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Abstract  66 

Objective: To predict the presence of Angle Dysgenesis on Anterior Segment Optical 67 

Coherence Tomography (ADoA) using deep learning and to correlate ADoA with mutations 68 

in known glaucoma genes.  69 

Design: A cross-sectional observational study. 70 

Participants: Eight hundred, high definition anterior segment optical coherence tomography 71 

(ASOCT) B-scans were included, out of which 340 images (One scan per eye) were used to 72 

build the machine learning (ML) model and the rest were used for validation of ADoA.  Out 73 

of 340 images, 170 scans included PCG (n=27), JOAG (n=86) and POAG (n=57) eyes and 74 

the rest were controls. The genetic validation dataset consisted of another 393 images of 75 

patients with known mutations compared with 320 images of healthy controls 76 

Methods: ADoA was defined as the absence of Schlemm’s canal(SC), the presence of 77 

extensive hyper-reflectivity over the region of trabecular meshwork or a hyper-reflective 78 

membrane (HM) over the region of the trabecular meshwork. Deep learning was used to 79 

classify a given ASOCT image as either having angle dysgenesis or not. ADoA was then 80 

specifically looked for, on ASOCT images of patients with mutations in the known genes for 81 

glaucoma (MYOC, CYP1B1, FOXC1 and LTBP2). 82 

Main Outcome measures: Using Deep learning to identify ADoA in patients with known 83 

gene mutations. 84 

Results: Our three optimized deep learning models showed an accuracy > 95%, specificity 85 

>97% and sensitivity >96% in detecting angle dysgenesis on ASOCT in the internal test 86 

dataset. The area under receiver operating characteristic (AUROC) curve, based on the 87 

external validation cohort were 0.91 (95% CI, 0.88 to 0.95), 0.80 (95% CI, 0.75 to 0.86) and 88 

0.86 (95% CI, 0.80 to 0.91) for the three models. Amongst the patients with known gene 89 

mutations, ADoA was observed among all the patients with MYOC mutations, as it was also 90 

observed among those with CYP1B1, FOXC1 and with LTBP2 mutations compared to only 91 

5% of those healthy controls (with no glaucoma mutations). 92 

Conclusions: Three deep learning models were developed for a consensus-based outcome to 93 

objectively identify ADoA among glaucoma patients. All patients with MYOC mutations had 94 

ADoA as predicted by the models. 95 

96 
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Introduction 97 

Anterior segment Spectral domain–optical coherence tomography (SD-OCT) is being 98 

increasingly used in glaucoma patients, primarily to investigate the anterior chamber angle 99 

and visualize the trabecular meshwork (TM) and Schlemm’s canal (SC) in vivo.1-4 This in 100 

vivo imaging of anterior chamber angle with ASOCT has been used to detect gross features 101 

of angle dysgenesis in primary congenital glaucoma (PCG), juvenile onset open angle 102 

glaucoma (JOAG) and adult onset primary open angle glaucoma (POAG), which has been 103 

described either as an absence of SC and/or the presence of abnormal tissue or a hyper-104 

reflective membrane within angle recess.5-8 These studies have shown that angle dysgenesis 105 

on ASOCT (ADoA), can be observed even in eyes with gonioscopically normal appearing 106 

angles. Primary congenital glaucoma, JOAG and adult onset POAG form a spectrum in terms 107 

of severity of angle dysgenesis. While most of the PCG eyes have features of ADoA, the 108 

same are present only in 40% of JOAG eyes and in up to 35% of adult onset POAG.6,8 Since 109 

there exists a wide spectrum of anatomical variability of the drainage angle, the TM and SC 110 

morphology in normal eyes6-8 which can make it difficult to distinguish normal from 111 

abnormal, therefore, interpretation of ASOCT images requires expertise and a deep 112 

understanding of the complexity involved in the developmental anomalies of the outflow 113 

pathways. But the number of human experts to infer images and refer patients for specialised 114 

care is limited and does not match the extensive number of ASOCT imaging now being 115 

routinely done. 116 

 117 

Artificial intelligence (AI) has the potential to assist experts in disease diagnosis, progression 118 

and management by performing rapid image classification, which otherwise is a difficult or 119 

ambiguous scenario for human experts. Deep learning (DL), a subtype of AI, uses the 120 

concept of biological neural networks and has demonstrated convincing results in ophthalmic 121 

diseases.9-11 122 

 123 

While angle dysgenesis is associated with developmental immaturity of the outflow pathways 124 

regulated by genes, this could only be ascertained with the help of histopathological studies. 125 

