to 8 weeks. 

After, the patients enter in the chronic phase, where 60% of the patients remain asymptomatic 

and 40% develop symptomatic disease, being 10% megaesophagous/megacolon, and 30% 

Chagas disease cardiomyopathy (CCC) with varying degrees of severity including refractory 

heart failure (1). This cardiomyopathy is the main cause of deaths from Chagas disease itself, 

and is one of the most lethal cardiomyopathies (6). Some drugs are effective on T. cruzi during 

the acute phase, but their effects during chronic phase are questionable and several side effects 

have been reported (7). The fact that the biological processes leading to CCC are not yet well 

understood has impaired the development of efficient therapeutical strategies. 

The CCC myocardium displays a diffuse myocarditis with signs of inflammatory infiltrate and 

heart fiber damage, including significant fibrosis. The inflammatory infiltrate of CCC heart 

lesions is mainly composed of T cells displaying a Th1-like cytokine profile (8-11). This 

exacerbated Th1 response, characterized by a high secretion of interferon-gamma (IFN-γ) and 

tumor necrosis alpha (TNF-α), with lower production of interleukin (IL)-4, IL-6, IL-7, and IL-

15, is associated to overexpression of Th1 transcription factors such as TBX21 (T-bet) (12). 

Interestingly, the intensity of the myocardial infiltrate was shown to be positively correlated 

with the abundance of CXCL9 mRNA (13). Moreover, our group has previously 
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demonstrated that CCC myocardium presents a unique gene expression profile, distinct from 

the other dilated cardiomyopathies (12, 14).  

Many studies have highlighted the importance of DNA methylation in the regulation of gene 

expression in dilated cardiomyopathy (15), in particular by the methylation/demethylation of 

transcription factor binding site (TFBS) located in genes regulatory regions (16). Development 

of severe CCC is also dependent of epigenetic regulations such as DNA methylation (17), but 

also involving miRNAs (14, 18) or lncRNAs (19) or DNA methylation processes. Considering 

these informations, the microarray analyses performed so far are not deep enough to analyze 

all the dysregulation of non-coding RNAs. Moreover, the Illumina Infinium 

HumanMethylation450 BeadChip, used to perform most of the previous methylation analyses, 

has been discontinued and was known to miss important regulatory regions (20). In this study, 

to strengthen our analysis and get a more complete picture of the epigenomic landscape of CCC 

myocardium, we performed gene expression analysis using RNA-seq complemented 

with Illumina Infinium MethylationEPIC array BeadChip, covering 96% of gene loci, 

including lncRNA. Moreover, blood samples from moderate and severe CCC were also 

evaluated to further decipher the biological process associated with Chagas dilated 

cardiomyopathy and to identify possible blood biomarkers useful for diagnosis.  
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Methods 

Ethical Considerations 

The protocol was approved by the institutional review boards of the University of São Paulo 

School of Medicine and INSERM (French National Institute of Health and Medical Research). 

Written informed consent was obtained from all patients or family members. All experimental 

methods comply with the Helsinki Declaration. 

 

Patients and Myocardial Tissue Collection 

Human left ventricular free wall heart tissue samples were obtained from patients with end-

stage heart failure CCC at the time of heart transplantation (n=8). CCC patients underwent a 

serological diagnosis of T. cruzi infection and standard electrocardiography and 

echocardiography, and tissues were subject to histopathological assessment as previously 

described (21). Biopsies from controls (n=6) were obtained from healthy hearts of organ donors 

having no suitable recipient, and biopsies for dilated cardiomyopathy (DCM) from end-stage 

patients, at the time of heart transplantation (n=8). 

 

RNA Extraction and sequencing 

Heart tissue samples (20–30 mg) were cleared from pericardial fat, crushed with ceramic beads 

(CK14, diameter 1.4 mm, Bertin) in 350 µL of RLT lysis buffer supplemented with 3.5 µL of 

β-mercapto-ethanol. Total RNA was extracted from biopsies using the RNeasy Mini Kit 

adapted with Trizol. RNA quantity and quality were measured with a 2100 BioAnalyzer 

(Agilent). Ribosomal RNAs were depleted and samples were prepared for sequencing 

according to the Illumina TruSeq RNA Preparation Kit and subjected to pairwise sequencing 

(2x150bp) with an Illumina HiSeq sequencer. Sequencer results were obtained as raw fastq file 

format. 
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Quality control and alignment  

Raw data quality was verified with FastQC (v0.11.5). Low-quality reads, Illumina adapters 

and reads smaller than 20 nucleotides were removed with Trimmomatic (v0.39) (22), using 

default values for other options. Reads were aligned on GRCh37 (hg19) human reference 

genome from Ensembl using STAR (v2.5.4b) (23), specifying that the reads are 2x150 

nucleotides (paired-end). Alignment quality was checked by BAMQC (qualimap v2.2.1) (24). 

Gene quantification was done with featureCounts (v2.0.0) (25), using the exons as features and 

the genes as attributes. All the bioinformatics steps are arranged in a Snakemake (v5.7.4) (26) 

workflow and full reproductibility is ensure though a Docker image, available at this address 

(github link). 

 

Differential expression analysis 

Statistical analyses were performed using R version 3.6.2. Because there is a large infiltrate of 

immune cells in the heart tissue, and therefore in the samples studies, genes related to 

immunoglobulins and T-cell receptor (TCR) were excluded of the analyses. The DESeq2 

package (v1.26.0) was used for data normalization and differential gene expression analyses 

(27). Log2 fold change (log2(FC)) were corrected using the DESeq2 shrinkage function. Multi 

testing correction was performed using the Benjamini-Hochberg method to obtain False 

Discovery Rate (FDR) for each gene. Genes with an FDR value lower than 0.05 and an absolute 

log2(FC) greater than 1.5 were considered as differentially expressed (DEG). Subsequent 

diagrams were produced with Enhanced Volcano (v1.4.0) 

(https://github.com/kevinblighe/EnhancedVolcano) or ggplot2 packages (28). Moreover, 

hierarchical clustering (HCA), using Spearman correlation distance as distance metric, was 

computed using gplots (v3.0.4) package (https://rdrr.io/cran/gplots/). Principal component 
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analysis (PCA) were computed with factoextra (v1.0.7) and FactoMineR (v2.3) packages 

(http://lib.stat.cmu.edu/R/CRAN/). 

  

Functional enrichment 

Functional enrichment was computed using two strategies: (i) using ClueGO cytoscape plugin 

for Gene Ontology Biological Process annotations (GO BP) (29) and using GAGE package 

(v2.36.0) and pathview package (v1.26.0) for KEGG pathways annotations (30, 31). The 

interaction between differentially expressed ncRNA and protein-coding genes was analyzed 

with LncRNA2Target and LncTarD databases (32, 33). Considering the lack of annotation of 

lncRNA function, the LncRNADisease database was also used (34). 

  

Evaluation of cell types in heart tissue 

RNAseq deconvolution was performed using ADAPTS R package (35). Cell type signatures 

coming from microarray and single-cell RNA-seq datasets were used: a first one containing 22 

cell types of immune cells from PBMC samples (36), and a second one containing 5 cell types 

from the left ventricle of healthy heart tissue (37). Signature matrices were generated with 

ADAPTS, and then the proportion of each cell type was estimated on our total normalized 

RNA-seq data (with the Ig and TR genes). Finally, for each cell type, a Wilcoxon test (FDR 

< 0.05) was applied to identify which ones have significantly different amount between cases 

and controls. To confirm these results, we performed the same analysis using Cybersortx 

Fractions and we obtained the same qualitative results (data not shown). 

  

Tissue DNA methylation analysis 

Analysis of DNA methylation data was performed with the ChAMP package (38). The beta 

values were normalized with the BMIQ method (39), and the batch effect was corrected with 
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the ComBat method (40). The analysis of variation of methylation on genomic positions was 

done using the ChAMP package and multitesting correction was performed using the 

Benjamini-Hochberg method (FDR, False Discovery Rate). Only genomic positions with an 

FDR < 0.05 and a |Δβ| > 0.2 (41) were selected. A DMP (Differentially Methylated Position) 

is associated with a gene when the DMP is inside the gene body or in its promoter region (from 

gene TSS to 1.5kb upstream), according to Illumina annotations. The functional analysis was 

done in the same manner as for DEGs (see «Functional enrichment» paragraph). 

