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Abstract The recent wave of biobank repositories linking individual-level genetic data with dense clinical 11 

health history has introduced a dramatic paradigm shift in phenotyping for human genetic studies. The 12 

mechanism by which biobanks recruit participants can vary dramatically according to factors such as 13 

geographic catchment and sampling strategy. These enrollment differences leave an imprint on the 14 

cohort, defining the demographics and the utility of the biobank for research purposes. Here we 15 

introduce the Michigan Genomics Initiative (MGI), a rolling enrollment, single health system biobank 16 

currently consisting of >85,000 participants recruited primarily through surgical encounters at Michigan 17 

Medicine.  A strong ascertainment effect is introduced by focusing recruitment on individuals in 18 

Southeast Michigan undergoing surgery. MGI participants are, on average, less healthy than the general 19 

population, which produces a biobank enriched for case counts of many disease outcomes, making it 20 

well suited for a disease genetics cohort. A comparison to the much larger UK Biobank, which uses 21 

population representative sampling, reveals that MGI has higher prevalence for nearly all diagnosis-22 

code-based phenotypes, and larger absolute numbers of cases for many phenotypes.  GWAS of these 23 

phenotypes replicate many known findings, validating the genetic and clinical data and their proper 24 

linkage. Our results illustrate that single health-system biobanks that recruit participants through 25 

opportunistic sampling, such as surgical encounters, produce distinct patient profiles that provide an 26 

ideal resource for exploring the genetics of complex diseases. 27 

 28 
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Introduction 30 

Genome-Wide Association Studies (GWAS) have identified thousands of genetic variants associated with 31 

a wide range of human phenotypes (Buniello et al., 2019) . Traditionally, GWAS have been designed with 32 

one or a few related traits in mind, where participants are specifically recruited on the basis of those 33 

traits. This design strategy optimizes power for those particular traits but has limited reuse potential for 34 

studying additional outcomes.  35 

The recent wave of biobank repositories linking individual-level genetic data with dense clinical health 36 

history has introduced a dramatic paradigm shift in phenotyping for genetic studies (Beesley et al., 37 

2020). Such biobanks allow broad phenotyping based on patient Electronic Health Records (EHRs) across 38 

a common set of genotyped samples, allowing investigation of a wide range of clinically important traits 39 

within the same cohort. Rather than being optimized for a single trait, the EHR-linked biobank design 40 

creates a resource for repeated use across diverse traits and study questions. The rich clinical data 41 

provide the ability to fine-tune inclusion criteria and phenotype definitions on a per-study basis using 42 

combinations of diagnoses, clinical lab results, medication usage, imaging results, and more. Thus, the 43 

same biobank cohort can yield GWAS for thousands of traits, with each GWAS being cost and time 44 

effective since participant recruitment, consent, and genotyping are completed in advance and 45 

phenotyping is performed on existing clinical data. In addition, biobanks have spawned novel analytic 46 

methods that leverage the unique feature of having the entire phenome measured on the same set of 47 

samples. For example, the Phenome-Wide Association Study, or PheWAS, tests individual genetic 48 

variants for associations across the phenome allowing investigation of comorbid outcomes and 49 

pleiotropic genetic effects, again without the need for additional participant recruitment or data 50 

collection (Denny et al., 2010).  51 

Although biobanks share a common theme of linked clinical and biological data, they are otherwise 52 

remarkably heterogeneous across health systems. Differences in population demographics, recruitment 53 

strategy and criteria, consent procedures, and data sharing introduce distinct benefits and drawbacks. 54 

Large nationwide biobanks such as UK Biobank (UKB) (Bycroft et al., 2017), BioBank Japan (Nagai et al., 55 

2017), and All of Us (Denny et al., 2019) aim to capture a diverse set of individuals across their 56 

respective nations using broad geographical recruitment strategies. This population-based recruitment 57 

is effective at generating very large sample sizes, with UKB notably containing >500K participants and All 58 

of Us aiming for >1 million participants. To achieve these massive sizes, participants are recruited from 59 
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across multiple sites and/or health systems and can require substantial effort to merge and harmonize 60 

the heterogeneous sources of clinical data. 61 

An alternative biobank design is localized recruitment within a single site or healthcare system. In this 62 

paper we describe the Michigan Genomics Initiative (MGI), a single-healthcare system biobank recruited 63 

from patients receiving care at Michigan Medicine, the University of Michigan health system. MGI 64 

recruitment began in 2012 with the driving scientific goal of creating a resource to accelerate biomedical 65 

and precision health research at the University of Michigan. Recruitment has primarily occurred through 66 

the Department of Anesthesiology during inpatient surgical procedures at Michigan Medicine. The 67 

preoperative encounter provides a convenient opportunity to obtain patient consent, complete 68 

questionnaires, and collect a blood sample. MGI participants consent to linkage of their blood sample, 69 

which is subsequently stored in the University of Michigan Central Biorepository, to their existing and 70 

future clinical data, including their Michigan Medicine EHR. The consent form, which covers broad 71 

research purposes and re-contact potential, is intentionally brief and accompanied by an easy-to-read 72 

pamphlet describing the risks and benefits in terms and pictorial descriptions accessible to a public 73 

audience to maximize participant understanding of the project (Supplementary Material). Participants 74 

complete a baseline questionnaire capturing socio-demographic, pain, and lifestyle information often 75 

not captured in traditional EHR data.  76 

To date, >85K Michigan Medicine patients have enrolled in MGI. Recruitment is ongoing recruitment 77 

and has expanded to include additional studies that complement preoperative enrollment and target 78 

other patient populations, thereby broadening the demographic and clinical profile of the cohort. 79 

Already, MGI has yielded numerous research contributions including the discovery of novel variants for 80 

clinical laboratory traits (Goldstein et al., 2020), PheWAS-based identification of polygenic risk score-81 

trait associations (Fritsche et al., 2018), pharmacogenetic analysis of chemotherapeutic toxicity (Shakeel 82 

et al., 2021), and the integration of MGI participants as “external” controls within GWAS (Y. Li & Lee, 83 

2021).  The large cohort size in conjunction with the collection of rich clinical phenotypes have also 84 

allowed for non-genetic studies, such as evaluating the phenotypic characteristics among participants in 85 

relationship to preoperative opioid use (Hilliard et al., 2018).  86 

As a single-health system biobank, MGI is smaller than most national biobanks and reflects the 87 

demographics of a tertiary health system in Ann Arbor, Michigan rather than the demography of the 88 

broader US.  Moreover, the opt-in recruitment through preoperative encounters produces a non-89 

random sampling of the overall Michigan Medicine health system population (Spector-Bagdady et al., 90 
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2021). Although these ascertainment effects distort population measures such as disease prevalence, it 91 

introduces distinct advantages as a genetic research resource. Specifically, we show that MGI is enriched 92 

for nearly all disease outcomes, even containing larger case counts than UKB for some diseases. This 93 

case enrichment mirrors non-random sampling techniques routinely used in GWAS, for example case-94 

control and extreme phenotype designs, that are specifically designed to increase statistical power. 95 

Thus, MGI compares favorably as a genetic analysis resource to much larger biobanks, despite being of 96 

substantially smaller overall sample size.  97 

We provide a description of the MGI cohort, detail our rigorous quality control procedures, and describe 98 

GWAS results for 1,547 phenotypes based on diagnosis codes (Figure 1). Our GWAS analysis yielded 99 