Mutations in some of the commonly associated genes with glaucoma, namely CYP1B112, 126 

FOXC113, PITX214, and TEK15 have been shown to be associated with developmental 127 

abnormalities in the outflow pathways in experimental studies. The severity of angle 128 

dysgenesis has been correlated on histopathology with certain CYP1B1 gene mutations in 129 
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PCG patients.16 Though MYOC mutations are known to be associated with early onset 130 

glaucoma of PCG17-19 and JOAG20-24 no studies have shown the involvement of MYOC 131 

mutations in causing angle dysgenesis.Histopathological studies for angle dysgenesis in 132 

human glaucomatous eyes are difficult to perform and are inherently associated with tissue 133 

handling artefacts. While grossly identifiable features of ADoA have been described 134 

before,6,8 many subtle changes may also be present on ASOCT scans which are challenging 135 

to detect or precisely quantify by human observers. This study was undertaken to identify 136 

angle dysgenesis with the help of AI and use it to predict the presence and absence of ADoA 137 

among patients with known gene mutations. 138 

Material and methods 139 

Dataset details and study design 140 

The study adhered to the tenets of the declaration of Helsinki and was approved by the 141 

Institutional Ethics Committee. An informed consent to participate was taken from all cases 142 

and healthy subjects. A detailed history was recorded and all subjects underwent a thorough 143 

clinical examination. 144 

Inclusion criteria: 145 

Normal eyes: Healthy subjects (age > 10years), who had IOP in the normal range, 146 

gonioscopically normal open angle and no other ocular pathology on detailed ophthalmic 147 

evaluation. 148 

PCG: These were unrelated cases of PCG with enlarged corneal diameters (>12 mm) who 149 

had baseline IOP records of >22 mm Hg detected before 3 years of age and were now old 150 

enough (>10 years of age) to cooperate for anterior segment OCT scanning.  151 

JOAG: These were unrelated primary open angle glaucoma patients diagnosed between 10 152 

and 40 years of age.  153 

Adult-Onset POAG: These were unrelated cases of POAG diagnosed after the age of 40 years 154 

with untreated IOP >22 mm Hg in one or both the eyes on more than two occasions, open 155 

angle on gonioscopy in both eyes, and glaucomatous optic neuropathy in one or both eyes 156 

with visual field loss consistent with optic nerve damage.  157 

Only those patients who had been treated and had an IOP<22 mmHg at the time of imaging 158 

were included. 159 

Exclusion criteria:  160 

Patients excluded from the study: those with a history of steroid use, presence of any other 161 

retinal or neurologic pathology, evidence of secondary causes of raised IOP such as pigment 162 

dispersion, pseudoexfoliation, or trauma, those with any pathology detected on gonioscopy 163 
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such as angle recession, pigmentation of the angle greater than grade 3, irido trabecular 164 

contact or peripheral anterior synechiae, and patients with nystagmus/and or poor fixation 165 

were excluded.  166 

SD-OCT examination:  167 

The OCT examination was performed using the Spectralis OCT (software version 6.5; 168 

Heidelberg Engineering GmbH, Heidelberg, Germany). This machine uses an 880-nm 169 

wavelength and provides a resolution of 3.5 μm (digital) to 7 μm (optical) at 40 kHz. An 170 

anterior segment lens was used. Only those images that were considered good quality were 171 

included. ASOCT B-scans from nasal/temporal quadrant were selected per eye and these 172 

images were analyzed by 2 blinded observers for presence or absence of ADoA, which were 173 

then subsequently used for machine learning. A total of 800 ASOCT B-scans were included, 174 

out of which 340 images (1 B-scan per eye) were used to build the ML model and the rest 175 

were used for validation.  Out of 340 images, 170 scans included PCG (n=27), JOAG (n=86) 176 

and POAG (n=57) eyes and the rest were healthy controls. 177 

Data preprocessing  178 

Figure 1 summarizes the workflow used in the study. The images were encoded by removing 179 

patient details and giving unique reference numbers. Each image was cropped manually in 180 

two ways to extract the iridiocorneal angle (ICA) area and a trabecular meshwork (TM) area 181 

by a single observer. For this study, the ICA area was defined as 1100 x 900 pixels ± 10% 182 