  

Transcription factor characterization 

An analysis of differentially methylated regions (DMR) was done with the ChAMP package, 

using the DMRCate method, with parameters lambda=400 and C=2 (42). A DMR of interest 

was defined as a region containing at least 1 DMP located in TSS ([TSS + 1500bp; TSS]), 

1st Exon or 5’UTR region of DEGs; and having a FDR less than or equal to 0.05. In order to 

identify transcription factor binding sites (TFBS) affected by a difference in methylation, the 

ReMap database was used (43). A total of 84 cell lines was selected (Supplementary Table 

1), containing immune and heart-related cells, and including 151 transcription factors 

(TF).  First, the transcription factors specifically associated with DMRs were identified with 

the OLOGRAM tool (44) in a pairwise analysis, meaning we identify the individual TFs 

enriched with the DMRs. Only those with an FDR ≤ 0.05 were retained. In a second step, we 

studied the combinations of those selected TFs that were observed in the DMR by using the n-

wise overlap option of OLOGRAM (option –more-bed-multiple-overlap). In this latter 

analysis, we studied combinations of up to 4. The idea of the combinations of TFs was that 

if we have a complex of A+B+C, it means that A, B and C co-occur on the genome and may 

thus have functional relationship. 
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Blood DNA collection 

Blood (5 to 15 ml of blood) from 96 CCC patients (48 moderate CCC (Left ventricular ejection 

fraction > 40%) and 48 severe CCC (left ventricular ejection fraction < 40%)) and 48 

asymptomatic Chagas disease controls was also collected in EDTA tubes. Genomic DNA was 

isolated on a silica-membrane according to the manufacturer’s protocol (QIAamp DNA Blood 

Max Kit, Qiagen, Hilden, Germany). 

  

Blood DNA methylation analysis 

In order to ensure that no associations were missed in this exploratory analysis, no fold change 

threshold was chosen. A DMP was only defined by a FDR < 0.05. Two different analyses were 

done: differentially methylated sites between controls and severe CCC; and differentially 

methylated sites between moderate and severe CCCs. For both analyses, a functional 

enrichment analysis was made on associated genes as previously (see «Functional enrichment» 

paragraph). In order to confirm the relevance of our analysis on blood methylation in moderate 

patients, the biological processes affected by the differences in methylation between 

asymptomatic and severe CCC on blood samples were compared to those found between 

controls and severe CCC for tissue RNAseq and methylation. 

  

Blood biomarkers search 

For this analysis, the cohorts were mixed and divided in two groups: a training group, 

containing 70% of the data and a validation group containing the remaining samples. Two cases 

were studied: the differentially methylated sites between controls and all the CCC (indicator of 

disease presence), and the differentially methylated sites between moderate and severe CCCs 

(indicator of disease severity). After DMP selection, 3 different machine learning (ML) models 

were tested with our dataset: a decision tree, a logistic regression, and a random forest. On one 
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hand, for the tree-based models, the following options were fitted: number of estimators, 

maximal depth, maximal features and minimal samples per leaf. On the other hand, the penalty 

and the parameter of regularization C (a method which reduce the risk of overfitting by favoring 

the simplest models) were optimized in logistic regression.  

For each case, the analysis was made in two steps: a low number of DMPs were selected 

according to the statistical test included in ChAMP package, and then different models of ML 

were applied on this data. The models were adjusted depending on the parameters mentioned 

above (number of DMP, number of estimators, maximal depth...), and the set of model-

parameters providing the better accuracy (TP (True Positive) + TN (True Negative) / All) was 

kept. If the accuracy was still low, the analysis was restarted and relaunched from the 

beginning, with a bigger number of DMPs (classified by FDR). All the ML analyses were done 

on Python3 using the python pandas (https://pandas.pydata.org/) and scikit-learn packages 

(http://citebay.com/how-to-cite/scikit-learn/). Cross validations were performed using the 

training group only. Generalization tests were done using the validation group.  
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Results 

Understanding biological processes associated with CCC 

Description of datasets 

Gene expression analysis was conducted on left ventricular free wall myocardial tissue from 8 

severe CCC patients and 6 healthy organ donors (see workflow: Figure 1). Gene expression 

analysis was done by sequencing total RNA (paired end 2x150bp) after ribosomal RNAs 

depletion. For each sample, we obtained between 40 and 75 million sequencing reads. Reads 

were aligned to the human reference genome GRCh37/hg19 using STAR. The average 

mappable rate of the raw reads reached 90% (± 2%). Tissue sample DNA methylation analysis 

was conducted on the same samples as gene expression. This analysis was done using Illumina 

EPIC kit, allowing the study of 850.000 methylation sites. After quality control, 721.803 CpGs 

were retained for analysis. For blood DNA methylation analysis, the same tool as for tissue 

DNA methylation was used. After quality control, 138 samples were kept (48 asymptomatic, 

47 moderate CCC and 43 severe CCC), and 736.662 CpGs were retained for analysis. 

  

Gene expression profile 

To understand the pathogenic processes driving CCC, we have studied the genomic 

deregulation of patients at several scales. Gene expression data were obtained from 43533 

transcripts. These include protein coding units (43.03%); pseudogenes (20.71%); long non-

coding RNA (lincRNA) (11.54%); antisense sequences (10.12%); micro RNA (miRNA) 

(3.64%); miscellaneous RNA (miscRNA) (3.03%); small nuclear RNA (snRNA) (2.45%); 

small nucleolar RNA (snoRNA) (1.99%). sense intronic sequences (1.54%); among others 

(Supplementary Table 2). A small fraction of these transcripts (1407/43533 (3.23%)) were 

considered as differentially expressed (FDR ≤ 0.05 and absolute log2FoldChange ≥ 1.5) 

between the two groups of samples (Supplementary Table 3). Most of these differentially 
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expressed transcripts were overexpressed in CCC (1176/1407 (83.5%)). Among the 1407 

transcripts, we detected protein coding units (63.54%); and non-coding RNAs (36.46%) 

pseudogene (11.02%); lincRNA (10.31%); antisense sequences (9.38%); miRNA (1.35%); 

misc RNA (0.57%); snRNA (0.64%); snoRNA (0.28%); sense intronic sequences (1.00%)). A 

specific enrichment occurs in protein coding (Chi squared corrected p-value (FDR) = 3.36E-

20, OR = 90) and non-coding genes, as miRNAs (Chi square corrected p-value (FDR) = 1.96E-

05, OR = 21) or pseudogenes (Chi square corrected p-value (FDR) = 4.96E-14, OR = 61) 

(Supplementary Table 2). 

A PCA analysis was performed with all differentially expressed genes (DEGs) 

(Supplementary figure 1A). The first component was sufficient to explain 62.9% of the whole 

variance. This main component separates the samples between CCC and control, confirming 

that CCC myocardial gene expression patterns were substantially different from controls. A 

Hierarchical Clustering Analysis (HCA) computed with the normalized count matrix 

confirmed the importance of those features in the disease (Figure 2A). The sex and the age of 

the patients have no impact on this clustering (Supplementary Figure 2A-2B).  

  

Severe CCC is characterized by a strong, specific immune response 

In order to determine the biological processes specifically affected by CCCs, a comparative 

study was conducted on DCM patients. When we compared the gene expression pattern 

between DCM and controls, 3188 genes (707 up, 2483 down) are differentially expressed in 

DCMs. Among them, of which only 290 (9%) DEGs are in common with CCCs (120 up, 162 

down) (Supplementary Table 4).  It suggests that the mechanism involved in CCC and DCM 

are not similar. 

A functional analysis of the DEGs identified either in CCCs or DCMs was conducted 

(Supplementary Figure 3).  For each GO ontology, the percentage of DEGs and their relative 
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contribution to each phenotype were measured. As example, the “T cell selection” GO ontology 

entry is including 53 genes. 24 (45.3%) genes were DEGs in CCC or DCM or both. Among 

them, 21/24 (87.5%) of these DEGs are CCC DEGs and 4/24 (16.6%) of these DEGs are DCM 

DEGs. So, this process seems to be more CCC specific. Thus, some biological functions (GO 

ontologies) could be predominantly attributed to either of CCC or DCM (Supplementary 

Table 5).  

Interestingly, calcium ions are particularly affected in CCC, not in DCM (calcium ion 

transmembrane import into cytosol, regulation of sequestering of calcium ion). With regard to 

CCCs, DEGs are almost exclusively specific to the immune response (innate or adaptive), 

characterized by immune receptors (adaptive immune response based on somatic 

recombination of immune receptors built from immunoglobulin superfamily domains, T cell 

receptor signaling pathway, immunological synapse formation). Most of enriched terms are 

related to T lymphocytes (T cell proliferation, positive regulation of T cell differentiation). 