1,901 genome-wide significant associations across a wide range of traits. Our strongest associations 100 

replicate known genotype-phenotype associations, validating genetic and clinical data quality. Our 101 

results highlight the important role that single-health system biobanks provide to genetic research, at 102 

both the local institution and by broader collaborative efforts such as the Global Biobank Meta-Analysis 103 

Consortium and a wide range of specific-trait-focused GWAS meta-analysis consortia.   104 

Methods  105 

MGI Recruitment and Consent  106 

The Michigan Genomics Initiative (MGI) participants consent to research use of their biospecimens and 107 

EHR data, callback for future studies, and linking of their EHR data to national data sources such as 108 

medical and pharmaceutical claims data. As of October 15, 2021, 87,623 participants have enrolled in 109 

the study. Participants are primarily recruited through the MGI - Anesthesiology Collection Effort (n = 110 

71,168) while awaiting a diagnostic or interventional procedure either at a preoperative appointment or 111 

on the day of their operative procedure at Michigan Medicine. Additional participants are recruited 112 

through the Michigan Predictive Activity and Clinical Trajectories (MIPACT) Study (n = 7,616), the 113 

Michigan Genomics Initiative-Metabolism, Endocrinology, and Diabetes (MGI-MEND) Study (n = 4,108), 114 

the Mental Health BioBank (MHB2; n = 2,360), the Biobank to Illuminate the Genomic Basis of Pediatric 115 

Disease (BIGBiRD; n = 226). The primary Anesthesiology Collection Effort collects blood samples, but the 116 

secondary studies collect either blood or saliva. 117 

We collect various self-reported demographic data provided by participants as part of routine 118 

appointment questionnaires for the health system. Participant age is computed based on self-reported 119 

date of birth and defined as age as of April 2020 or age at death if the participant is deceased. Self-120 
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reported race is based on a multiple-choice question with options: Caucasian, African American, Asian, 121 

American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, and Other/Unknown. Self-122 

reported ethnicity is based on a multiple-choice question with options: Hispanic or Latino, Not Hispanic 123 

or Latino, and Unknown. Data are collected according to the Declaration of Helsinki principles (World 124 

Medical Association, 2013). MGI study participants’ consent forms and protocols were reviewed and 125 

approved by the University of Michigan Medical School Institutional Review Board (IRB IDs 126 

HUM00071298, HUM00148297, HUM00099197, HUM00097962, and HUM00106315). Opt-in written 127 

informed consent for broad research purposes and re-contact potential was obtained. The consent form 128 

is intentionally brief and accompanied by an easy-to-read pamphlet describing the risks and benefits in 129 

terms and pictorial descriptions catered to a general public audience in order to maximize participant 130 

understanding of the project (Supplementary Material). Additional details about MGI can be found at 131 

(https://precisionhealth.umich.edu/our-research/michigangenomics/). 132 

Genetic Data 133 

DNA samples were genotyped by the University of Michigan Advanced Genomics Core on one of two 134 

customized versions of the Illumina Infinium CoreExome-24 bead array platform. These array versions 135 

have nearly identical 570K marker backbones synthesized in two batches. The array design contains 136 

customized probes incorporated to detect candidate variants from GWAS for multiple diseases and 137 

traits (~2,700), nonsense and missense variants (~49,000), ancestry informative markers (~3,300), and 138 

Neanderthal variants (~5,300) (Surakka et al., 2020).  139 

 140 

We perform sample-level quality control (QC) on a rolling basis, typically in batches of ~576 samples 141 

corresponding to six 96 well plates. We estimate pairwise relatedness using KING (v2.1.3) (Manichaikul 142 

et al., 2010), and cross-sample contamination using VICES (Zajac et al., 2019). We use PLINK (v1.9) to 143 

determine sample level call-rates (Purcell et al., 2007).  We exclude individual samples for any of the 144 

following : (1) the participant withdraws from the study, (2) genotype-inferred sex does not match the 145 

self-reported gender or self-reported gender was missing, (3) sample has an atypical sex chromosomal 146 

aberration, (4) kinship coefficient > 0.45 with another participant with a different study ID, (5) sample-147 

level call-rate <99%, (6) sample is a technical duplicate or twin of another sample with a higher call-rate 148 

either within the same array or across arrays, (7) estimated contamination level exceeds 2.5%, (8) 149 

missingness on any chromosome exceeds 5%, or (9) sample is processed in a DNA extraction batch that 150 

is flagged for severe technical problems.  151 

 152 
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We merge samples across genotyping batches and apply SNP-level QC procedures. We exclude SNPs 153 

with poor intensity separation based on metrics from the GenomeStudio Genotyping Module (GenTrain 154 

score < 0.15 or Cluster Separation score < 0.3). We further drop SNPs with overall call-rate < 99% or 155 

Hardy Weinberg p < 10-4 within each array. To identify potential batch effects between arrays, we test 156 

for differences in allele frequency between array versions among unrelated participants of PCA-inferred 157 

European ancestry (see below) using the Fisher’s Exact Test and exclude variants with p-value < 10-3, 158 

then merging genotype data from the two arrays. 159 

 160 

We estimate the genetic ancestry of participants passing QC using principal component analysis (PCA) 161 

and admixture analysis using SNP data for 938 unrelated individuals of known worldwide ancestry from 162 

the Human Genome Diversity Panel (HGDP) as ancestry reference samples (J. Z. Li et al., 2008; Wang et 163 

al., 2014). We define continental labels for the individual populations based on mappings available from 164 

the Center for the Study of Human Polymorphism’s website (https://cephb.fr/en/hgdp_panel.php). We 165 

first calculate a reference space of worldwide principal components (PCs) for the HGDP samples using 166 

PLINK.  We then project MGI samples into this space and broadly infer the genetic ancestry of MGI 167 

samples based on their proximity to the known HGDP continental labels. We define MGI participants to 168 

be of European ancestry if their first two PCs are contained within a circle defined by a radius 1/8 the 169 

distance between the centroid formed by European HGDP samples and the centroid formed between 170 

European, East Asian, and African HGDP samples in the PC1 vs. PC2 space (Fritsche et al., 2018). We also 171 

estimate the fraction of each MGI participant’s genome that originates from European, African, East 172 

Asian, Central/South Asian, West Asian, Native American, or Oceanian ancestral HGDP continental 173 

populations using ADMIXTURE (v1.3.0) (Alexander et al., 2009).  We merge genotypes of MGI 174 

participants with the HGDP reference individuals to run ADMIXTURE in supervised mode using the total 175 

number of HGDP continental population labels (K=7) as a template. We define the ADMIXTURE-based 176 

majority global ancestry for each MGI participant as the largest Q value (ancestry fraction) reported by 177 

ADMIXTURE (Supplementary Figure 2). 178 

 179 

We phase the full set of merged genotype samples using EAGLE (v2.4.1) (Loh et al., 2016) without the 180 

use of a reference panel (“within-cohort” phasing). We then impute samples with both the Haplotype 181 

Reference Consortium (HRC) reference panel (64,940 predominantly European haplotypes containing 182 

40,457,219 genetic variants) (McCarthy et al., 2016) and the Trans-Omics for Precision Medicine 183 

(TOPMed) reference panel (194,512 ancestrally diverse haplotypes containing 308,107,085 genetic 184 
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variants) (Taliun et al., 2021). We measure imputation quality using the estimate of imputation accuracy 185 

(Rsq) and the squared correlation between imputed and true genotypes (EmpRsq) metrics produced by 186 

the imputation software Minimac4 (v1.0.0) (Howie et al., 2012).  187 

 188 

Clinical Phenotype Data 189 

We extract all available ICD 9 and 10 diagnosis codes for MGI participants from the Michigan Medicine 190 

