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ABSTRACT 27 

 28 

Background 29 

Major risk factors of COVID-19 include older age, male gender, and comorbidities. In addition, host 30 

genetic makeup is also known to play a major role in COVID-19 susceptibility and severity. To 31 

assess the genetic predisposition of the Indian population to COVID-19, a comparative analysis of 32 

the frequencies of polymorphisms directly or potentially associated with COVID-19 susceptibility, 33 

severity, immune response, and fatal outcomes was done between the Indian population and other 34 

major populations (European, African, East Asian, South Asian, and American).  35 

 36 

Materials and methods 37 

Polymorphisms directly or potentially associated with COVID-19 susceptibility, severity, immune 38 

response, and mortality were mined from genetic association studies, comparative genetic studies, 39 

expression quantitative trait loci studies among others. Genotype data of these polymorphisms were 40 

either sourced from the GenomegaDB
TM

 database of Mapmygenome India Ltd. (sample size = 3054; 41 

Indian origin) or were imputed. Polymorphisms with minor allele frequency >= 0.05 and that are in 42 

Hardy-Weinberg equilibrium in the Indian population were considered for allele frequency 43 

comparison between the Indian population and 1000 Genome population groups. 44 

 45 

Results 46 

Allele frequencies of 421 polymorphisms were found to be significantly different in the Indian 47 

population compared to European, African, East Asian, South Asian, and American populations. 128 48 

polymorphisms were shortlisted based on linkage disequilibrium and were analyzed in detail. Apart 49 

from well-studied genes, like ACE2, TMPRSS2, ADAM17, and FURIN, variants from AHSG, 50 

IFITM3, PTPN2, CD209, CCL5, HEATR9, SELENBP9, AGO1, HLA-G, MX1, ICAM3, MUC5B, 51 

CRP, C1GALT1, and other genes were also found to be significantly different in Indian population. 52 

These variants might be implicated in COVID-19 susceptibility and progression. 53 

 54 

Conclusion 55 

Our comparative study unraveled multiple genetic variants whose allele frequencies were 56 

significantly different in the Indian population and might have a potential role in COVID-19 57 

susceptibility, its severity, and fatal outcomes. This study can be very useful for selecting candidate 58 

genes/variants for future COVID-19 related genetic association studies. 59 

 60 
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1 INTRODUCTION 65 

Coronavirus disease - 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 66 

(SARS-CoV2), has strained the healthcare system and economy of a majority of nations and has 67 

crippled the human population [1, 2, 3]. COVID-19 is characterized by a range of clinical features 68 

which are categorized as most common, less common, and rare (severe). The most common 69 

symptoms are fever, dry cough, and fatigue, while less common symptoms are pneumonia without 70 

noticeable hypoxemia, sputum production, sore throat, headache, chest pain, and diarrhea [4, 5]. 71 

Acute respiratory distress syndrome, sepsis, acute cardiac injury, heart failure, acute kidney injury, 72 

hypoxic encephalopathy are more common in severe cases [4, 5, 6]. Severe patients show elevated 73 

levels of pro-inflammatory cytokines, indicating the presence of cytokine storm [4]. Self-reported 74 

loss of smell and taste was also observed in some cases [7]. 75 

Major risk factors for COVID-19 severity are older age, male gender, and comorbidities. A higher 76 

case fatality rate (CFR) has been observed in older adults as compared to the younger population [8, 77 

9, 10, 11, 12]. Relatively fewer female deaths are consistently observed as compared to males [10, 78 

11, 12]. COVID-19 patients with comorbidities like hypertension, obesity, diabetes, and others are 79 

more likely to develop severe complications than ones without any underlying diseases [13, 14, 15, 80 

16, 17, 18]. ABO blood groups also seem to be contributing to COVID-19 related risk. While blood 81 

group A is associated with an increased risk of severe COVID-19 outcomes, blood group O seems to 82 

be protective [19, 20, 21]. 83 

In addition to the above risk factors, host genetics can modulate susceptibility and severity of the 84 

disease by regulating viral entry and host immune response [22, 23].  For example, rs12329760 85 