(1210 x 990µm) rectangular area including the region covering TM, SC, a part of cornea in 183 

continuation with a part of sclera and iris. The images were further cropped to get a TM area 184 

defined as 600 x 400 pixels ± 10% (660 x 440 µm), including SC, scleral spur, and TM 185 

region (Figure 2).  186 

Model training and evaluation 187 

Augmentation technique and the technology used are provided in Supplemental information 1  188 

The two datasets (ICA area and TM area images), each having 8160 images, were randomly 189 

split into training (n=7996) and testing (n=164) subsets with a ratio of 98:2 (Supplemental 190 

Fig 1). The applied split ratio was considered so that the maximum number of images could 191 

be used for model training. The test set was used only for the final evaluation of the model 192 

performance and none of the images in the test set were used for training. 193 

We applied the transfer learning method to classify a given SD-OCT image as either having a 194 

normal angle or angle dysgenesis. In MATLAB all the available 19 pre-trained convolutional 195 

neural network (CNN) models including SqueezeNet, ResNet-18, GoogleNet, ResNet-50, 196 

DarkNet-53, DarkNet-19, ShuffleNet, NasnetMobile, Nasnet Large, Xception, Place-365-197 
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Google, Mobilenet V2, DenseNet-201, Inception-Resnet V2, Inception-V3, ResNet-101, 198 

VGG-19, VGG-16 and AlexNet were trained using our datasets. The first input layer and last 199 

output layer with the soft-max activation function in the models were replaced for the binary 200 

classification between angle dysgenesis and normal angle. All the images were resized to the 201 

required pixels depending upon the CNN model being trained. Initially, all the models were 202 

trained using the default parameters and the most efficient ones were prioritised. The 203 

hyperparameters of the prioritised models were further tuned in a stochastic gradient descent 204 

manner (SGDM) based on minimization of mean squared error with the combinations of 205 

different batch sizes, epochs, learning rates, momentum and drop factor. 206 

To get the robust models, different groupings of 23 augmented images were also evaluated 207 

along with models with single augmented images and models with all combined augmented 208 

images. Finally, 74 models were developed using varied hyper-parameters and augmented 209 

images combinations. Prediction quality was assessed by overall accuracy, specificity, 210 

sensitivity, area under the ROC curve and comparison with the image annotations of the two 211 

experts.  212 

Genetic correlation with ADoA: Thirty unrelated patients with open angle glaucoma 213 

diagnosed between 10 to 40 years of age, who had undergone Whole Exome Sequencing 214 

(WES) followed by a bioinformatics analysis ( provided in Supplemental information)  and 215 

had been found to harbour a mutation (that was pathogenic) in a known glaucoma gene, 216 

underwent ASOCT. The DL models were applied to detect ADoA.  217 

Validation of DL predictions  218 

Validations of the final DL models were performed using the following types of independent 219 

datasets (Supplemental Fig 1). a) An independent external validation dataset of 67 images, 220 

b) A comparative validation between the model prediction and human experts where two 221 

glaucoma specialists (with more than 20 years’ experience) masked to details of the patients, 222 

evaluated the SD-OCT scans (n=73) and their results compared with the final model 223 

prediction and c) A genetics validation dataset consisted of 393 images of patients with 224 

known mutations  and 320 images of healthy controls without any glaucoma gene mutation. 225 

This was a blind check validation where the results of the molecular analysis were blinded 226 

from the AI experts.  227 

Statistical analysis 228 

To compare the outcomes from the validation studies, statistical analyses were performed 229 

using a statistical software package (SPSS v. 26.0; SPSS, Inc., Chicago, IL, USA). To 230 

determine the agreement between the specialists and DL prediction, Cohen’s κ test was 231 
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applied. The Receiver Operating Characteristic (ROC) analysis was performed for the 232 

external validation dataset and area under ROC (AUROC) curve was determined for 233 

comparisons.  234 

  235 
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Results 236 

Table1 shows the clinical and demographic characteristics of the study subjects. 237 

Using transfer learning on two approaches as mentioned below, we built a consensus-based 238 

algorithm consisting of the three best models for differentiating angle dysgenesis from the 239 

normal angle. The performance measures of these models are given in Supplemental 240 

Table1.  241 

The first approach uses the iridocorneal angle area dataset to train all the 19 CNN models 242 

(Figure 1). The most efficient model was built using Inception-ResnetV2, a 164 layers deep 243 

convolutional neural network previously trained on more than a million images.25  All the 244 

images were rescaled to 299x299 pixels as the input image pre-requisite of Inception-245 