EHR. These codes are mapped to binary phecode phenotypes based on ICD inclusion and exclusion 191 

criteria using the PheWAS R package v0.99.5.-5 (Carroll et al., 2014). We use the default PheWAS 192 

package requirements for case and control definitions: cases require two instances of an inclusion ICD 193 

code and controls have neither inclusion nor exclusion ICD codes. We also account for sex-specific 194 

phenotypes using the restrictPhecodesByGender() function and the genotype-inferred sex. 195 

Genetic Analysis 196 

We performed GWAS in MGI samples of genetically inferred European ancestry on 1,712 phecode traits 197 

with case count ≥20. The GWAS cohort contains 51,583 MGI participants, including 49,689 with inferred 198 

European ancestry by the HGDP projection PCA and an additional 1,894 participants with inferred 199 

majority European ancestry by ADMIXTURE, but not identified as East Asian or African by the projection 200 

PCA. GWAS were run on the TOPMed-imputed genetic dataset using a mixed model implemented in 201 

SAIGE v0.43.3 to account for relatedness and case-control imbalance (Zhou et al., 2020). For each 202 

phecode trait, we analyze variants with minor allele frequency (MAF)>0.01% and adjusted for age, 203 

inferred sex, genotyping array, and the first ten genetic PCs. We compute the genomic control inflation 204 

factor for the GWAS of each phecode trait to assess stratification and test inflation (Devlin & Roeder, 205 

1999). To identify near-independent genome-wide significant loci within each GWAS, we extract all SNPs 206 

with p-value < 5e-8 and create 1Mb intervals centered around each resulting SNP. Overlapping intervals 207 

are combined and we report the SNP with the lowest p-value from each of the resulting intervals as the 208 

genome-wide significant peak SNP. 209 

We compared the 30 associations with smallest p-value for variants with MAF>1% with associations 210 

reported in the GWAS Catalog (flat file downloaded August 16, 2021) (Buniello et al., 2019). We 211 

considered only associations in the GWAS Catalog that had a minimum reported p-value < 5e-10 to limit 212 

potential false positives within the Catalog. We defined an exact regional match as Catalog associations 213 

reported at the same chromosomal location as the peak SNP. If an exact positional match was found, we 214 

manually scanned the list of Catalog associations for the same or a clinically similar phenotype to the 215 
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corresponding phecode trait that produced the genome-wide significant association in MGI. If multiple 216 

related traits were reported in the Catalog for that SNP, we reported the trait with lowest p-value except 217 

in one case where the top association appeared to be a sub-analysis that was more specific than our 218 

definition (e.g. for rs4148325 associated with "Disorders of bilirubin excretion," we reported "Bilirubin 219 

levels" as the GWAS Catalog match which had p=5e-62 in the Catalog, even though the Catalog also 220 

listed this SNP for "Bilirubin levels in extreme obesity" at p=5e-93). If an exact positional match was not 221 

found, we expanded our search to a 50kb window surrounding the peak SNP and followed the same 222 

protocol. In only one case was an association not found within a 50kb window and we expanded to a 223 

1MB region for this association. 224 

Genetic effect sizes computed using SAIGE are biased for low frequency variants. We therefore 225 

estimated effect size for these 30 top associations using the exact firth logistic regression implemented 226 

by REGENIE v2.2.4 (Mbatchou et al., 2021). We ran REGENIE with settings for –bsize 100 in step 1 and –227 

bzise 200, --pThresh 0.99, and –firth in step 2. For both steps, we provided a covariate file with age, 228 

inferred sex, genotyping array, and the first ten genetic PCs. 229 

Phecodes in UK Biobank 230 

We computed phecodes for 408,595 individuals of White British ancestry with high-quality genetic data 231 

in the UK Biobank (UKB).  We used ICD codes and genotyped derived data from open-access UK Biobank 232 

data. UK Biobank received ethical approval from the NHS National Research Ethics Service North West 233 

(11/NW/0382). We conducted these analyses under UK Biobank data application number 24460. 234 

We excluded samples which were flagged by the UK Biobank quality control documentation (Resource 235 

531) as (1) “het.missing.outliers”, (2) “putative.sex.chromosome.aneuploidy”, (3) “excess.relatives”, (4) 236 

“excluded.from.kinship.inference”, (5) the reported gender (“Submitted.Gender”) did not match the 237 

inferred sex (“Inferred.Gender”), (6) withdrew from the UKB study and (7) were not included in the phased 238 

and imputed genotype data of chromosomes 1-22, and X (“in.Phasing.Input.chr1_22 and 239 

in.Phasing.Input.chrX”). Furthermore, we reduced the data to samples of White British ancestry (see UK 240 

Biobank Resource 531, “in.white.British.ancestry.subset”). We used the PheWAS R package to aggregate 241 

the ICD9 and ICD10 codes into phecode traits, requiring one inclusion code for case definitions.  242 

 243 

 244 
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Results 245 

As of October 15, 2021, 87,623 patients receiving care at the Michigan Medicine health system have 246 

consented to participate in the Michigan Genomics Initiative. Participants are recruited on a rolling basis 247 

and genotyped in batches at the University of Michigan’s Advanced Genomics Core. Enrollment has 248 

steadily increased since project initiation, beginning at approximately 730 newly enrolled participants 249 

per month in 2013 to just over 1000 per month in 2019, prior to suspension of enrollment in 2020 due 250 

to the pandemic (Figure 2A). Notably, enrollment of individuals who self-report their race as something 251 

other than Caucasian has likewise increased, from 71 participants per month in 2013 to 292 per month 252 

in 2019. In this paper, we describe the genetic and clinical data for MGI freeze 3 comprised of 57,055 253 

participants and present results from GWAS for 1,547 traits in a set of 51,583 inferred European 254 

samples.   255 

Demographic and Clinical Description of the Cohort 256 

MGI participants range in age from 18 to over 90 years (Table 1). There are slightly more female 257 

participants (53%), and male participants are slightly older (58.4 vs 54.7 years, Figure 2B). Most 258 

participants self-report race as Caucasian (N=49,605, 87%), with African American (N=3,223, 5.6%) and 259 

Asian (N=1,324, 2.3%) next most common; 805 (1.4%) individuals report Hispanic or Latino ethnicity.  260 

A wealth of clinical data recorded in the Michigan Medicine EHR are available to develop phenotypes for 261 

MGI participants. In this paper we consider a broad set of traits defined using ICD 9 and 10 codes, but 262 

clinical laboratory results, medication history and additional contents of the electronic medical files are 263 

also available to approved researchers. The number of ICD codes differed across participants (median: 264 

604; mean: 1494; 25th percentile: 229; 75th percentile: 1643), reflecting inter-individual differences in 265 

overall health and utilization of the health system. We computed a follow-up time measurement, 266 

defined as the difference in time between the oldest and most recent ICD diagnoses for an individual, to 267 

measure the length of time each participant has interacted with the Michigan Medicine healthcare 268 

system. The distribution of follow-up time is U-shaped, with the most frequent follow-up times being <1 269 

year and ~19 years (Figure 2C). The upper bound of 20 years corresponds to the beginning of electronic 270 

capture of diagnosis codes beginning at Michigan Medicine in 2000. Age distribution among individuals 271 

is almost identical among all categories of follow-up time (Figure 2C), suggesting that follow-up time is 272 

largely independent of participant age.  273 

 274 
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Phecode Traits 275 

Due to the granularity and redundancy of ICD codes, we mapped individual ICD codes to broader binary 276 

phecode traits using the PheWAS software (Carroll et al., 2014). Individual phecode traits can be 277 

grouped into 17 general categories of clinically similar traits. For example, hypertension (phecode 401), 278 

myocardial infarction (411.2) and myocarditis (420.1) are each mapped to the ‘Circulatory System’ 279 

phecode group. In total, we observed case samples for 1,817 phecode traits, with 1,712 traits having at 280 

least 20 cases (Table 2, Supplementary Table 1). The most common traits are related to high prevalence 281 

diseases (Figure 2D), including hypertension (phecode 401, 401.1), lipid disorders (272, 272.1), obesity 282 