More specifically, the T CD8+ (CD8-positive, alpha-beta T cell activation) and T CD4+ (CD4-

positive, alpha-beta T cell differentiation) are associated to CCC. A strong enrichment of the 

Th1 response is associated to CCC (T-helper 1 type immune response, positive regulation of 

interferon-gamma production, response to interferon-gamma). Besides T cells, other immune 

cells seem to act in the pathogenic process of CCC, such as B cells (B cell differentiation, B 

cell proliferation), macrophages (macrophage migration) or NK cells (natural killer cell 

mediated cytotoxicity). The regulation of interleukin production is also affected, included IL-

1, IL-4, IL-6, IL-10 and IL-12.   

The DEGs identified in DCMs are involved in processes related to muscle and blood systems 

(animal organ development, blood vessel development, muscle cell proliferation, circulatory 

system process). Ion transport is also strongly represented (cation transport, ion transport, gated 

channel activity). Besides that, nervous system is also affected in DCM (nervous system 
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development, neurogenesis), as well as cell damaging process (wound healing, regulation of 

cell death).  

These diseases have similar pathogenic processes, including those related to ion transport (ion 

homeostasis, cellular cation homeostasis, regulation of metal ion transport) and smooth muscle 

(positive regulation of smooth muscle cell proliferation). The ERK1/ERK2 cascade (positive 

regulation of ERK1 and ERK2 cascade) also appears to be affected in both cases. 

Together, these results provide an overview of the pathogenic process associated with CCCs, 

which is mostly related to the immune response. Although it seems normal not to detect an 

immune response in non-inflammatory DCMs, it is important to note that in severe CCCs the 

pathogen is absent.  Furthermore, calcium ion transport seems to be particularly important in 

CCCs, compared to DCMs. 

 

Several Non-coding RNA are differentially expressed 

Non-coding RNAs are among the elements that can lead to genetic dysregulation. As gene 

expression analysis was performed by sequencing of total RNAs, we got information on non-

coding RNAs (lincRNA, miRNA, snRNA, snoRNA, 3’overlapping ncRNA). Up to 3777 non-

coding elements were detected in our 14 samples by total RNA sequencing. Among them, 179 

ncRNAs, including 19 miRNAs and 145 lncRNAs; were differentially expressed 

(Supplementary Table 6). Those ncRNAs (Supplementary Figure 4A) were enough to 

classify samples according to their phenotype, demonstrating the importance of these non-

coding elements in chronic Chagas cardiomyopathy. In this short list, the Myocardial Infarction 

Associated Transcript (MIAT) that has been also previously associated with an increased 

susceptibility to Chagas disease is present. Among the 19 miRNAs, 12 were annotated in 

miRNA databases and 7 of them were just tagged as miRNAs. Among the differentially 

expressed lncRNAs, 6 were annotated as targeting a gene (lncRNA - targeted gene: MIAT 
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- miR-133a, RP11 - 276H19.1-GAS1, XIST - WNT1, MIR155HG - miR-155, LINC00707 

- ELAVL1 and KB-1732A1.1 - E2F1). 

A similar analysis was performed on the ncRNAs differentially expressed between the 6 

controls and 8 samples affected by non-inflammatory dilated cardiomyopathy (DCM) 

(Supplementary Table 6). 327 ncRNAs, including 225 lncRNAs and 54 miRNAs, are 

associated to DCM (Supplementary Figure 4B).  143/179 ncRNAs are specific to CCC 

(Supplementary Figure 4C). These ncRNAs are mostly non annotated lncRNAs but including 

KB-1732A1.1 and RP11-276H19.1. 

 

Tissue DNA methylation profile 

Given the importance of methylation in the regulation of genetic response (45), we also 

performed several DNA methylation analyses in controls and CCC patients. Tissue DNA 

methylation analysis, performed on the same samples as RNA-seq analysis, was carried out on 

a total of 721.802 CpGs, after quality control. Those CpGs are located in gene body (37.46%), 

but also in intergenic regions (27.55%), TSS ([TSS - 1500bp; TSS]) (20.11%), 5’UTR (8.66%), 

1st Exon (3.03%), 3’UTR (2.5%) and exon boundary (0.69%) (Supplementary Table 7). Only 

16883 of those CpGs (2.34%) were differentially methylated (FDR < 0.05 and |Δ𝛃| > 0.2) and 

the majority being hypo-methylated (n=10097, 59.81%) (Supplementary Table 8). A PCA 

conducted on the normalized methylation level of these 16883 Differentially Methylated 

Position (DMP) shows that a single principal component was enough to explain 89.6% of the 

full dataset variance (Supplementary Figure 1B), and to separate the CCC and control 

samples. A heatmap of the same DMP methylation levels with HCA (Figure 2B) confirmed 

the clustering of the samples according to their phenotypes. The sex and the age of the patients 

seems to have no impact on this clustering (Supplementary Figure 2C-2D). A total of 5814 

genes are associated (i.e. DMP located in gene body, in 3’UTR or in gene upstream regions, 
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from TSS to 1500bp) to all 16883 DMPs. The localization of these DMP is significantly 

different as compared to the localization of the whole tested CpGs (Chi square corrected p-

value (FDR) < 2.2E-16). 

  

Several DEGs identified on tissue samples are also affected by DNA methylation 

alterations 

On tissue samples, 16883 differentially methylated CpG sites were detected. These DMPs are 

located in or around 5814 genes. Among them, 996 DMPs are located in or around 390 DEGs. 

The localization of these 996 DMPs is : 5'UTR = 195; TSS1500 = 155; TSS200 = 91; 1st Exon = 

68; Body = 460; Exonic Boundary =10; 3'UTR = 17. Although none of these regions are 

significantly enriched (in total number of DMPs), the upstream regions of the gene are enriched 

in down-methylated DMPs : the 1500 bp before TSS (86.58%, padj=1.94E-45), the 1st exon 

(88.23%, padj=4.22E-21) and the 5'UTR (88.72%, padj=2.56E-08).  Moreover, these down-

methylated DMPs are, in 86% of the cases, associated with over-expressed DEGs, the other 

cases being much less frequent (down-methylated DMPs - down-expressed DEG: 2%; up-

methylated DMPs - up-expressed DEG: 9%; up-methylated DMPs - down-expressed DEG: 

3%). Knowing the impact of DNA methylation on gene regulation, and in particular the 

association between promoter undermethylation and gene overexpression (46), we retained 

these regions for further analysis. In this article, we will call “regulatory region” the region 

between the TSS and 1500bp among the TSS as well as 5’UTR and gene 1st exon.  

 

Identification of transcription factor potentially involved in severe CCC 

Based on the 409 DMPs associated with DEG regulatory regions, we were able to define 92 

regulatory DMRs (Supplementary table 9). These DMRs span on average 245bp, ranging 
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from 3 to 10121bp (Q1 = 90.25, median = 245.10, Q3 = 340), and are in the promoter regions 

of 89 DEGs. 

In order to identify the transcription factors whose binding is specifically affected by the 

methylation/demethylation of these DMRs, three analyses were performed with OLOGRAM. 

The principle is to take a “query” set of sequences of interest (here, the DMRs), and to count 

their overlaps (in base pairs) with another “reference” set of sequences (here, each TFBS). The 

tool determines whether the query overlaps the reference more than what would be expected 

by chance, assuming that both query and reference can only be found in the inclusion region. 

This means that if query and reference overlap is only due to the fact that both are present in 

the promoter regions, their enrichment would be zero. In order to assess which TFs 

preferentially bind to DMRs, and not to the entire promoter regions of DEGs, two analyses 

were performed: (A) with the promoters of the DEGs as query and all genomic promoters as 

inclusion regions and (B) with the DMRs as query and all genomic promoters as inclusion 

regions (Figure 3A). The log2(FC)s of each TF in analysis (A) and (B) are significantly 

correlated (spearman p-value ≤ 0.05), but the r2 is low (0.49) (Figure 3B) suggesting a different 

signal carried by the DMRs compared to all the promoters including the DMRs. Moreover, the 

log2(FC)s obtained with the DMRs (analysis B) are significantly higher than the ones obtained 

with the promoters containing DMRs (analysis A) (Wilcoxon p-value = 4.23e-07) (Figure 

3C). These two analyses clearly show that there is a stronger enrichment of TFs in DMRs than 

in the promoter set. To confirm these results, a third analysis (C) was performed with the DMRs 

as query and the promoters of the DEGs as inclusion regions. The obtained distribution of the 

log2(FC) with this analysis showed two distinct peaks, one around 0, and another around 1.7 

(Figure 3C), confirming that some TFs are specifically enriched in DMRs compared to the 

promoter as a whole. A total of 30 TFs were found significantly associated to the DMRs with 
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this analysis, and those 30 TFs were also found associated to the DMRs in analysis B 

(Supplementary table 10).  