(p.Val197Met) affects the stability of TMPRSS2 protein, which is implicated in SARS-CoV2 viral 86 

entry into host cells. This polymorphism was found to be less frequent in severe COVID-19 cases as 87 

compared to others, suggesting its protective role against severe outcomes of COVID-19 [24]. The C 88 

allele of rs12252 in the IFITM3 gene that is known for inhibiting influenza virus entry into host cells 89 

was found to be a genetic risk factor for COVID-19 hospitalization and severe outcomes [25, 26]. 90 

3p21.31 gene cluster confers genetic susceptibility to COVID-19 with respiratory failure in Italian 91 

and Spanish populations [27]. Genetic variants present in immune-related genes like HLA [24, 28, 92 

29, 30], IL-6 [24], TNF-alpha [31], C5 [32, 33] are associated with COVID-19 severity. 93 

While the majority of these studies were done on European and East Asian populations, limited 94 

studies were done on the Indian population [34, 35, 36]. Considering the significant role of host 95 

genetics in COVID-19 susceptibility and severity in the Indian population, we analyzed the 96 

frequencies of the polymorphisms that are directly or indirectly implicated in COVID-19. We have 97 

also made a comparison between Indian and other populations to understand allele frequency 98 

distribution globally. 99 

 100 

2 MATERIALS AND METHODS 101 

2.1 Literature mining and polymorphism selection: 102 

Research articles related to COVID-19 genetic associations were searched in Pubmed using 103 

keywords such as ‘COVID’, ‘COVID-19’, ‘Corona virus’, ‘GWAS’, ‘genetic susceptibility’, 104 

‘polymorphism’, ‘severity’, ‘susceptibility’ among other relevant terms. A total of 1418 research 105 
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articles were found, which were thoroughly screened and 99 relevant articles were selected. A total of 106 

1974 polymorphisms were shortlisted from the selected articles. 107 

2.2 Genotype data for Indian population: 108 

The GenomegaDB
TM

 database of Mapmygenome India Ltd. [153] was accessed to obtain genotype 109 

data for the present study. It is a human polymorphism genotype database developed and owned by 110 

Mapmygenome. It contains genotype data of more than 20000 individuals of various ethnicities.  111 

Genotype data of 3035 individuals with confirmed Indian origin were considered in this study. For 112 

polymorphisms not present in the database, genotypes were imputed with IMPUTE2 using 1000 113 

Genomes Phase3 data as reference [37, 38]. Filtration was performed with an imputation certainty 114 

score (Info metric) set at 0.3. 115 

2.3 Genotype data for other populations: 116 

Allelic and genotypic frequency data of selected polymorphisms for African (AFR), East Asian 117 

(EAS), European (EUR), South Asian (SAS), and American (AMR) populations were taken from 118 

1000 Genomes Phase 3 data [38]. 119 

2.4 Statistical analysis: 120 

Polymorphisms having minor allele frequency (MAF) greater than 0.05 in the Indian population 121 

(study population) and are in Hardy-Weinberg equilibrium (HWE) (p>0.001) in the Indian 122 

population were considered. Pearson’s chi-square test was conducted to compare allele frequencies 123 

between the Indian population and other populations (AFR, AMR, EUR, EAS, SAS). False discovery 124 

rate (FDR) was applied to correct for multiple comparisons. These statistical tests were done with the 125 

R packages HardyWeinberg and stats [39]. LDLink tool [40] was used to calculate linkage 126 

disequilibrium (LD) among the polymorphisms. 127 

2.5 eQTL data: 128 

To analyze the effect of polymorphisms on gene expressions, expression quantitative trait loci 129 

(eQTL) data from publicly available GTEx Project portal was used [41] 130 

 131 

3 RESULTS 132 

Out of 1974 shortlisted polymorphisms, 936 polymorphisms had genotype information, either from 133 

GenomegaDB
TM

 or from imputation. Among them, 670 polymorphisms that had MAF>=0.05 in the 134 

Indian population were considered for further analysis. Followed by this, 589 polymorphisms that 135 

were in HWE (p>0.001) were selected. Their allele frequencies in the Indian population were 136 

compared with those in other populations using Pearson’s chi-square test of significance 137 