(278, 278.1), esophagus/GERD (530, 530.1, 530.11), and mental health disorders (mood disorders: 296; 283 

anxiety: 300, 300.1; depression: 296.2). Several pain related traits (pain in joint: 745; abdominal pain: 284 

785; pain: 338; back pain: 760) also appear among the most common phecodes, likely due in part to the 285 

enrollment of surgical patients through anesthesiology. The number of phecodes per sample was 286 

strongly right skewed (median: 31; mean: 44.2; maximum: 435) and positively correlated with both age 287 

(Figure 2E) and follow-up time (Figure 2F). 288 

As a single-health system biobank, MGI is smaller than some biobanks employing broader national 289 

recruitment strategies. UKB, for example, boasts nearly half a million participants. When comparing 290 

GWAS cohorts of European inferred ancestry in each biobank (see Methods), MGI has a higher 291 

prevalence for nearly all phecode traits compared to UKB (Supplementary Figure 1). Of the 1,772 292 

phecode traits for which either MGI or UKB had at least one case, UKB has no cases for 354 and MGI has 293 

no cases for 22, many of which are common conditions. For example, there are no phecode-defined 294 

cases in UKB for basal cell carcinoma (172.21), insulin pump user (250.3), and hypo- (275.51) and 295 

hypercalcemia (275.6). The missing cases for these traits reflect different ICD code systems or 296 

differential use of ICD codes between the two biobanks rather than an actual lack of these traits in the 297 

cohorts.  298 

As power of association studies depends strongly on the number of cases, it is more helpful to compare 299 

the overall number of cases between MGI and UKB. MGI has a higher case count for 557 (41%) of the 300 

1,358 phecodes for which both biobanks have cases (Figure 3).  MGI has traits with greater case counts 301 

across all phecode categories, particularly within endocrine/metabolic and neurological categories. 302 

There are 48 phecode traits for which MGI has over 10-fold number of cases found in UKB 303 

(Supplementary Table 2), including “Vitamin D deficiency” (phecode: 261.4), “pain” (phecode: 338), 304 

“migraine with aura” (phecode: 340.1), “insomnia” (phecode: 327.4), and “varicella infection” (phecode: 305 
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079.1). Phecode traits for which MGI has more cases than UKB and a case count >10K, including 306 

overweight/obesity (278, 278.1), mood disorders (296), depression (296.2), anxiety (300, 300.1), sleep 307 

apnea (327.3), allergic rhinitis (476), other symptoms of respiratory system (512), pain (338), pain in 308 

joint (745), and back pain (760).  309 

Genetic Data 310 

Overall, genetically inferred ancestry is consistent with self-reported race and ethnicity obtained from 311 

appointment intake surveys (Figure 4A). The majority of participants that self-report as Caucasian 312 

clustered with European HGDP populations at the top of the familiar continental PCA plot. Nearly all 313 

self-reported African American participants in MGI cluster between the HGDP African and European 314 

reference populations, consistent with admixture between those groups. Self-reported Asian 315 

participants show two distinct clusters corresponding to East Asian and Central/Southern Asian HGDP 316 

populations. As expected, participants that reported Hispanic/Latino ethnicity overwhelmingly appear 317 

between European and Asian continental populations (Bryc et al., 2010). 318 

Genotype imputation increases the number of variants in the dataset and is dependent upon the 319 

haplotype reference panel. Our current data freeze uses the TOPMed reference panel which 320 

substantially increases both the number and quality of imputed variants. Imputation using TOPMed 321 

produces ~52 million variants post QC-filtering compared to ~32 million using the HRC reference panel, 322 

with the largest gain in imputable variants at the lower end of the allele frequency spectrum (Figure 4B); 323 

TOPMed imputation results in 45,399,294 variants with MAF between 0.01% and 5% and imputation Rsq 324 

> 0.3, compared to 26,769,074 of such variants based on HRC. Moreover, TOPMed-imputed variants are 325 

more accurate across the frequency spectrum, particularly for variants with MAF < 5% (Figure 4C). 326 

Comparing the reference panels across samples from different ancestries reveals that the increased 327 

diversity in TOPMed reference haplotypes leads to increased imputation accuracy in all non-European 328 

samples (Figure 4D). MGI samples with majority African ancestry based on ADMIXTURE showed the 329 

largest improvement in imputation accuracy, even for common variants, reflecting the large proportion 330 

of African American individuals in TOPMed compared to HRC. We observe a more modest increase in 331 

accuracy among majority Asian ancestry MGI samples, likely because TOPMed contains comparatively 332 

fewer Asian haplotypes.  333 

 334 

 335 
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GWAS Results 336 

We initially conducted GWAS for the 1,712 phecode traits with at least 20 cases in the set of 51,583 MGI 337 

samples with genetically inferred European ancestry, across 51.8M SNPs with MAF > 0.01% and 338 

imputation score Rsq>0.3. We evaluated genomic control values and find that traits with less than 60 339 

cases were highly susceptible to inflation (Supplementary Figure 3-4). Thus, we present results for the 340 

1,547 traits with ≥60 cases (Table 2). We identified 1,901 distinct genome-wide significant loci across 341 

977 phecode traits, including at least one genome-wide significant association within each of the 342 

seventeen phecode categories. Many of the associations occur at low frequency SNPs which have higher 343 

false positive rates at the standard 5e-8 threshold for genome-wide significance (Annis et al., 2021). 344 

Among SNPs with MAF > 1%, we observe 606 associations across the 340 traits. The complete set of 345 

genetic analyses described in this paper are viewable through an interactive “PheWeb” tool  that 346 

includes GWAS summary statistics, regional association plots and PheWAS analyses that can be used for 347 

replication and hypothesis-driven look-ups by the research community (See Resources). 348 

To assess the quality of our genetic data and phecode traits, we compared our thirty most significant 349 

associations among MAF>1% variants to previously identified associations reported in the GWAS Catalog 350 

(Table 3). These thirty associations occur among 15 unique SNPs because seven SNPs were associated 351 

with multiple related phecode traits, reflecting the hierarchical nature of ICD coding. For 10 of the SNPs, 352 

we observed an association with a related trait in the GWAS Catalog at the exact chromosomal location. 353 

Four SNPs had a relevant association in the GWAS Catalog within a 50kb window. The one association 354 

for which we did not observe a close phenotypically relevant association within the GWAS Catalog was 355 

for the indel rs113993960 (chr7:117559590:ATCT:A) and cystic fibrosis (phecode 499). The indel is a 356 

known low frequency, pathogenic inframe shift within CFTR (NC_000007.14(CFTR_i001):p.(Phe538del),  357 

(VCV000007105.43 - ClinVar - NCBI, 2021).  358 

Our strongest association occurred between rs6025 (chr1:169549811; 359 

NC_000001.11(F5_i001):p.(Arg397Gln)) and primary hypercoagulable state (phecode: 286.81). This 360 

missense variant in the F5 gene is among our top associations for multiple phecode traits related to 361 

coagulation (286.8: hypercoagulable state, 286: coagulation defects, 286.7: other and unspecified 362 

coagulation defects, 286.12: congenital deficiency of other clotting factors (including factor VII)). 363 