 

Prediction of TF complex 

Considering the fact that transcription factors often act together, forming complexes, an 

analysis of interaction between those transcription factors was performed using the 

OLOGRAM tool (44). Here, we considered as a Cis-Regulatory Module (CRMs) the regions 

where at least 2 TFs bind to the genome according to ReMap. After data filtering 

and considering combinations of up to 4 TFs, we have identified 16 regions significantly 

associated with our DMRs, involving a total of 12 transcription factors (Supplementary table 

10). Among the top-regulators, BRD4 which appear in 10 (83.33%) of the identified complex 

and overlap a total of 3090bp (number S). Comes after EED (S = 2777), EBF1 (S = 2389), 

BCLAF1 (S = 2312), TBX21 (S = 2271), RUNX3 (S = 2092) and RUNX1 (S = 2052). All 

these transcription factor complexes contain EED or BRD4. Interestingly, some complexes 

seemed to act on specific DEGs, such as BCL6 + BRD4 + GATA3. 

 

Biological process affected by TFBS methylation 

The 30 TF previously identified are involved in several biological process, such as somatic 

recombination of immunoglobulin gene segments (TCF3, YY1, BCL6, TBX21), regulation of 

cardiac muscle tissue growth (NOTCH1, RBPJ, RUNX1, YY1) or peripheral nervous system 

neuron development (RUNX1, RUNX3) (Supplementary table 11). However, the main signal 

here is regulation of T cell differentiation (BCL6, CBFB, GATA3, IRF4, MYB, RUNX1, 

RUNX3, STAT5B, TBX21, ZEB1). 

Subsequently, two biological aspects were discussed. A first analysis focused on the TFs 

involved in heart-relative or neurological process (Supplementary Figure 5) (n = 7: MYC, 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.21267972doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.20.21267972


22 

YY1, RBPJ, GATA3, RUNX1, RUNX3). Among these TFs, only RUNX3 was differentially 

expressed in our data. Interestingly, this up-regulated TF seemed to autoregulate itself 

(Supplementary table 12). The targeted genes (which are all up-regulated) are essentially 

involved in immune related processes, according to GO analysis, notably in lymphocyte 

pathways (regulation of T cell receptor signaling pathway, regulation of B cell proliferation, 

regulation of T cell activation...). However, according to our custom list of pathways of interest, 

some of those genes are also involved in fibrosis (SELPLG, CCR5, CD74, PRF1, KCNN4, 

IFN-γ), ion channel (KCNN4) or mitochondria (CASP8). These genes are targeted by at least 

one of these TF: RUNX1, MYC and RUNX3.  

A second analysis was focused on the genes involved in the Th1/IFN-γ response according to 

our lists of interest. These 19 genes are potentially targeted by 28 of the 30 TF previously 

identified, again illustrating the importance of the immune response in the pathogenic process 

associated with CCC. In order to identify the TFs most involved in the Th1 response, only those 

targeting at least 11 of the 19 genes were selected: BCLAF1, BRD4, CBFB, EED, PAX5, 

RUNX3 and TBX21 (Figure 4). Although most of the selected DEGs are targeted by all TFs, 

a few appear to be targeted by specific TFs: IFN-γ by RUNX3+TBX21, ITK and SOAT2 by 

BRD4, CTLA4 by PAX5+BRD4, and S1PR4 by BRD4+CBFB+BCLAF1. 

 

TFBS pattern affected by DNA methylation 

To confirm that DNA methylation is indeed what affects the binding of the identified TFs, an 

analysis was conducted on their binding motif. Of the 30 TFs of interest, 20 have at least one 

known motif in the Jaspar database, providing a total of 45 distinct motif. 127,158 genomic 

sequences included in 92 of our DMR were significantly associated with at least one motif, 

35,091 are present in the DMRs predicted with OLOGRAM, 22,325 have at least one CG and 

939 have at least one DMP. After removing redundancy in TFBS, 423 TFBS-DMR specific 
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sequence pairs have been identified. None of the TFs of interest were discarded by the set of 

filters used, all 20 having TFBSs in the DMRs. These sequences are located in the promoter 

regions of 48 DEGs. Among the TFs mainly involved in complexes (BRD4, EED, EBF1, 

BCLAF1, TBX21, RUNX3, RUNX1), TFBS pattern is known for EBF1, TBX21, RUNX3 and 

RUNX1. Interestingly, TBX21, RUNX3 and EBF1 are the TFs whose binding motif appears 

to be affected by DNA methylation in the largest number of genes (n = 25, 18 and 18 

respectively). Because these TFs are involved in a large number of complexes, regulation of 

their binding may affect the binding of all TFs in the complexes. 

Among the 25 genes with a low number of TFs binding in their promoter region (n <= 3), and 

thus being affected by specific TFs, 7 are targeted by TBX21 and 4 by RUNX3, showing again 

the importance of these TFs in CCC. Considering that RUNX3, a key regulator in CCCs, also 

has a DMR in its promoter region, further analysis was performed on this TF. On this 831 bp 

DMR, 5 TFBSs are present (Figure 5). This DMR is targeted by at least 6 of the following 7 

TFs: RUNX3, PAX5, YY1, SP1, MAX, EBF1 and IRF4. SP1 and PAX5 seem to be the most 

affine with these sequences. Although no complex composed only by at least 6 of these 7 TFs 

have been identified, PAX5 is always found associated to IRF4, whatever the size of the 

complex, suggesting an interaction between those 2 TFs. 

 

Evaluation of cell types proportions in RNA-seq 

Given the infiltration of immune cells in CCC myocardium, we looked for characterize and 

quantify the proportions of these cell types in our samples. To do so, we applied to our data, 

ADAPTS, a R tool to deconvolute the cell type proportions in RNA-seq by comparison to cell 

type signatures extracted from single-cell RNA-seq datasets (see Methods: Evaluation of cell 

types in heart tissue). In our study, we used two different single-cell datasets. First of all, 

immune cell signatures (36) (22 cell types) were used and showed in general a higher 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.21267972doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.20.21267972


24 

proportion of immune cells in CCCs compared to controls (Supplementary Figure 6A), such 

as activated NKs (Wilcoxon test, FDR=1.07E-02), and more interestingly T CD8, T Cell 

memory and T follicular helper (Wilcoxon test, respective FDR=1.07E-02; 1.07E-02; 1.83E-

02). Secondly, a human heart tissue (left ventricle) cell signature (37) was used and showed 

that the CCCs had fewer cardiomyocytes (Wilcoxon test, FDR=1.16E-02) and smooth muscle 

(Wilcoxon test, FDR=3.33E-03) than the controls (Supplementary Figure 6B). Moreover, 

CCC myocardium had a higher proportion of macrophages (Wilcoxon test, FDR=1.90E-02), 

confirming the existence of immune infiltration in the cardiac tissues on CCC patients 

(Supplementary table 13). 

 

Blood methylation profile 

Given the lack of myocardial tissues from patients with moderate CCC, our previous analyses 

were performed only on severe CCC. Therefore, it was impossible to study the progression of 

the pathogenic process during different stages of the disease. To overcome this problem, we 

studied the DNA methylation in the blood of 96 samples (33 asymptomatics and 63 CCCs (33 

moderates and 30 severes)), by hypothesizing that the blood data reflect the phenotype. The 

analysis was made in two steps: first, we tested the difference of DNA methylation between 

asymptomatic and severe CCC, and then, we tested the difference of DNA methylation between 

moderate versus severe CCC samples to evaluate the disease progression. 

Based on the low variability in DNA methylation levels observed in blood compared to tissue, 

(absolute values of tissue Δβ: mean = 4.96E-02, quartile 1 = 8.39E-03, quartile 3 = 7.38E-02; 

absolute values of blood Δβ: mean = 5.62E-03, q1 = 1.27E-03, q3 = 7.21E-03), only the FDR 

has been considered to define a DMP. We found 12624 DMPs between asymptomatic and 

severe CCC blood samples, with a FDR thresold of 0.05 (Supplementary Table 14).  Of these, 

7232 were found to be down-methylated (57.29%). 189 of those DMP (1.5%) are also found 
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in the previous tissue DNA methylation analysis. Despite the small variation in the level of 

DNA methylation detected in the blood (Δβ), the methylation of these 12624 DMPs was 

enough to separate controls from cases, either via PCA (16.8% variability on PC1) (Figure 

6A) or HCA (Supplementary Figure 7A). Association was found in 6436 genes with at least 

one DMP (ie. have one DMP in their body, promoter region or 3’UTR region), and 259 of those 

genes are also differentially expressed in RNA-seq analysis. Only 139 genes are in common 

between the three analyses (RNA-seq in tissue and DNA methylation in tissue and blood). As 

a result, there are few genes affected by expression and methylation in myocardial tissue and 

methylation in blood in common. 