ResnetV2 and finally utilizes SGDM optimiser with a learning rate of 0.005, 45 epochs, and 246 

mini-batch size of 64 after hyper parameters optimisation (Supplemental Table1). The 247 

model achieved the accuracy, sensitivity and specificity on the internal test dataset of 97.56%, 248 

96.4% and 98.7%, respectively.  249 

The second approach uses the TM area and the two best models were trained using Inception-250 

ResnetV225 and Mobilenetv226 neural networks. The mobilenetv2 is a convolutional neural 251 

network that requires an input image of 229x229 pixels. Using the TM area test images, the 252 

models achieved an accuracy of 98.17% and 98.78%, with a sensitivity of 97% and 98.7%, a 253 

specificity of 98.7% in each of the cases, respectively (Supplemental Table1). The 254 

consensus based outcome from the three CNN transfer learning models is the final predicted 255 

classification which could recognise pixel patterns corresponding to the abnormalities at the 256 

angle, helping in better classification among the glaucoma group and controls. 257 

External Validation dataset 258 

To further evaluate the accuracy and reproducibility of our models, we tested them on an 259 

independent external validation dataset consisting of 67 images. The models trained with the 260 

combined augmented and the original images exhibited lower accuracy than those trained on 261 

original images alone. So we did not proceed with the augmented images and all the 262 

validation studies were carried using original images only. Model 1 had the best accuracy and 263 

specificity but the lowest sensitivity, while the other two models showed good sensitivity and 264 

comparable accuracies (Supplemental Table1). The consensus-based outcome ensures 265 

inclusiveness of the mandatory training features after trade-off and reaching one outcome. 266 

The area under the ROC curves were >0.80 for all the three models indicating good 267 

performances of the models in detecting ADoA (Figure 3). 268 

  269 
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Comparison of the Models performance with Human Experts  270 

The comparative prediction analysis is summarised in Table 2. The consensus-based result 271 

achieved a maximum accuracy of 83%, reiterating the importance of consensus-based 272 

decision-making in clinical settings. To determine the agreement between the expert’s 273 

decision and consensus-based prediction, Cohen’s Kappa test was carried out between 274 

expert1-model prediction, expert2-model prediction and expert1-expert2 prediction. There 275 

was a good agreement between the expert1-model prediction (κ = .619, p<0.05), which is 276 

indicative of a similarity between the well experienced expert’s decision and consensus-based 277 

model prediction (Table 3). 278 

Genetic validation dataset 279 

Out of 30 (unrelated) patients, who had known gene mutations, 16 had MYOC mutations, 10 280 

had CYP1B1, 2 had FOXC1 and 2 had LTBP2 mutation. The detailed genotype of these 281 

patients is provided in Table 4. These 30 patients had 16 different mutations, all except three 282 

(that were frameshift) were missense. All mutations except one in CYP1B1 gene 283 

(p.Arg368His) were heterozygous.  284 

Among these patients, angle dysgenesis on ASOCT was observed as determined by AI, 285 

among all patients with known gene mutations. Maximum number of scans showing ADoA 286 

were observed with MYOC p.Pro370Leuc and p.Gln48His, with CYP1B1 p.Asn519ser and 287 

p.Arg368His and with LTBP2 frameshift (p.Val801Hisfs*18) and p.Pro229Thr mutation.  288 

Gonioscopically angle dysgenesis was not seen among any of the MYOC patients. However, 289 

features of angle dysgenesis were seen both on gonioscopy and on ASOCT among those with 290 

CYP1B1, FOXC1 and LTBP2 mutation. 291 

Overall, AI was predictive of angle dysgenesis in 81% scans among MYOC positive patients, 292 

89% CYP1B1 patients, 85% FOXC1 and 96% among those with LTBP2 mutation on an 293 

average. 294 

Figure 4 shows images of patients with known gene mutations predicted to have angle 295 

dysgenesis on AI Modelling. While CYP1B1 and LTBP2 were seen to primarily affect SC 296 

morphology, the MYOC and FOXC1 mutations were found to be associated with 297 

morphological variations in the TM, since the SC was visualised on most scans. The age of 298 

onset of glaucoma did not correlate with the extent of angle dysgenesis. 299 

 300 

 301 

 302 

 303 
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 304 

Discussion 305 

This study used deep learning to build models that identify ADoA among open-angle 306 

glaucoma patients. We hypothesised that the angle dysgenesis, exhibited as disturbances in 307 

the extracellular matrix of TM, SC and adjoining regions in open angle glaucoma patients, 308 

could be reflected as pixel changes (as they occur on histopathological sections) and the DL 309 

based models can identify these pixel variations classifying the iridocorneal angle as having 310 

dysgenesis or not, based on SD-OCT scans. In the present study, SD-OCT scans of normal, 311 