(Supplementary File 1, Supplementary Table 1). 421 polymorphisms had significant differences 138 

(FDR <= 0.01) in at least three populations with respect to the Indian population (Supplementary File 139 

1, Supplementary Table 2). To rule out redundancy, LD blocks were obtained, and finally, 128 140 

representative polymorphisms were considered to discuss in detail (Supplementary File 2). 141 

Polymorphisms were categorized based on their effect on susceptibility to COVID-19, immune 142 

response to SARS-CoV2 infection, COVID-19 severity, mortality related to COVID-19, and 143 

comorbidities. Fifty polymorphisms directly or indirectly associated with COVID-19 susceptibility 144 
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(Table 1), eighteen polymorphisms implicated in the immune response to SARS-CoV2 infection 145 

(Table 2), fifty-eight polymorphisms directly or indirectly associated with COVID-19 severity (Table 146 

3), nine polymorphisms associated with COVID-19 related mortality/fatal outcomes (Table 4), and 147 

twelve polymorphisms associated with comorbidities of COVID-19 (Table 5) were analyzed. 148 

 149 

 150 

Figure 1 Comparison of populations based on the number of variants with highest / lowest risk 151 

allele frequency related to (A) Susceptibility to COVID-19, (B) COVID-19 severity, and (C) 152 

COVID-19 related mortality or fatal outcomes. IND – India, EUR – Europe, AMR 153 

 154 

Comparing the risk allele frequencies of a variant between multiple populations can help gain insight 155 

into relative genetic predisposition to the associated condition at the population level [42, 43]. In the 156 

absence of case-control studies, determining the number of risk variants for different populations 157 

might help understand the cumulative genetic effect, hence simplifying the comparison. Here, we 158 

applied this approach to ‘COVID-19 susceptibility’, ‘COVID-19 severity’ and ‘COVID-19 related 159 

mortality’ categories. Risk conferring variants were assigned to the populations where their 160 

frequencies were either highest or lowest. For each population, the number of variants with the 161 

highest risk allele frequency and lowest risk allele frequency was counted (Supplementary File 1, 162 

Supplementary Table 3). In the ‘COVID-19 susceptibility’ category, the number of variants with the 163 
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highest risk allele frequency was less than the variants with the lowest risk allele frequency in the 164 

IND population. A similar trend was observed in EAS and AFR populations. However, an opposite 165 

trend was observed in EUR and AMR populations (Fig. 1A). In IND and AFR populations, COVID-166 

19 severity-related variants with the highest risk allele frequencies were more than the lowest 167 

frequency variants, while in EAS, EUR, and AMR populations this was found to be opposite (Fig. 168 

1B). The number of variants associated with COVID-19 related mortality and having the highest risk 169 

allele frequency was less than the variants with the lowest risk allele frequency in IND, EAS, and 170 

AFR populations, while in SAS and AMR only the highest frequency variants were observed (Fig. 171 

1C). 172 

 173 

4 DISCUSSION 174 

4.1 COVID-19 susceptibility 175 

SARS-CoV-2 gains entry into human cells by binding its spike protein to ACE2 receptors. ACE2, a 176 

part of the renin-angiotensin-aldosterone system (RAAS), is crucial in regulating blood pressure and 177 

maintaining electrolyte balance in the body, physiology of the heart, kidneys, and lungs [44, 45]. 178 

Genetic variations in ACE2 are known to be associated with its increased expression levels in 179 

COVID-19 patients. These variants affect ACE2 transcription/translation and also alter binding 180 

affinity to SARS-CoV2 spike protein, thereby affecting the susceptibility to SARS-CoV-2 infection 181 

[46, 47]. Six ACE2 polymorphisms (rs2285666 [A], rs4240157 [T], rs4646188 [G], rs2158083 [T], 182 

rs1978124 [C] and rs233574 [T]), which are known to be associated with increased ACE2 183 

expression, were found to have allele frequencies significantly different in Indian population as 184 

compared to others [48, 49, 41, 50, 51, 52]. Their effect allele frequencies in Indian population are 185 