The disease progression was analyzed on 63 samples (33 moderate CCC and 30 severe CCC). 

6735 CpGs were found as DMPs (Supplementary Table 15), with a FDR <0.05. Half of these 

DMPs (3178, 47.19%) were down-methylated. All the 6735 DMPs were enough to 

discriminate samples according to the stage of the disease on a PCA (21.25% of the variability 

in PC1) (Figure 6B). Similar conclusions were raised from HCA (Supplementary Figure 7B). 

Only 470 DMPs were also identified as DMP in controls vs severe CCC blood methylation 

analysis, and 1750 genes out of 3911 (44.75%) are shared by both blood methylation analysis 

(non-significant enrichment), showing epigenetic differences between the moderate and severe 

forms. Interestingly, looking at the DNA methylation level of all DMPs found in blood (merge 

of the two previous analysis, n=18889) allowed us to distinguish the three groups of 

individuals, according to their phenotype (Figure 6C), revealing a gradient of methylation in 

PC1xPC2 from controls to severe CCC through moderate CCC.  

Finally, as on tissue methylation, the DMP distribution on genomic locations between 

asymptomatic and severe CCC (Chi square test T =30.63, p-value = 1.6E-04) was different for 

the original CpG distribution but not between moderate CCC and severe CCC (Chi square test 

T =12.57, p-value = 1.1E-01) (Supplementary Table 16). 
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DNA methylation pattern on blood samples in severe CCC 

The study of DNA methylation in the blood was done on 96 samples (33 asymptomatic, 33 

moderate CCC and 30 severe CCC). We found 12624 CpGs between asymptomatic subjects 

and severe CCC. However, only a limited number of DMPs (n=189) is shared with the analysis 

done on heart tissue samples. The DNA methylation level variance detected in the blood was 

lower than the variation detected on tissues. Moreover, the general pattern detected on heart 

tissues and on blood are different and seemed to be tissue/fluid specific (Figure 7A). However, 

we conducted a Gene ontology analysis of the top 1000 genes of each analysis (RNA-seq 

(control vs severe CCC): 70.97%; tissue methylation (Control vs severe CCC): 17.20% and 

blood methylation (asymptomatic vs severe CCC): 15.54%) (Supplementary Table 17). 

Interestingly, all of the identified top GO are shared by all three analyses, showing that although 

few genes are found in common, they are involved in common biological functions. Therefore, 

three major biological processes are affected in our analyses. First, the immune system (1451 

genes involved; 51.65%), including the lymphocyte activation (FDR=3.9E-21), the regulation 

of immune-system process (FDR=2.49E-16), the cytokine production (FDR=3.6E-14), the 

regulation of interleukin production (notably IL-2, FDR=2.93E-08; IL-4, FDR=8.42E-07; IL-

6, FDR=1.44E-04) or the defense response (FDR=8E-10). Secondly, 557 genes (19.83%) are 

involved in biological processes related to system development (2.1E-16), including nervous 

system development (FDR=5.09E-09) and anatomical structure morphogenesis (FDR=7.64E-

06), like cardiovascular system development (FDR=2.37E-03). Finally, 563 genes (20.04%) 

are linked to metal ion transport (6.39E-08), voltage-gated cation channel activity (1.51E-04) 

and cation homeostasis (6.09E-04) (Figure 7B). Even if the methylation patterns seem to be 

tissue/fluid specific, these patterns are concerned the same biological processes. Moreover, this 
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biological process analogy is consistent with the gene expression analysis, finding similar 

biological pathways. 

Although all genes previously identified are involved in those biological pathways, whether 

they come from expression or methylation analysis, on tissue or on blood, some pathways seem 

to be mostly affected by one specific type of data. Indeed, the GOs related to the immune 

system are on average mostly carried by differentially expressed genes (49.12%), while the 

GOs related to system development (including nervous system development) and ion-related 

processes are mostly influenced by methylation. 

 

DNA methylation patterns on blood samples between moderate and severe CCC 

Given the similarity between biological processes affected by modulation of the gene 

expression or by differences in DNA methylation in severe CCC, it seemed reasonable to 

analyze the methylation differences between moderate and severe CCC to understand the 

development of the disease (Supplementary Table 18).  Unlikely to the results found between 

controls and severe CCC, here genes are mostly involved in neurogenesis (FDR=9.0E-18); 

anatomical structure morphogenesis (FDR=2.6E-13), including cardiovascular system 

development (FDR=1.1E-2); or actin filament organization (FDR=2.79E-09). To a lesser 

extent, these genes are associated with the immune response, notably in adaptive immune 

response (FDR=2.32E-07), including humoral immune response mediated by circulating 

immunoglobulin (FDR=9.05E-05), or B cell mediated immunity (FDR=3.16E-02). Finally, as 

found in previous results, genes are also associated with ion-related processes, like ion transport 

(FDR=1.56E-06) or sodium ion transmembrane transport (FDR=1.5E-05). 

 

Prediction of Chagas disease cardiomyopathy state based on blood DNA methylation 
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The point here was to identify the minimal number of markers allowing to predict the 

phenotype of patient. We aimed to identify two types of biomarkers: biomarkers indicating the 

presence of the disease (asymptomatic vs CCC), and those indicating its severity (moderate 

CCC vs severe CCC). For these two analyses, different machine learning models were fitted 

on 70% of the data (training data) and applied on the other 30% of the data (validation data). 

The models with the highest accuracy (TP+TN/all) were kept. In the first case, the number of 

DMPs previously found has been reduced, according to the delta beta value. In that case, the 

DMPs with a delta beta corresponding to the top 1 percentile have been retained. With these 

new filters, 198 DMPs were used to build a machine learning model (Supplementary table 

19).  The best parameters for the model were searched using a grid search, until we had an 

accuracy of 1 on our training data. The prediction was performed with a logistic regression, 

with a penalty L2 (Ridge) and a C of 5 (higher value of C specifies weaker regularization). 

When applied on our testing data, the final accuracy was 0.95, for a sensitivity of 1 and a 

specificity of 0.87. 40 individuals out of 42 in the testing data were thus correctly predicted. 

About these DMPs, 39% are in the gene body, 35% in intergenic regions, 24% in promoter 

regions and 2% in the 3'UTRs, which is not significantly different from the expected 

distribution (Chi square test p-value > 0.05). Among the genes with the highest number of 

DMPs is POU6F2 (n = 6), TM4SF1 (n = 5), CCDC144NL (n = 4), COLEC11 (n = 4) and 

ERICH1 (n = 4). All the genes associated to at least 1 of these 198 DMPs does not seems to be 

involved in any specific biological pathway. 

In the second analysis (moderate CCC vs. severe CCC), all 61 DMPs were retained 

(Supplementary table 19). Since, the phenotype is more complex to predict, we used Random 

Forest algorithm algorithm. Using 100 trees with a maximum depth of 4, the validation data 

were predicted with an accuracy of 0.96 (sensitivity 0.92, specificity 1). Thus, 26 individuals 

out of 27 were correctly predicted. In this case, some regions are significantly enriched in 
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DMPs (Chi-square test p-value = 2.2E-06), such as 41% of DMPs in the gene body, 35% in 

promoters, 22% in intergenic regions and 2% in the 3'UTRs. All 61 DMPs are located in 49 

genes, but only 1 by gene. Of these genes, 6 of these genes are notably involved in the 

regulation of the Wnt signaling pathway (FDR = 6.5E-07): ARNTL, BTRC, GLI3, LZTS2, 

PTPRO, RNF220. 
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Discussion 

 

In a previous analysis, combining microarray and methylation data (Illumina 450k), we showed 

that patients with CCCs had significant differences in gene expression and DNA methylation 

(17). DEGs with DMPs were predominantly associated with the immune response, but also 

with several biological processes sur as arrhthmia, muscle contraction, fibrosis and 

mitochondria’s function. In vitro analyses had showed that differential methylation of some 

promoters had an impact on the gene expression and on protein production for immune- or 

heart-related genes, including KCNA4 and RUNX3. In the present study, we have set up more 

advanced analysis (RNA-seq and EPIC methylation), allowing us to have an in-depth analysis 

of genomic deregulation. In addition, we also conducted a DNA methylation analysis on blood 

samples from patients and asymptomatic controls.  