Associations between rs6025 and venous thromboembolism (Klarin et al., 2019) and thrombosis have 364 

previously been reported (Hinds et al., 2016). rs143260331 was associated with two nested atrial 365 

fibrillation phecode traits (427.2 and 427.21) and was nearby previous associations for atrial fibrillation 366 
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and flutter. We also observed several strong associations between SNPs in the HLA locus and phecodes 367 

related to type 1 diabetes. These associations have been reported for related traits in the GWAS 368 

Catalog. For example, we observed an association between rs9273368 (chr6:32658525; 369 

NC_000006.12(HLA-DQB1_v001):c.*1711A>C) with the phecode 250.1: type 1 diabetes (4.23e-106), 370 

which has been previously reported for diabetes medication use (Wu et al., 2019). Broadly, our results 371 

replicate known signals, indicating that phenotyping and genotyping in MGI enable well-calibrated 372 

GWAS.   373 

Discussion 374 

Biobanks are an efficient strategy to generate large samples for modern genetics research. The biobank 375 

approach leverages central genotyping and QC to provide a single resource that can be used for a wide 376 

range of research questions. Not only does this result in cost-efficient research in general, but it also 377 

particularly empowers researchers who lack resources to create large datasets of their own. To provide 378 

such a broadly useful resource requires using state-of the-art QC as each error may affect multiple 379 

independent analyses. Consistent with previous findings (Taliun et al., 2021), we show that e.g. using 380 

TOPMed reference panels rather than HRC provides a boost in both number and accuracy of imputed 381 

markers, with particularly meaningful gains in non-European samples. Importantly, our results highlight 382 

the value of diverse haplotype imputation in a real-world dataset of US samples recruited without 383 

regard to ancestry.   384 

 385 

MGI exists within a broad family of single-health system biobanks, e.g. at Vanderbilt University (Roden 386 

et al., 2008), Geisinger (Carey et al., 2016) and UCLA (Johnson et al., 2021). Even within this group major 387 

differences exist in recruitment strategy. For example, BioVU recruitment includes opportunistic 388 

inclusion of patients with existing blood specimens collected during prior clinical testing at the 389 

Vanderbilt University Medical Center (Roden et al., 2008). This strategy has implications for the size and 390 

composition of the cohort that will differ from MGI enrollment that requires prospective collection of 391 

blood samples. Like all single-health system biobanks, the cohort demographics will naturally reflect the 392 

patient population served by the health system. In the case of MGI, the cohort largely comes from the 393 

community and thus overrepresents individuals of European ancestry relative to both the population of 394 

Michigan and the US. Moreover, the MGI cohort itself is less diverse in terms of age, sex, race, ethnicity, 395 

and socioeconomic status than the overall clinical population at Michigan Medicine (Spector-Bagdady et 396 

al., 2021). Underrepresentation of minority individuals in particular can lessen generalizability of results 397 
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and exacerbate existing health inequities (Landry et al., 2018; Sirugo et al., 2019). For these reasons, we 398 

are currently seeking to enrich enrollment of underrepresented populations, notably the Middle Eastern 399 

– North African and African American populations of southeast Michigan, by leveraging epidemiological 400 

studies in minority populations and by using the Michigan Health Care patient portal for targeted 401 

recruitment.  402 

Our results show that recruitment within a tertiary care center, primarily among surgical patients, 403 

results in substantial case enrichment compared to the general health system population as well as 404 

larger population-sampled biobanks. This case enrichment mirrors non-random sampling techniques 405 

routinely used in GWAS, for example case-control and extreme phenotype designs, that are specifically 406 

designed to increase statistical power. The implication is that MGI provides powerful GWAS testing 407 

despite not being among the largest biobanks (Zhou et al., 2021). Although some of the case count 408 

differences identified between MGI and UKB are likely the result of differing diagnostic coding criteria, 409 

they nevertheless still reflect the ability to identify cases within the data. 410 

Our analysis identified unique features of the cohort that can in part be connected to the strong surgical 411 

enrollment bias. The distribution of participant follow-up time suggests that MGI is a mixture of long-412 

time, regular users of Michigan Medicine with lengthy follow-up times, and new possibly one-time 413 

patients with modest follow-up times. It is possible that participants with short follow-up times are 414 

utilizing the health system for the first time during the surgical procedure in which they enrolled in MGI. 415 

Patient age was relatively consistent across follow-up times, but patients with longer follow-up times 416 

had higher numbers of phecode case assignments. It is possible that participants with longer follow-up 417 

times, despite being of similar age, simply have more health problems. Alternatively, participants with 418 

shorter follow-up times might have incomplete medical history within the Michigan Medicine EHR, a 419 

plausible scenario for out-of-system enrollees receiving one-time specialized care at UM. For these 420 

participants, we may be misclassifying them as controls for traits missing diagnoses in the Michigan 421 

Medicine EHR.  422 

Phenotype development from EHRs requires interpretation of dense administrative data. For first-pass 423 

phenotyping, the PheWAS software provides a convenient approach to map the granular ICD codes to 424 

broader phecode traits. The advantage of this technique is rapid and automated generation of the 425 

phenome across all individuals in a biobank. Our GWAS results indicate that phecodes are an effective 426 

tool for broad phenotyping at the phenome-scale. Importantly the PheWAS software provides a realistic 427 

strategy for consistent large-scale phenotyping across biobanks. The ICD mappings however are often 428 
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not sufficiently precise to correctly identify cases or controls with perfect sensitivity. The phecode 429 

system also neglects clinical data sources like laboratory results, physician notes and medication history 430 

that can be informative for elucidating true disease status. Further, ICD usage differs among health 431 

systems, which impacts the sensitivity of the phecode approach. To maximize power and obtain 432 

unbiased effect size estimates for specific traits, it may be advantageous to carefully extract all relevant 433 

information from the EHR data and apply validated electronic phenotype algorithms, for example, as 434 

described by the Phenotype KnowledgeBase (https://phekb.org).   435 

 436 

MGI represents the important class of single-health system biobank in the emerging field of EHR-based 437 

genomics. We have shown that a biobank recruited from within a single-health system can strategically 438 

recruit large sample sizes and provide an excellent multi-purpose resource for genetic research.  With a 439 

sample size expected to top 100,000 participants by 2022, we anticipate that MGI will play an important 440 

role in future research both at the University of Michigan as well as the broader community. To date, 441 

MGI data has been used in over 30 peer reviewed publications, which can be viewed at our website: 442 

https://precisionhealth.umich.edu/our-research/michigangenomics/publications/  443 

 444 

  445 
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Figure 1: Overview of the Michigan Genomics Initiative (MGI) cohort. MGI 

currently consists of >85K participants recruited while seeking care at the 

Michigan Medicine Health Center. Recruitment is predominantly through the 

Department of Anesthesiology during surgical encounters. Participants consent to 

link a blood sample with their electronic health records for broad research 

purposes. Genotypes for ~570K genetic variants are obtained from DNA extracted 

from the blood sample using a customized Illumina Infinium CoreExome-24 array. 