PCG, JOAG and POAG eyes were used to develop a robust deep learning based model by 312 

using an image-to-classification approach. In a subset of these patients, ADoA was correlated 313 

with known gene mutations. 314 

High definition ASOCT can pick up anomalies in SC development and TM morphology, 315 

which are not visible on enface gonioscopy. Gonioscopy and goniophotography also require 316 

much expertise and remain observer-dependent. Also sometimes what appears to be a normal 317 

open angle may be harbouring dysgenesis in the form of an impermeable hyper reflective 318 

membrane that may be visible only on an ASOCT.8 While ASOCT  has been used for 319 

identifying angle closure, it would be of use even in patients with POAG in identifying 320 

ADoA, and thus to decide the role of angle based surgeries.8 321 

In the present study, three deep learning based models were developed for a consensus based 322 

outcome to predict the presence of ADoA among open angle glaucoma patients. Out of all the 323 

19 transfer learning algorithms used in model building, inception resnetv2 and mobilenetv2 324 

achieved superior performances on the ICA area and TM. Whether an eye has angle 325 

dysgenesis or not was predicted with greater than 95% accuracy in the internal dataset and 326 

more than 80% accuracy in the two different external validation datasets used in the present 327 

study.  328 

Considering the phenotypic, genotypic and histopathological complexity in open angle 329 

glaucoma, DL has been implemented using different approaches.27-30,30,31 Studies have 330 

evaluated the potential of implementing DL in primary angle closure disease and have shown 331 

promising results.32,33  While the SD-OCT scans can successfully capture the anterior angle at 332 

high resolution, they may fail to identify angle dysgenesis in cases where altered extracellular 333 

matrix anomalies are subtle enough to get unnoticed by human eyes. While identifying gross 334 

dysgenesis of the angle, as in PCG may be easier34, subtle angle anomalies as in JOAG or 335 

POAG are more challenging to identify. The biological changes in the extracellular matrix 336 

(ECM) comprising of the trabecular drainage pathways that lead to IOP elevation need to be 337 
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identified in vivo.35,36 With the DL models used in the present study, we could pick up these 338 

subtle ECM changes in the TM along with abnormalities in the SC morphology. 339 

Deep learning requires an enormous number of annotated training data, which is challenging 340 

to obtain in rare disorders37, however, transfer learning and augmentation techniques are 341 

effective strategies to be used in cases with limited dataset.38 Transfer learning is a special 342 

case in which a CNN based DL model trained on one type of dataset or domain is re-343 

purposed on another dataset. Transfer Learning demonstrates compelling results, particularly 344 

in cases where the data available for building the models is limited.11, 38 In the present study, 345 

19 types of different CNN algorithms were trained, with each image in the training dataset 346 

augmented in 23 different ways. This increased the numbers of images in the training dataset 347 

and assured that the model was trained on various images, making it more robust and reliable 348 

to be used in clinical settings. The robustness was also evident because the prediction for 349 

external dataset images displayed better results in their original form than with 350 

augmentations. This indicates that in natural settings, apart from pixel changes, no query 351 

image augmentation is required.  352 

We looked for any pattern between the DL predictions of ADoA and specific gene mutations. 353 

In all the mutation positive patients, ADoA could be detected in over 80% of images. This 354 

was in contrast to only 5% of the normal images deemed as having ADoA. Most gene 355 

mutation studies on animal models of glaucoma have provided insights into the pathogenesis 356 

of outflow channels in controlled experiments, on the other hand, in-vivo analyses of human 357 

eyes with rare disease-causing mutations provides a better understanding of the anatomical 358 

effects of these mutations. While the mutations in the MYOC gene are known to cause 359 

aggregation of the misfolded myocilin protein that, leads to TM cell toxicity and eventually 360 

death, there is no evidence in literature to suggest the role of the MYOC gene in the 361 

development of the angle. There is only one histopathological report of a JOAG patient with 362 