All these approaches combined have put forward different pathways affected in patients with 

CCCs. Although the immune response seems to be strongly stimulated, especially the 

activation of T cells even in the absence of the parasite. This infiltrate, already known (47), is 

mainly composed of Th1 lymphocytes, macrophages and NK-cells. Our deconvolution analysis 

done on our heart tissue collection, had confirmed the content of this infiltrate. Our group, 

among others, have already shown that the T-cell infiltrating heart tissue strongly produced 

INF-γ and TNF-α (8). In parallel, lower quantities of IL-2, IL-4, IL-6 and IL-10 were detected 

in CCC heart tissue (48). Our results are consistent with current knowledge of the pathology, 

with high expression of genes involved in INF-γ and cytokine production, and regulation of 

interleukin production, including IL-2, IL-4 and IL-6. IFN-γ, which has been described 

simultaneously as a pathogen resistance and a disease tolerance gene is also acting as an 

upstream regulator (49). Overproduction of IFN-γ can induce tissue damage and death in the 

chronic phases. Indeed, IFN-γ stimulates the inflammatory response via the NF-κB 
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pathway and activate the production of ROS and NOS, which, in an excessive quantity, have 

also deleterious effect on mitochondria and cardiomyocytes (12). Interestingly, we found a 

DMR in IFN-γ promoter region, targeted by RUNX3 and TBX21 (T-bet) transcription factors 

by interacting with GATA3 (50, 51). The micro-RNA MIR142, potentially target by RUNX3 

and TBX21 according to our analysis, is also associated to Th1 differentiation (52) in neuronal 

autoimmune disease. In Chagas disease, TBX21 and IFN-γ expression are correlated with the 

left ventricular dilatation, and the ratio between TBX21 and GATA3 expression is significantly 

higher in CCC than in non-inflammatory cardiomyopathy (53), which is also the case in our 

data, whereas we compare CCC to control or DCM. Moreover, RUNX3 overexpression has 

been associated to the methylation of his promoter in CCC (17), as well as in our analysis. All 

our results are therefore consistent with our knowledge of this pathology, and have allowed us 

to identify a whole list of genes potentially deregulated by the action of these 3 TFs that are 

known to be involved in CCC. 

  

In addition to this exacerbate immune response, genes involved in processes related to cardiac 

contraction, ion transport, nervous system, fibrosis or mitochondria have been identified as 

differentially expressed and/or differentially methylated. In particular, the nervous system 

appears to be strongly impacted between moderate and severe CCCs. These genes seem to be 

targeted by 6 transcription factors, involved in cardiac processes and nervous system, 

reinforcing this signal. Our methylation analysis, added to the previous studies carried out (17, 

54), confirmed that epigenetic regulations are essential in Chagas disease. Among the genes 

associated to ion transport, and more precisely with voltage-gated ion channel, are KCNA2, 

KCNA5, KCNAB2, KCNB2, KCNC2, KCNG3 and KCNN4. Potassium channel gene 

deregulation has already been described in mouse (55) and human heart (17). Calcium and 

potassium ion channels functions are affected in mouse heart tissue (56), leading to a reduced 
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Ca2+ release and a prolongation of action potential, showing a cardiomyocyte dysfunction. 

TNF-α may amplify this dysfunction, by inducing nitric oxide synthase (iNOS) and oxidant 

species, which promotes electrophysiological changes, as it has been shown in rat ventricular 

myocyte (57). KCNN4, also called KCa3.1 (calcium-activated potassium channel), act as a 

regulator of membrane potential in T cells. After antigen recognition by the T cell receptoire, 

the Ca2+ enter in the cytosol, which lead to the activation of KCa3.1, and then to Kv1.3 with 

the membrane depolarization (58). This calcium will activate the NFAT protein, which regulate 

genes involving in T cell activation (59). Moreover, high levels of Kv1.3 were found in multiple 

autoimmune disease (60-62). In our data, these two potassium channels are up-regulated 

(Kv1.3: log2(FC) = 4.01, FDR = 4.86E-15 KCa3.1: log2(FC) = 1.56, FDR = 2.11E-03), and 

KCa3.1 seems to be targeted by RUNX3. Galectin-3 (Gal-3) has been regarded as a potential 

biomarker for heart disease and a causative mediator of cardiac fibrosis. Gal-3 promotes cardiac 

fibrosis through upregulating the expression and activity of KCa3.1 channel in inflammatory 

cells and fibroblasts and that upregulated KCa3.1 facilitates inflammatory cell infiltration into 

the myocardium and fibroblast differentiation into activated form. Recently, it has been shown 

mice treated with TRAM-34, a KCa3.1 channel-specific inhibitor, either for 1- or 2-month 

period effectively reduced collagen deposition (63). KCa3.1 inhibition by TRAM-34 therapy 

attenuated the increased inflammatory cell infiltration. Moreover, Gang et al. had shown that 

KCa3.1 inhibition by TRAM-34 therapy attenuated the increased inflammatory cell infiltration. 

Our study underlined that several genes associated with moderate or severe CCC are involved 

in the nervous system. This enrichment is even stronger in moderate CCCs. Actually, the loss 

of neuron cells is a well-known phenomenon in digestive forms of Chagas disease (64, 65). In 

human hearts with dilated cardiomyopathy, the number of neuron cells is significantly reduced 

compared to controls. This neuronal depopulation is even more important in the CCC (66), and 

particularly during the acute phase in mice model (67). In the dog heart, during the acute phase, 
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a rarefaction of the noradrenergic and acetylcholine nerve terminals has been observed only 

when myocarditis occurs, and the ventricles sympathetic denervation was present when the 

inflammatory process was moderate to intense (68). Moreover, in the rat model, moderate 

myocarditis lasting for two weeks may cause complete denervation (69). A more recent study 

demonstrates that the lack of acetylcholine in mice heart tissue seems to promote the Th1 

response, inducing a reduction of the circulating parasites, but a worsening of the cardiac 

lesions and inflammatory infiltration (70). In the continuity of these observations, the increase 

in the amount of acetylcholine reduces the weight of heart mice, the inflammatory infiltration 

and the fibrosis area, suggesting a reversing of cardiac hypertrophy. Those observations are 

correlated with a reduced level of IFN-γ in serum (71). Moreover, number studies have shown 

the impact of the nervous system on immune-response regulation. In short, macrophages, Th1, 

CD4 and B cells express adrenergic receptors (72-74). Their stimulation induces an increase of 

cAMP, which inhibits NF-kB activation. This leads to the suppression of type 1 pro-

inflammatory cytokines and promotes the production of type 2 anti-inflammatory cytokines, as 

IL10. This cytokine inhibits the antigen presenting capacity of macrophages and dendritic cells, 

and thus the differentiation of CD4 T cells to Th1 (75). In our data, the genes related to 

acetylcholine production, or acetylcholine transporter are not differentially methylated or 

expressed in tissue samples according to fold change cut-off, but present a FDR<0.05. In blood 

methylation samples, ACHE (acetylcholine production), and CHRNA3, CHRNA4 and 

CHRNA7 (acetylcholine receptors) genes have differentially methylated positions, in promoter 

or body. All these observations on animal models, together with our data showing the 

involvement of genes related to the nervous system in CCCs, especially in the moderate phase, 

strongly suggest an involvement of the nervous system in the shift of the immune response 

towards a Th1 response, inducing heart tissue damage. In particular, the involvement of 

acetylcholine seems to be related to inflammatory infiltration and fibrosis. Finally, circulating 
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antibodies binding acetylcholine and norepinephrine receptors have been found in Chagas 

patient serum, suggesting an autoimmune response (Borda 1996 10.1016/0167-

5273(96)02592-2), and, correlated with the previous study, inducing  the lack of 

neurotransmitters, and then the over production of Th1 cells. 

Non coding RNA, notably lncRNA and miRNA, are known to be involved in many of 

cardiovascular diseases (55, 76),  mostly by acting directly on gene expression or protein 

stability for miRNAs, and by repressing the action of miRNAs by acting as a sponge for 

lncRNAs. The presented results extend the list of miRNAs associated to CCC, and not 

differentially expressed in DCM (18, 55, 77-83). Among the 19 miRNAs identified in this 

study, 3 have already been associated with severe CCC: MIR-223, MIR-208 and MIR-151 (14). 

In addition, the long non coding MIR155HG codes for MIR-155, which is also found as up-

regulated in severe CCC. Interestingly, this miRNA is responsible for many inflammatory 

stimuli, including TNF-α and interferons (84). Moreover, it is up-regulated in viral myocarditis; 

where it is expressed by infiltrating immune cells, and seems to be involved in TNF-α, IFN-γ 

and IL-6 production, as well as immune cell infiltration (85). Finally, the lack of this 

microRNA seems to decrease IFN-γ and TNF-α in the acute stage of Chagas cardiomyopathy 

in mice heart tissue (55). Several studies are ongoing to test specific agonist or antagonist 

effects of the miRNAs that may use in the future to avoid or slow disease progression. Several 

encouraging studies have led to interesting modeling, in animals at least (86, 87). In addition, 

several lncRNAs were also differentially expressed in CCC patient tissues. Among them, 

MIAT has been associated to multiple diseases leading to various phenotypes (88).  In breast 

cancer, it targets the microRNA-133, dysregulated in CCC (18), and down-regulated in patients 

with heart failure (89). This lncRNA is always acting as a sponge for specific miRNAs. 