In this paper, we describe the Freeze 3 MGI cohort consisting of ~57K samples 

having passed sample-level quality control filtering and imputed for >50 million 

variants using the TOPMed reference panel. We extracted all available 

International Classification of Disease (ICD) diagnosis codes from patient 

electronic health records and mapped to broader dichotomous phecode traits 

using the PheWAS software. We performed GWAS within a subset of ~50K 

European-inferred samples from the Freeze 3 cohort using a linear mixed effect 

regression model implemented in the SAIGE software. We report results and 

share GWAS summary statistics for 1,547 traits with ≥60 cases.  
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Figure 2: MGI Demographics and Clinical Data.  

A) MGI recruitment over time. The solid line gives overall participant 

recruitment, and the dashed line is participants with self-reported race 

other than Caucasian. 
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Figure 2 

B) Age and sex distribution of MGI Participants.  
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Figure 2 

C) Clinical follow-up time for MGI participants. Follow-up is the amount of 

time between a participant's first and most recent diagnosis codes in the 

Michigan Medicine EHR. Insert: Distribution of ages for MGI participants is 

nearly identical across follow-up times. 
  

 
 

Insert: 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.21267864doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.15.21267864
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2 

 

D) Most common phecodes traits among MGI participants. 
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Figure 2 

E) Number of phecode case assignments per sample increases with 

participant age (boxplot outliers excluded for readability). 
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Figure 2 

 

F) Number of phecode case assignments per sample increases with 

participant follow-up time (boxplot outliers excluded for readability). 
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Figure 3: Comparison of case counts for phecode traits between MGI and UKB 

European GWAS cohorts by phecode categories. 
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Figure 4: Summary of Genetic Data 

A) Comparison of self-reported race/ethnicity and genetically inferred ancestry. MGI samples are projected in the 

Principal Component (PC) reference space created by worldwide samples from the Human Genome Diversity 

Project (HGDP). Each panel shows all MGI participants (gray dots), with colored dots denoting participants of 

the indicated self-reported race or ethnicity (Hispanic or Latino). 
 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.21267864doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.15.21267864
http://creativecommons.org/licenses/by-nc-nd/4.0/


B) Comparison of frequency spectrum for TopMed and HRC imputation. The 

largest gain in coverage for TopMed is at the lower end of the frequency 

spectrum. 

 

  

C) Comparison of TopMed and HRC imputation accuracy by MAF. TopMed 

provides increased accuracy for all MAF>0.01 bins, with greatest improvement 

for SNPs < 5%. 
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D) Comparison of TopMed and HRC imputation accuracy by ADMIXTURE inferred 

ancestry groups. TopMed provides more accurate imputation in all 

populations with notable gains among MGI participants whose majority 

ancestry is non-European. 
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Table 1: Demographics of MGI Participants, Freeze 3. 

 All Male Female 
Number of Individuals 57,055 26,732 (47%) 30,323 (53%) 
Age, yr (range 18-90+; mean ± SD) 56.44 ± 17 58.38 ± 17 54.74 ± 16 
BMI, kg/m2  29.87 ± 7.0 29.69 ± 6.1 30.03 ± 7.7 
Self-Reported Race, N 
    African American 3,223 1,264 1,959 

    American Indian or Alaska Native 237 112 125 

    Asian 1,324 601 723 

    Caucasian 49,605 23,534 26,071 

    Native Hawaiian or Pacific Islander 43 14 29 

    Other 1,023 463 560 

    Patient Refused 200 102 98 

    Unknown/Missing 1,400 643 757 

Self-Reported Ethnicity, N    

    Hispanic or Latino 805 337 468 

    Non-Hispanic or Latino 34,982 16,809 18,173 

    Patient Refused 155 70 85 

    Unknown/Missing 21,113 9,517 11,596 
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Table 2. Summary of GWAS results by phecode categories in European MGI 

participants. The table contains counts of associations across phecode traits with 

at least sixty cases and for all markers tested as well as minor allele frequency 

>1%. (GWS=genome-wide significant, see Methods for definition) 

 

Phecode Category 

Total 
Phecode 
Traits 

Analyzed 
Traits  
(≥ 60 cases) 

Traits with 
≥1 GWS loci  
 (MAF>1%) 

Number of 
GWS Loci 
(MAF>1%) 

Strongest Association  
(MAF >1%)  

circulatory system 171 160 108 (43) 200 (72) 
Atrial fibrillation (427.21),  
p=1.2e-37, 
chr4:110762205 

congenital 
anomalies 

56 44 18 (3) 36 (3) 

Genitourinary congenital 
anomalies (751), 
p= 4.0e-09, 
chr2:161318326 

dermatologic 95 77 53 (17) 93 (22) 
Psoriasis vulgaris (696.41), 
p=4.7e-28, 
chr6:31274954 

digestive 162 149 95 (39) 198 (59) 

Other chronic nonalcoholic liver 
disease (571.5), 
p=3.0e-54, 
chr22:43928975 

endocrine/ 
metabolic 

169 129 92 (65) 277 (180) 
Type 1 diabetes (250.1), 
p=4.2e-106, 
chr6:32658525 

genitourinary 173 157 101 (25) 191 (39) 

Nephritis and nephropathy in 
diseases classified elsewhere  
(580.31), 
p=1.4e-19, 
chr6:32706117 

hematopoietic 62 45 32 (16) 65 (26) 

Primary hypercoagulable state 
(286.81), 
p=2.8e-157, 
chr1:169549811 

infectious diseases 69 54 28 (8) 37 (8) 
Aspergillosis (117.4), 
p=4.3e-17, 
chr7:117559590 

injuries & 
poisonings 

122 93 49 (5) 79 (6) 

Salicylates causing adverse 
effects in therapeutic use 
(965.3), 
p=2.4e-10, 
chr6:33091097 

mental disorders 76 63 39 (11) 64 (12) 
Dementias (290.1), 
p=2.1e-18, 
chr19:44908684 

musculoskeletal 132 114 71 (19) 121 (20) 
Ankylosing spondylitis (715.2), 
p=2.9e-35, 
6:31357491 

neoplasms 141 129 76 (29) 194 (85) 

Other non-epithelial cancer of 
skin (172.2), 
p=1.8e-38, 
chr6:396321 

neurological 85 74 50 (11) 79 (14) 

Restless legs syndrome  
(327.71), 
p=6.8e-29, 
chr2:66523432 

pregnancy 
complications 

46 28 18 (7) 23 (7) 
Rhesus isoimmunization in 
pregnancy  
(654.2), 
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p=1.4e-54, 
chr1:25257119 

respiratory 85 78 57 (22) 96 (26) 

Cystic fibrosis  
(499), 
p=9.8e-49, 
chr7:117559590 

sense organs 127 112 65 (18) 105 (25) 

Fuchs' dystrophy  
(364.51), 
p=2.0e-31, 
chr18:55543071 

symptoms 46 41 25 (2) 43 (2) 

Fever of unknown origin 
(783), 
p= 2.9e-08, 
chr7:37808912 

Total 1817 1547 977 (340) 1901 (606)  
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Table 3: Top 30 GWAS associations among the 1,547 phecode traits with at least 60 cases in MGI, Freeze 3.   

rs id 
(Position) Alleles 

Allele2 
Frequency Log(OR)  p-value 

Trait Description 
(Phecode) Cases Controls 

SNP 
Regional 
Match 

GWAS Catalog  
(Pubmed ID) 

rs6025 
(chr1:169549811) 

C/T 0.0282 2.44 2.81E-157 Primary 
hypercoagulable  
state (286.81) 

727 43826 Exact Venous thromboembolism 
(31676865) 

      2.40 1.19E-153 Hypercoagulable state 
(286.8) 

755 43826     

      1.33 1.80E-83 Coagulation defects 
(286) 