MYOC Tyr453His mutation, where no apparent changes of the TM or SC were noted though 363 

intense MYOC immune-reactivity was observed at the TM 39. Nevertheless, there is evidence 364 

to suggest that MYOC mutations are associated with goniodysgenesis. Cheng X40 et al. 365 

reported a 3 generation JOAG family with Pro370Leu mutation in the MYOC gene in all 366 

affected members who also had goniodysgenesis. This evidence is further strengthened by the 367 

reports of the association of MYOC gene mutations with congenital glaucoma.17-19 In 368 

contrast,CYP1B1 related cases of PCG have been shown to have histopathological evidence 369 

of goniodysgenesis, involving not only the TM and SC but also the collector channels.41 In 370 

our study too, the subset of JOAG patients with CYP1B1 gene mutations showed ADoA as 371 
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predicted with DL models. We also found FOXC1 and LTBP2 mutations among our patients 372 

with no other features of either Axenfeld Reiger Syndrome (ARS) or zonular abnormalities 373 

classically associated with these gene mutations. Two cases of JOAG with LTBP2 mutations 374 

have been described42,43, one by Saeedi et al. and the other, by our group. The LTBP2 gene 375 

mutations are known to express a wide variety of ocular phenotypes (as with other 376 

monogenic disorders) ranging from primary trabecular meshwork dysgenesis to a Marfans 377 

like zonular disease. While FOXC1 mutations have been commonly associated with ARS, 378 

they are also known to occur in adult onset POAG and JOAG.44 In our study, 2 unrelated 379 

patients harboured the same FOXC1 frameshift mutation which is novel. Our findings 380 

demonstrate that probably different gene mutations affect different parts of the proximal 381 

outflow pathways. While CYP1B1 and LTBP2 was found to affect primarily the SC 382 

morphology, the MYOC and FOXC1 were found to be associated with morphological 383 

variations in the TM, since the SC in the latter was normally developed. 384 

The present study's limitation is the fewer images in the training dataset (n=340) used for DL 385 

model building. However, we enhanced the input data by using augmentation techniques. 386 

Another limitation of the limited data set was our inability to correlate the gene mutations 387 

with the clinical severity of the disease, which was not within the ambit of our research since 388 

our study was focussed on evaluating the association gene mutations with DL predicted angle 389 

dysgenesis. Many images on ASOCT have to be discarded due to poor quality and image 390 

artefacts at the ICA area due to the reflectance from the superficial vessels. This would be 391 

taken care of, hopefully, in the newer generation machines, which would have better 392 

resolution too. Notwithstanding these limitations, the strength of the study lies in having 393 

addressed a crucial as well as unique issue of in vivo identification of angle dysgenesis using 394 

a very rare dataset of early onset POAG patients. 395 

In conclusion, we have built a consensus based DL model to predict the presence or absence 396 

of ADoA. The validation on independent datasets and its correlation with the known gene 397 

mutations has highlighted the translational relevance of the model in clinical settings, as it 398 

could potentially be deployed in screening patients and their family members who could be 399 

picked up if they have angle dysgenesis. 400 

 401 

 402 

 403 

 404 

 405 
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 541 

 542 

Legends: 543 

Fig 1: Work flow used in deep learning of anterior segment SD OCT images.  544 

Fig 2: Anterior segment SD OCT image showing the iridocorneal angle area (green 545 

rectangle) and the trabecular meshwork area (yellow rectangle). 546 

Fig 3: Receiver operating characteristic (ROC) curves for the three Deep Learning models 547 

using external validation dataset.  *AUROC= Area under ROC curve, TM =Trabecular 548 

meshwork, ICA = Iridocorneal angle 549 

Fig 4: Anterior segment SD OCT images of patients with a)MYOC p.Gly367Arg showing 550 

intense hyper reflectivity at the TM, b) MYOC p.Gln48His showing intense hyper reflectivity 551 

at the TM with absent SC, c) CYP1B1 p.Asn519ser showing intense hyper reflectivity at the 552 

TM with absent SC, d) CYP1B1 p.Tyr81Asn showing absent SC, e) FOXC1 553 

p.Gly418Alafs*27 showing intense hyper reflectivity at the TM( White arrow) with presence 554 

of SC ( Black arrows), f) LTBP2 p.Pro229Thr showing intense hyper reflectivity at the TM 555 

with absent SC. 556 

Supplementary Fig 1: Flow chart of the analysis of anterior segment SD-OCT image 557 