Moreover, XIST is one of the top up-regulated lncRNA in our disease. It is associated with the 

WNT1 gene, belonging to the Wnt family. Because of the sex dispersion in our dataset, it is 
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hard to confirm its involvement in CCC. However, WNT1, as well as WNT10A and WNT10B 

are up-regulated in severe CCC, suggesting their involvement in this pathology. In addition, 

the DMPs used as biomarkers to determine whether patients are in moderate or severe phase 

are located in 6 genes related to the Wnt pathway: ARNTL, BTRC, GLI3, LZTS2, PTPRO and 

RNF220. The Wnt signaling pathway has a role in cardiac development, and is involved in 

cardiovascular disease (90) including fibrosis (91-93). After infection by T. cruzi, Wnt 

expression is induced in macrophages, and Wnt signaling has a role in the regulation of the 

immune response, as well as in the parasite replication (90). In fibrosis, some study confirmed 

the interaction between the Wnt pathway and TGF-β signalling (94-96). TGF-β receptor 

overexpression has already been observed in acute phase of CCC (97), and his role in CCC 

development has been confirmed, including parasitic invasion, inflammation, immune 

response, heart fibrosis and heart conduction (98). A therapeutic strategy, based on TGF-β 

inhibition, has already been proposed and try on mouse (80). Moreover, some study suggest an 

interaction between the Wnt pathway, the TGF-β signalling and the NOTCH signaling (99, 

100). Our result showing the involvement of the Wnt pathway in the evolution of the disease 

and the potential implication of NOTCH1 in the genetic deregulation in severe CCC reinforce 

the hypothesis of the Wnt-NOTCH-TGF-β in CCC evolution. For the others, their modes of 

action are not obvious at all. Several approaches are ongoing such as Loss-of-Function 

Strategies for lncRNAs, lncRNA-Interactome Analyses, Identification of lncRNAs Associated 

with Translation Machinery (review in (101)) but a database, namely a well annotated one, is 

slow to come. Therefore, the use of these molecules as biomarkers and even more as 

complementary treatments remains a distant prospect. 

Although present in many countries, Chagas disease affects mostly poor populations with little 

access to health services (102). As a result, providing diagnosis and treatment for millions of 

people is proving difficult, and this disease has been characterized as "the most neglected of 
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the neglected diseases", in terms of research and development. In the acute phase of the disease, 

the most effective method of diagnosis is the direct detection of antigens produced by T. cruzi, 

although this method suffers from limitations in terms of specificity (~80-90%) (103). 

Therefore, diagnosis is often done by microscopy (104). With regard to the chronic phase, due 

to low or no parasitic activity, direct detection of T. cruzi cannot be considered. In addition, 

recent qPCR-based methods have been tested on acute and chronic samples, but have shown 

low sensitivity (~80%), and require financial and material resources that are difficult to 

implement in endemic areas (105). Recently, blood markers typical of inflammatory responses 

and tissue damage due to chagas disease, including IFN-y, IL-6, TNF-a, NTproBNP (among 

others) have been proposed as biomarkers of CCC (106). However, the low specificity of these 

markers, or their lack of specificity to CCCs, such as NTproBNP, representative of cardiac 

pathologies (107); does not allow for clinical use at the present time. In our study, we have 

identified 198 CCC-specific methylation markers. Those CpGs could distinguish controls to 

CCC from blood samples with 100% of sensitivity and 97% of specificity in independent 

validation sets. In addition, 61 CpGs have been identified, allowing to predict the progression 

of this pathology (from moderate to severe CCC), with a sensitivity of 92% and a specificity 

of 100%. In order to propose large-scale reproducible biomarkers, a consensus Target Product 

Profile (TPP) has been developed for Chagas disease (108), stipulating that markers should be 

able to detect the effects of drug treatments, be detectable with limited resources and not vary 

according to the strain of the parasite. Given the high specificity of these two assays, these 

methylation sites appear to be good candidates for use as blood biomarkers, and further studies 

will be necessary to potentially validate their possible use in the clinic, in accordance with the 

TPP consensus. 

All the results obtained in our study converge towards a combined involvement of processes 

related to the immune response, ion transport, cardiac contraction and the nervous system. Gene 
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expression analysis alone has revealed some non-coding elements, but has not provided so 

much new information about the disease. However, the inclusion of methylation put forward 

less obvious biological process. Thus, the majority of the identified genes (differentially 

expressed and/or methylated) are generally involved in several of these processes, highlighting 

links between them. These results, combined with those obtained in previous analyses of 

chagasic cardiomyopathies (17, 54), confirm the importance of DNA methylation in the 

development of CCCs. 
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Figure legends 

Figure 1. Workflow overview 

Heart tissue RNAseq (orange) quality was verified with fastQC. Low-quality base and adapters 

were removed using Trimmomatic, and remaining reads were aligned with STAR aligner 

against hg19 human genome. Normalization and differential expression test were performed 

with DESeq2. ClueGO and ncRNAseq databases (ncRNAdisease, lncRNA2target, lncTarD) 

were used to characterized genes functionality. On the other hand, a deconvolution analysis 

was performed with ADAPTS on control and severe CCC samples.  

Heart tissue (blue) and blood (green) methylation analysis followed the same first steps: quality 

control, normalization, batch effect correction and differential methylation position (DMP) test 

were all performed with ChAMP. Genes associated with DMP (DMP in promoter region, body 

or 3’UTR) were functionally annotated with ClueGO.  

In tissue samples, differentially methylated regions located in differentially expressed genes 

regulatory region (from TSS-1500 to first exon) were searched with ChAMP. Transcription 

factor binding site (TFBS) were predicted with OLOGRAM using ReMap database, and TFBS 

profiles were identified with FIMO, using JASPAR database.  

In blood samples, two analyses were performed: DMP between asymptomatic and severe CCC, 

and DMP between moderate and severe CCC. In both cases, gene enrichment was performed 

in the same way than tissue methylation data. Finally, in blood samples, blood biomarkers were 

identified, for disease diagnosis and disease stage diagnosis. 

 

Figure 2. Analysis of samples clustering based on differentially expressed genes or 

differentially methylated CpG sites 

Control samples identifiers are written in blue whereas case samples identifiers are written in 

red. (A) Hierarchical Clustering Analysis (HCA) performed on 6 control and 8 case samples, 
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based on expression of 1409 differentially expressed genes. (B) Hierarchical Clustering 

Analysis (HCA) performed on the same samples as in A), based on methylation level of 16883 

differentially methylated position. 

 

Figure 3. Analysis of the relation between TFBS (Transcription Factor Binding Site)   

(A) Schematic illustration of the three approaches used in this analysis. Differentially 

methylated region (DMR) is highlighted in blue, gene regulatory region in green, and 

transcription factor (TF) in orange. Analysis 1: TFBS enrichment in regulatory region 

containing at least one DMR, compared to all genome regulatory region. For each gene, a 

regulatory region is defined as the region from TSS-1500 to first exon. Analysis 2: TFBS 

enrichment in DMR compared to all genome regulatory region. Analysis 3: TFBS enrichment 

in DMR compared to regulatory region containing at least one DMR.  (B) Scatter plot of the 

log2(FC) obtained with the analysis 1 and 2 and Spearman correlation of these values. The fold 

change is computed according to the observed S value compared to obtained S value, S 

corresponding to the number of overlapping bases between TFBS and query region. (C) 

Distribution of the log2(FC) obtained with the 3 approaches. 

 

Figure 4. Predicted regulatory interaction in IFNy-Th1 pathway 

Network composed by 19 genes involved in IFNy-Th1 pathway, and the top 7 TF predicted as 

targeting those 19 genes, according to OLOGRAM based on ReMap database. TF are written 

in blue in diamond, and genes in black in rectangle. Shapes borders are colored according to 

the fold change, from green to red. 

 

Figure 5. TFBS affected by methylation in RUNX3 regulatory region 
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Schematic representation of all TFBS found in RUNX3 regulatory region, using FIMO and 

Jaspar database. For each TFBS region, all the transcription factor predicted as affected by a 

differentiation of methylation in this region are rank by FIMO pvalue (***: pvalue ≤ 0.001, **: 

pvalue ≤ 0.01, *: pvalue ≤ 0.05). The top-rank TF binding profile is shown, as well as the 

differentially methylated position in the TFBS. 