0.459, 0.69, 0.062, 0.76, 0.724 and 0.176, respectively (Table 1). For four of these variants, effect 186 

allele frequencies in EAS are highest suggesting that the EAS population might be predisposed to an 187 

increased susceptibility to COVID-19. In addition, the frequencies of rs1996225 [T] and rs4060 [A] 188 

of CA5BP1 gene and rs1893217 [G] of PTPN2 gene associated with increased expression of ACE2 189 

are also highest in EAS. IND population has intermediate frequencies for most of these variants 190 

indicating moderate susceptibility, while EUR has the lowest frequencies indicating reduced 191 

susceptibility. 192 

ACE (angiotensin-converting enzyme) is a vital part of the vascular system. It negatively regulates 193 

ACE2 and causes vasoconstriction. Alu Insertion in the ACE coding region inhibits ACE expression, 194 

while deletion promotes ACE expression. Increased ACE2 expression is observed when homozygous 195 

Alu insertion is present in the ACE gene and vice-versa. rs4343 is in high LD with this Alu element 196 

and thus used as its tag SNP [53]. The A and G alleles of rs4343 correspond to Alu insertion and 197 

deletion, respectively [54]. Thus A allele signifies reduced ACE expression and consequently 198 

increased ACE2 expression, potentially leading to increased SARS-CoV-2 susceptibility. In Indians, 199 

the frequency of the A allele (0.604) is significantly higher than Europeans (0.435) but lesser than 200 

other populations (Table 1). 201 

On infection with SARS-CoV-2, the ADAM17 shedding is activated, leading to the release of ACE2 202 

from the cell membrane into serum – thus inhibiting the virus infection. But, this effect would be 203 

compromised, if the infection rate is high [55, 56, 57, 58]. Thus ADAM17 mediated ACE2 levels 204 

may modulate COVID-19 susceptibility. ADAM17 releases the precursor TNF-α from the membrane 205 

to its active form – which is a crucial player in triggering an inflammatory response, leading to 206 

cytokine storm and is associated with severe lung damage in COVID-19 patients [59,60]. Thus, 207 
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ADAM17 might be playing role in ACE2 mediated COVID-19 susceptibility and TNF-α mediated 208 

COVID-19 severity. rs55790676 [G] and rs1524668 [C] associated with decreased ADAM17 209 

expression have high frequencies in IND population (0.925 and 0.403, respectively), lesser only than 210 

EAS, indicating increased susceptibility of COVID-19 in IND population. 211 

 212 

FURIN is an endoprotease that is implicated in cleaving the SARS-CoV2 spike protein at the S1/S2 213 

site and this cleavage is crucial for viral entry into pulmonary cells [61]. Increased FURIN expression 214 

affects monocyte adhesion and transendothelial migration [62] that can lead to tissue damage which 215 

is seen in severe COVID-19 patients [63]. In this study, three genetic variants that affect FURIN 216 

expression were identified whose allele frequencies are significantly different in the IND population. 217 

rs4702 [A] and rs4932178 [T], present in FURIN coding region, are associated with increased 218 

FURIN expression [64, 41]. It was also found that rs4702 [A] is associated with increased SARS-219 

CoV2 infection [65]. The frequency of rs4702 [A] in IND (0.499) is one of the lowest suggesting 220 

relatively lesser COVID-19 susceptibility in the IND population. The frequency of rs4932178 [T] in 221 

the IND population (0.276) is intermediate as compared to others, indicating moderate COVID-19 222 

susceptibility in IND. rs17514846 [A] is associated with the increased FURIN expression in vascular 223 

endothelial cells, where it affects monocyte adhesion and transendothelial migration [62]. 224 

Recruitment of monocytes and their transendothelial migration can lead to tissue damage which is 225 

seen in severe COVID-19 patients [63, 66]. The frequency of rs17514846 [A] in IND (0.371) is 226 

significantly higher than EAS and AMR populations and lesser than EUR (Table 3). 227 

IFITM-family proteins are major players in antiviral responses [67]. Severe inflammation and 228 

enhanced activation of natural killer cells are observed in influenza-infected IFITM3 deficient mice 229 

[68]. IFITM3 is up-regulated in SARS-CoV2 infected lung epithelial cells of COVID-19 patients 230 