  558 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 22, 2021. ; https://doi.org/10.1101/2021.12.18.21267894doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.18.21267894


19 

 

 559 

Table1: Demographic and clinical details of subjects whose ASOCT B-scans (1 B-scan 560 

image per eye, n = 340) were used for machine learning model preparation. 561 

 562 

 563 

 564 

 565 

ASOCT – Anterior Segment Optical Coherence tomography, IOP – Intraocular pressure 566 

  567 

Characteristics PCG  
 

JOAG  
 

POAG  
 

Normal 
(Control) 

 
Number of subjects 16 62 37 85 
Number of eyes 27 86 57 170 
Laterality 

• Bilateral 
• Unilateral 

 
11 
5 

 
24 
38 

 
20 
17 

 
85 
0 

Gender 
• Male 
• Female 

 
5 (31.25%) 
11 (68.75%) 

 
44 (71%) 
18 (29%) 

 
25 (67.5%) 
12 (32.5%) 

 
45 (53%) 
40 (47%) 

IOP mmHg at the time of 
study (Mean ± SD) 

14.2 ± 1.4  13.8 ± 1.2 15.1 ± 1.3 16.2 ± 0.8 
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Table 2: Comparison between the model prediction and expert’s decision  568 

 569 

 570 

 571 

 
 

M1 M2 M3 Final consensus-based 
prediction 

Expert1 80.82% 79.45% 80.82% 83.56% 
Expert2 67.12% 79.45% 78% 72.6% 

 572 

  573 
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 574 

Table 3: Showing Cohen’s κ test results determining the agreement between the experts 575 

and model prediction (p < 0.05 was considered significant) 576 

 577 

 

 Value Asymptomatic 
standard errora 

Approximate 
significance 

Expert1/Consensus-based prediction 
Measurement of 
agreement Kappa 

0.619 0.099 0.00 

Number of valid cases 73  

Expert2/Consensus-based prediction 
Measurement of 
agreement Kappa 

0.230 0.117 0.027 

Number of valid cases 73  

Expert1/Expert2 
Measurement of 
agreement Kappa 

0.417 0.109  

Number of valid cases 73 0.000 
 578 

a. Not assuming the null hypothesis. 579 

 580 
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Table 4 : Genetic mutations among 30 patients and angle dysgenesis  on ASOCT as 582 

determined by AI consensus. 583 

MAF=584 

Minor 585 

Allele 586 

Freque587 

ncy, 588 

ASOC589 

T=Ant590 

erior 591 

segmen592 

t 593 

Optical 594 

cohere595 

nce 596 

tomogr597 

aphy, 598 

AI= 599 

Artifici600 

al 601 

intellig602 

ence  603 

 604 

 605 

 606 

 607 

 608 

 609 

 610 

 611 

 612 

 613 

 614 

Autho615 

r 616 

contri617 

bution618 

s: 619 

VG, DG, SB conceptualized the study, analyzed and prepared the manuscript. SB developed 620 

the deep learning models. VG and BIS conducted the genetic studies and bio informatics. 621 

VG, SG, AS, KM and TV conducted patient recruitment and clinical studies. DG and MG 622 

reviewed and modified the final version. 623 

 624 

 625 

Gene( number of 
patients) 

Mutation South 

Asian 

MAF 

Percentage scans with 

angle dysgenesis 

predicted by AI 

MYOC(1) p.Pro481Thr NA 88 

MYOC(2) p.Lys423Gln NA 90 

MYOC(2) p.Thr377Lys NA 68 

MYOC(3) p.Pro370Leuc 0 95 

MYOC(4) p.Gly367Arg 0 60 

MYOC(3) p.Gln337Arg 0 70 

MYOC(1) p.Gln48His 0.009 95 

CYP1B1(1) p.Asn519ser 0 100 

CYP1B1(3) p.Arg368His 0.01 95 

CYP1B1(1) Frameshift(p.Pro321Serf*104) NA 90 

CYP1B1(3) p.Glu229Lys 0.04 80 

CYP1B1(1) p.Pro193leu 0.01 75 

CYP1B1(1) p.Tyr81Asn 0 94 

FOXC1(2) Frameshift( p.Gly418Alafs*27) NA 80 

LTBP2(1) Frameshift(p.Val801Hisfs*18) NA 100 

LTBP2(1) p.Pro229Thr 0 100 
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