2693 43826     

      1.17 6.73E-50 Other and unspecified 
coagulation defects 
(286.7) 

1942 43826     

      2.67 5.24E-39 Congenital deficiency of 
other clotting factors 
(including factor VII) 
(286.12) 

94 43826     

      0.77 1.82E-36 Other venous embolism 
and thrombosis (452) 

4201 36930     

      0.86 3.01E-34 Deep vein thrombosis 
(452.2) 

3162 36930   Thrombosis (26908601) 

rs72660908 
(chr1:25257119) 

C/G 0.3856 2.48 1.40E-54 Rhesus 
isoimmunization in 
pregnancy (654.2) 

145 26348 Exact Blood protein levels 
(29875488) 

rs4148325 
(chr2:233764663) 

C/T 0.3272 1.64 6.00E-82 Disorders of bilirubin 
excretion (277.4) 

321 48830 Exact Bilirubin levels (21646302) 

rs1800562 
(chr6:26092913) 

G/A 0.0602 1.73 1.07E-51 Disorders of iron 
metabolism (275.1) 

201 47321 Exact Hemoglobin (32888494) 

rs185937162 
(chr6:31357491) 

T/G 0.0428 1.79 2.92E-35 Ankylosing spondylitis 
(715.2) 

190 35793 50kb 
window 

Ankylosing spondylitis 
(20062062) 

rs2040410 
(chr6:32634921) 

C/T 0.1260 1.04 5.91E-39 Celiac disease (557.1) 407 37236 50kb 
window 

Celiac disease (20190752) 

rs9273364 
(chr6:32658525) 

T/G 0.2769 0.87 4.23E-106 Type 1 diabetes (250.1) 2266 36631 Exact Medication use - drugs used 
in diabetes (31015401) 

    0.55 1.32E-34 Type 2 diabetes with 
ophthalmic 
manifestations (250.23) 

1522 36631    
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Table 3 (Con’t): Top 30 GWAS associations among the 1,547 phecode traits with at least 60 cases in MGI, Freeze 3.   

rs id 
(Position) Alleles 

Allele2 
Frequency Log(OR) p-value 

Trait Description 
(Phecode) Cases Controls 

SNP 
Regional 
Match 

GWAS Catalog 
(Pubmed ID) 

rs9273368 
(chr6:32658698) 

G/A 0.2713 1.21 2.91E-101 Type 1 diabetes with 
ophthalmic 
manifestations 
(250.13) 

760 36631 Exact Latent autoimmune diabetes 
vs. type 1 diabetes 
(30254083) 

      1.32 4.02E-80 Type 1 diabetes with 
renal manifestations 
(250.12) 

509 36631     

      1.22 6.99E-76 Type 1 diabetes with 
neurological 
manifestations 
(250.14) 

559 36631     

      1.42 1.23E-40 Type 1 diabetes with 
ketoacidosis (250.11) 

205 36631     

rs1794269 
(chr6:32706117) 

C/T 0.3760 0.64 4.53E-52 Diabetic retinopathy 
(250.7) 

1544 43849 50kb 
window 

Type 2 Diabetes (32541925) 

      0.41 1.04E-39 Insulin pump user 
(250.3) 

3155 36631     

rs12203592 
(chr6:396321) 

C/T 0.1616 0.35 1.83E-38 Other non-epithelial 
cancer of skin (172.2) 

6627 41896 Exact Basal cell carcinoma 
(31174203) 

      0.32 1.65E-36 Skin cancer (172) 8228 41896     
      0.44 2.36E-36 Basal cell carcinoma 

(172.21) 
3509 41896     

rs113993960 
(chr7:117559590) 

ATCT/A 0.0146 2.58 9.80E-49 Cystic fibrosis (499) 97 51358 1MB 
window 

Lung function - FEV1/FVC 
(30595370) 

rs28929474 
(chr14:94378610) 

C/T 0.0179 3.36 1.71E-52 Alpha-1-antitrypsin 
deficiency (270.34) 

60 48887 Exact Serum albumin level 
(33462484) 

rs1421085 
(chr16:53767042) 

T/C 0.4156 0.24 1.65E-36 Morbid obesity 
(278.11) 

7255 32074 Exact Body mass index (30595370) 

rs3747207 
(chr22:43928975) 

G/A 0.2296 0.48 2.95E-54 Other chronic 
nonalcoholic liver 
disease (571.5) 

2973 41006 Exact Alanine transaminase levels 
in high alcohol intake 
(32561361) 

      0.45 7.98E-53 Chronic liver disease 
and cirrhosis (571) 

3150 41006     
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Supplementary Table 1. Expanded Table 1 including descriptive statistics for quantitative 
laboratory measures and select phecode traits. 
 

 All Male Female 
Number of Individuals 57,055 26,732 (47%) 30,323 (53%) 
Age, yr (range 18-90+; mean ± SD) 56.44 ± 17 58.38 ± 17 54.74 ± 16 
BMI, kg/m2  29.87 ± 7.0 29.69 ± 6.1 30.03 ± 7.7 
Self-Reported Race, N 
    African American 3,223 1,264 1,959 

    American Indian or Alaska Native 237 112 125 

    Asian 1,324 601 723 

    Caucasian 49,605 23,534 26,071 

    Native Hawaiian or Pacific Islander 43 14 29 

    Other 1,023 463 560 

    Patient Refused 200 102 98 

    Unknown/Missing 1,400 643 757 

Self-Reported Ethnicity, N    

    Hispanic or Latino 805 337 468 

    Non-Hispanic or Latino 34,982 16,809 18,173 

    Patient Refused 155 70 85 

    Unknown/Missing 21,113 9,517 11,596 

    
Quantitative Measurements (mean ± SD) 
    SBP, mm Hg (N=56,293) 70.52 ± 7.4 72.45 ± 7.4 68.83 ± 7.0 

    LDL-C, mg/dL (N=24,688)  100.38 ± 35.7  95.92 ± 35.2  104.65 ± 35.7 

    Albumin (N=43,558)  3.96 ± 0.6  3.93 ± 0.6  3.99 ± 0.6 

    Creatinine (N=50,255)  1.21 ± 1.2  1.37 ± 1.3  1.04 ± 1.0 

    Glucose (N=50,327)  123.37 ± 56.2  127.06 ± 56.6  119.40 ± 55.4 

    Mean corpuscular hemoglobin 
(N=50,246) 

 29.8 ± 2.6  29.98 ± 2.6  29.60 ± 2.6 

    Thyroid stimulating hormone 
(N=27,753) 

 3.19 ± 10.6  3.21 ± 9.1  3.17 ± 11.4 

Cardiometabolic Phenotypes, Phecode (N cases, % of sample) 
    Hypertension (401) 26,223 (46%) 13,858 (52%) 12,365 (41%) 
    Obesity (278.1) 17,547 (31%) 7,455 (28%) 10,092 (33%) 
    Cardiac Dysrhythmias (427) 15,896 (28%) 7,853 (29%) 8,043 (27%) 
    Type 2 Diabetes (250.2) 11,377 (20%) 6,036 (23%) 5,341 (18%) 
Neurodegenerative and Neurological Phenotypes (N cases, % of sample) 
    Sleep Apnea (327.3) 12,418 (22%) 6,884 (26%) 5,534 (18%) 
    Epilepsy (345.1) 606 (1%) 275 (1%) 331 (1%) 
    Parkinson's Disease (332) 399 (0.7%) 272 (1%) 127 (0.4%) 
    Multiple Sclerosis (335) 415 (0.7%) 109 (0.4%) 306 (1%) 
Respiratory and Immunological Phenotypes (N cases, % of sample) 
    Asthma (495) 10,135 (18%)    3,446 (13%) 6,689 (22%) 
    Pneumonia (480) 5,327 (9%)    2,467 (9%)    2,860 (9%) 
    Rheumatoid Arthritis (714.1)    1,750 (3%)    478 (2%)    1,272 (4%) 
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    Ulcerative Colitis (555.2)    925 (2%)    428 (2%)    497 (2%) 
Oncology Phenotypes (N cases, % of sample) 
    Skin Cancer (172) 8,307 (15%) 4,580 (17%) 3,727 (12%) 
    Melanoma (172.11) 3,081 (5%) 1,772 (7%) 1,309 (4%) 