 

Figure 6. Analysis of samples distribution in the space of differentially methylated CpG 

sites for asymptomatic, moderate CCC and severe CCC samples 

(A) Scatterplot of the two principal components of a PCA executed in the space of the 12624 

CpG positions differentially methylated (DMP) between 48 asymptomatic blood samples and 

90 CCC blood samples. (B) Scatterplot of the two principal components of a PCA executed in 

the space of the 6735 DMPs between 47 moderate CCC blood samples and 43 severe CCC 

blood samples. (C) Scatterplot of the two principal components of a PCA executed in the space 

of the 18889 CpG positions (union of the two previous sets) for the three groups of samples. 

(D) Scatterplot of the two principal components of a PCA executed in the space of the 198 

DMPs between 33 asymptomatic blood samples and 63 CCC blood samples (training dataset). 

(E) Scatterplot of the two principal components of a PCA executed in the space of the 61 DMPs 

between 33 moderate CCC blood samples and 30 severe CCC blood samples (training dataset). 

 

Figure 7. Comparison of differentially expressed genes, genes affected by methylation in 

tissue dataset and genes affected by methylation in blood dataset 

(A) Venn diagram of top 1000 genes differentially expressed or methylated in previous tissue 

RNA-seq, tissue DNA methylation and blood DNA methylation analysis between 

control/asymptomatic and severe CCC samples. (B) Graph of the Gene ontology Biological 

Processes analysis of dysregulated element between control/asymptomatic and severe CCC. 
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Nodes represents biological processes terms and are divided in 3 colors, according to the 

proportion of genes from RNA-seq (red), tissue methylation (blue) or blood methylation 

(green) analysis. Edges in the graph link GO terms having gene in common. 3 principal terms 

are highlighted in this synthesis. More precisely, several groups of gene ontology are enriched, 

involved in biological process related to : 1) lymphocyte activation; 2) Regulation of immune-

system process; 3) Cytokine production; 4) Interferon gamma production; 5) Regulation of 

interleukin production; 6) Defense response; 7) System development; 8) Anatomical structure 

morphogenesis; 9) Metal ion transport; 10) Cation homeostasis. 

 

Supplementary materials 

Supplementary table 1. Cell lines description. 

Supplementary table 2.  Statistics on coding sequences detected by RNA-seq and on 

differentially expressed genes. 

Supplementary table 3. List of unique differentially expressed genes identified by RNA-seq 

between 8 end stage CCC heart tissue samples and 6 heart tissue samples obtained from organ 

donors. 

Supplementary table 4. List of unique differentially expressed genes identified by RNA-seq 

between 8 DCM heart tissue samples and 6 heart tissue samples obtained from organ donors. 

Supplementary table 5. Gene ontology analysis based on differentially expressed genes 

between control and severe CCC and/or between control and DCM. 

Supplementary table 6. List of differentially expressed ncRNAs between control and severe 

CCC, or between control and dilated cardiomyopathies. 

Supplementary table 7. Features of the tested CpG sites and of the DMPs. 

Supplementary table 8. List of the Differentially Methylated CpGs on heart tissues samples 

(controls versus CCC). 
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Supplementary table 9. List of the regulatory DMRs associated to the 89 DEGs. 

Supplementary table 10. List of transcription factor and transcription factor complexes testing 

against our DMRs. 

Supplementary table 11. Gene ontology analysis of the TFs binding our DMRs. 

Supplementary table 12. List of differentially expressed ncRNAs between control and severe 

CCC, or between control and dilated cardiomyopathies. 

Supplementary table 13. Cell type proportions in RNA-seq by comparison to cell type 

signatures. 

Supplementary table 14. List of the Differentially Methylated CpGs between blood 

asymptomatic samples and blood CCC samples. 

Supplementary table 15. List of the Differentially Methylated CpGs between blood moderate 

CCC samples and blood severe CCC samples. 

Supplementary table 16. Features of the DMPs on blood samples. 

Supplementary table 17. Gene ontology analysis based on differentially expressed genes 

between control and severe CCC and/or genes affected by at least one differentially methylated 

CpGs between tissue control and severe CCC and/or genes affected by at least one differentially 

methylated CpGs between blood asymptomatic and severe CCC samples. 

Supplementary table 18. Gene ontology analysis based on genes affected by at least one 

differentially methylated CpGs between blood moderate CCC samples and blood severe CCC 

samples. 

 

 

 

Supplementary figure 1. Analysis of samples distribution in the space of differentially 

expressed genes or differentially methylated CpG sites between control and severe CCC 
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(A) Scatterplot of the two first principal component of a PCA of 6 Control and 8 Case 

samples executed in the space of the 1409 differentially expressed genes between the two 

conditions. B) Scatterplot of the two first principal component of a PCA of 6 Control and 8 

Case samples executed in the space of the 16883 differentially metylated CpG sites between 

the two conditions. 

 

Supplementary figure 2. Age and sex impact on samples distribution in the space of 

differentially expressed genes or differentially methylated CpG sites between control and 

severe CCC 

(A) Scatterplot of the two first principal component of a PCA of 6 Control and 8 Case 

samples executed in the space of the 1409 differentially expressed genes between the two 

conditions colored by sex (blue: male, pink : female). (B) Scatterplot of the two first principal 

component of a PCA of 6 Control and 8 Case samples executed in the space of the 1409 

differentially expressed genes between the two conditions colored by age (from grey to blue). 

(C) Scatterplot of the two first principal component of a PCA of 6 Control and 8 Case samples 

executed in the space of the 16883 differentially metylated CpG sites between the two 

conditions colored by sex (blue: male, pink : female). (D) Scatterplot of the two first principal 

component of a PCA of 6 Control and 8 Case samples executed in the space of the 16883 

differentially metylated CpG sites between the two conditions colored by age (from grey to 

blue). 

 

Supplementary figure 3. Gene Ontology Biological Process affected in severe CCC and/or 

DCM 

Scatterplot of Gene Ontology Biological Process according to percent of severe CCC 

differentially expressed genes (DEG) and percent of total DEG (severe CCC + DCM) involved 
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in each GO term. The size of each dot is associated to the enrichment of each GO term (-

log10(FDR)) and its color to disease specificity (from green for DCM to red for severe CCC). 

 

Supplementary figure 4. ncRNA analysis in severe CCC and DCM 

Control samples identifiers are written in blue, severe CCC samples identifiers in red and DCM 

samples in green. (A) Hierarchical Clustering Analysis (HCA) performed on 6 control and 8 

severe CCC samples, based on expression of 179 differentially expressed ncRNAs. (B) 

Hierarchical Clustering Analysis (HCA) performed on 6 control and 8 DCM samples, based 

on expression of 327 differentially expressed ncRNAs. (C) Venn diagram of shared 

differentially expressed ncRNAs between severe CCC and DCM. 

 

Supplementary figure 5. Predicted regulatory interaction in cardiac muscular or nervous 

system process 

Network composed by 6 transcription factors (TF) involved in cardiac muscular and/or nervous 

system process, and their 68 targeted genes, predicted by OLOGRAM according to ReMap 

database. TF are written in blue in diamond, and genes in black in rectangle. Shapes borders 

are colored according to the fold change, from green to red. 

 

Supplementary figure 6. Estimation of cell proportion in control and severe CCC heart 

tissue 

Deconvolution of the RNA-seq bulk gene expressions of 6 control and 8 severe CCC samples 

to infer the proportion of cells in the samples. The * represent cell types whose proportion is 

significantly different (Wilcoxon test, FDR <0.05) between controls and cases. (A) 

Deconvolution using cell type signature with 22 immunological cell types (LM22 signature 

matrix). (B) Deconvolution using cell type signature with 5 left ventricle related cell types. 
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Supplementary figure 7. Analysis of samples clustering based on differentially 

methylated CpG sites in blood samples 

Asymptomatic samples identifiers are written in blue, moderate CCC in orange and severe 

CCC in red. (A) Hierarchical Clustering Analysis (HCA) performed on 48 asymptomatic and 

90 severe CCC samples, based on expression of 12624 differentially methylated position. (B) 

Hierarchical Clustering Analysis (HCA) performed on 47 moderate CCC and 43 severe CCC 

samples, based on methylation level of 6735 differentially methylated position. 

 

 

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.21267972doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.20.21267972


All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.21267972doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.20.21267972


All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.21267972doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.20.21267972


All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.21267972doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.20.21267972


All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.21267972doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.20.21267972


All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.21267972doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.20.21267972


All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.21267972doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.20.21267972


All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.21267972doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.20.21267972