    Basal Cell Carcinoma (172.21) 3,522 (6%) 1,921 (7%) 1,601 (5%) 

    Breast Cancer (174) 3,418 (6%)      46 (0.2%) 3,372 (11%) 
    Prostate Cancer (185)    3,002 (5%)    3,002 (11%) 0 (0%) 
    Bladder Cancer (189.2)    1,746 (3%)    1,343 (5%)    403 (1%) 
 Mental Health Phenotypes (N cases, % of sample) 
    Depression (296.2) 14,889 (26%) 4,992 (19%) 9,897 (33%) 
    Anxiety disorders (300) 14,922 (26%) 4,810 (18%) 10,112 (33%) 
    Bipolar (296.1) 1,134 (2%) 357 (1%) 777 (3%) 
    Schizophrenia (295.1) 115 (0.2%) 50 (0.1%) 65 (0.2%) 
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Supplementary Table 2. Phecode Traits with >10-fold enrichment of case samples in MGI compared to UKB. 

Phecode Description Category MGI Cases MGI Controls UKB Cases UKB Controls 
MGI:UKB 

Case Ratio 

611.1 Abnormal mammogram genitourinary           4,851                 42,782               56            400,113  86.6 

079.1 Varicella infection infectious diseases           4,143                 39,472               64            401,601  64.7 

599.8 Other symptoms involving 
urinary system 

genitourinary           3,888                 35,037               62            383,297  62.7 

300.4 Dysthymic disorder mental disorders           2,050                 27,399               53            363,984  38.7 

792 Abnormal Papanicolaou smear of 
cervix and cervical HPV 

genitourinary           2,788                 17,968               97            193,707  28.7 

327.4 Insomnia neurological           4,252                 35,287             163            401,998  26.1 

278.4 Abnormal weight gain endocrine/metabolic           1,625                 32,094               66            396,288  24.6 

415.11 Pulmonary embolism and 
infarction, acute 

circulatory system           1,825                 47,402               75            400,268  24.3 

338.2 Chronic pain neurological           9,127                 34,356             379            406,436  24.1 

110.11 Dermatophytosis of nail infectious diseases           1,664                 44,101               74            404,551  22.5 

272.12 Hyperglyceridemia endocrine/metabolic           1,210                 31,466               58            371,432  20.9 

272.13 Mixed hyperlipidemia endocrine/metabolic           3,221                 31,466             164            371,432  19.6 

313 Pervasive developmental 
disorders 

mental disorders           1,449                 49,104               76            406,624  19.1 

279.7 Other immunological findings endocrine/metabolic           4,513                 44,339             248            406,707  18.2 

613.5 Mastodynia genitourinary           1,396                 47,335               77            405,229  18.1 

338 Pain neurological        13,542                 34,356             766            406,436  17.7 

690.1 Seborrheic dermatitis dermatologic              924                 43,414               53            400,950  17.4 

340.1 Migraine with aura neurological           3,640                 43,699             211            397,071  17.3 

464 Acute sinusitis respiratory           3,174                 39,262             196            404,740  16.2 

949 Allergies, other injuries & poisonings           6,371                 35,760             396            403,085  16.1 

938.2 Chronic dermatitis due to solar 
radiation 

dermatologic           3,992                 35,760             251            403,085  15.9 

338.1 Acute pain neurological           6,081                 34,356             393            406,436  15.5 

246 Other disorders of thyroid endocrine/metabolic           6,055                 39,246             397            389,743  15.3 

250.42 Other abnormal glucose endocrine/metabolic           6,284                 36,652             418            387,082  15.0 

261.4 Vitamin D deficiency endocrine/metabolic           6,612                 40,977             446            404,730  14.8 

456 Chronic venous insufficiency [CVI] circulatory system           2,633                 36,953             183            367,908  14.4 
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356 Hereditary and idiopathic 
peripheral neuropathy 

neurological           2,114                 47,411             152            405,102  13.9 

367.2 Astigmatism sense organs           2,622                 43,024             189            404,787  13.9 

627.2 Symptomatic menopause genitourinary           2,534                 17,353             183            189,130  13.8 

090 Sexually transmitted infections 
(not HIV or hepatitis) 

infectious diseases              953                 50,467               71            407,129  13.4 

690 Erythematosquamous dermatosis dermatologic              929                 43,414               71            400,950  13.1 

790 Nonspecific findings on 
examination of blood 

symptoms           1,930                 44,032             149            400,617  13.0 

401.3 Other hypertensive complications circulatory system           1,827                 26,620             144            328,788  12.7 

840 Sprains and strains injuries & poisonings           5,944                 42,380             469            406,668  12.7 

605 Erectile dysfunction [ED] genitourinary           3,436                 16,004             276            167,468  12.4 

704.8 Other specified diseases of hair 
and hair follicles 

dermatologic              943                 46,497               76            400,627  12.4 

476 Allergic rhinitis respiratory        12,834                 31,134         1,052            388,553  12.2 

136 Other infectious and parasitic 
diseases 

infectious diseases           2,459                 47,630             205            406,672  12.0 

277.51 Lipoprotein disorders endocrine/metabolic              620                 48,876               52            405,784  11.9 

429.1 Heart transplant/surgery circulatory system              762                 45,087               64            400,869  11.9 

573.9 Abnormal serum enzyme levels digestive           2,452                 41,044             209            398,276  11.7 

279 Disorders involving the immune 
mechanism 

endocrine/metabolic           2,845                 44,339             249            406,707  11.4 

483 Acute bronchitis and bronchiolitis respiratory           2,122                 42,165             193            396,438  11.0 

505 Other pulmonary inflammation 
or edema 

respiratory              659                 43,653               61            395,582  10.8 

938 Dermatitis due to solar radiation dermatologic           4,174                 35,760             387            403,085  10.8 

527.7 Disturbance of salivary secretion digestive              667                 47,262               62            401,593  10.8 

260 Protein-calorie malnutrition endocrine/metabolic           2,103                 40,977             202            404,730  10.4 

250.4 Abnormal glucose endocrine/metabolic           7,061                 36,652             681            387,082  10.4 
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Supplementary Figure 1: Ratio of disease prevalence in phecode traits in MGI and UKB European GWAS cohorts by phecode category. 
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Supplementary Figure 2: Ancestry proportions based on ADMIXTURE for (A) all 

MGI participants and (B) only participants with less than 90% inferred EUR 

ancestry.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.21267864doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.15.21267864
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Figure 3: Distribution of genomic control values for 1712 phecode traits with at 

least 20 cases.  
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Supplementary Figure 4: Genomic control and case count (log10 scale) for 1712 

phecode traits with at least 20 cases. Traits with fewer than N=60 cases (vertical 

line) showed evidence of severe inflation. We report GWAS results for phecode 

traits with at least 60 cases. 
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