[69], and IFITM3 seems to restrict SARS-CoV2 infection by modulating the cell membrane 231 

properties [70]. This indicates that IFITM3 might be modulating susceptibility to SARS-CoV2 232 

infection. rs11246066 [A] allele is associated with increased IFITM3 expression in whole blood and 233 

it is also an eQTL of other IFITM family genes in multiple tissues [71]. rs11246066 [A] allele 234 

frequency in the Indian population (0.189) is significantly greater only than the African population. 235 

rs9666637 [T] and rs7931303 [G] are associated with increased IFITM2 expression. rs9666637 [T] 236 

allele frequency in the Indian population (0.912) is highest among all populations, while rs7931303 237 

[G] allele frequency in the Indian population (0.398) is higher only than AFR. Considering the 238 

significance of the IFITM family, Indian population might be less susceptible to COVID-19 due to 239 

rs9666637 [T]. 240 

CTSL gene is involved in many biological processes such as antigen processing and presentation, 241 

proteolysis, macrophage apoptotic process, and immune response. It is associated with many diseases 242 

such as cancer, diabetes, kidney failure, and viral infections [72]. It regulates viral entry into host 243 

cells and is up-regulated during COVID-19 infection suggesting its potential role in COVID-19 244 

susceptibility and severity [72, 73]. rs3128509 [G] is associated with decreased CTSL expression in 245 

various tissues [41] and its frequency is significantly lesser in Indians (0.809) compared to African 246 

and East Asian populations but greater than European and American populations. This suggests that 247 

the Indian population might be more susceptible to COVID-19 than European and American 248 

populations but lesser than African and East populations.  249 

Progesterone acts as a potent immunomodulator in regulating innate and adaptive immune responses 250 

and vascular system functions. Progesterone receptors (PGRs) are intracellular receptors that on 251 
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binding to progesterone or its derivative regulate target gene expression. An Alu insertion in intron 7 252 

of the PGR gene reduces transcript stability, consequently affecting PGR protein structure and 253 

function [74]. As a result of this insertion, PGR modulated differential expression of ACE2 may 254 

potentially affect SARS-CoV2 infection susceptibility. This Alu insertion is in complete LD with 255 

rs1042838. A and G alleles of rs1042838 correspond to Alu insertion and deletion, respectively [53]. 256 

The frequency of rs1042838 [A] in IND (0.078) is significantly lesser than AMR (0.137) and EUR 257 

(0.179) populations while greater than AFR (0.006) and EAS (0.01) populations. 258 

TMPRSS2 is a serine protease that plays an important role in SARS-COV2 entry into the host cell. 259 

The viral spike (S) protein on binding to ACE2 on the host cell is cleaved at its S1/S2 position by 260 

TMPRSS2 thus facilitating viral entry into the host cell [75]. Increased SARS-CoV2 infection 261 

correlates with increased TMPRSS2 expression [76]. Eleven polymorphisms (rs35477708 [GA], 262 

rs468259 [C], rs363981 [T], rs1638369 [T], rs469288 [G], rs468699 [C], rs462698 [A], rs8134378 263 

[G], rs467375 [A], rs4818239 [C], rs35899679 [A]) whose allele frequencies are significantly in 264 

Indian population are associated with increased TMPRSS2 expression [77, 64, 47, 41]. Except for 265 

rs8134378 [G], frequencies of remaining variants are highest in EUR and lowest in EAS, suggesting 266 

EUR might be at increased susceptibility of COVID-19 while EAS at lowest. Their frequencies in 267 

IND are intermediate thus potentially conferring moderate susceptibility in the IND population. 268 

Zinc deficiency is associated with increased COVID-19 susceptibility in the Asian population [78]. 269 

Among the genetic variants associated with decreased zinc levels (rs2120019 [C], rs1532423 [G], 270 

rs4826508 [C]) and thereby increased susceptibility to COVID-19, rs1532423 [G] from CA1 gene 271 

and rs4826508 [C] from the NBDY gene have the lowest frequencies in IND (0.494 and 0.273, 272 

respectively), which might be conferring reduced susceptibility to COVID-19 in Indian population. 273 

However, rs2120019 [C] from the PPCDC gene might be having an opposite effect as its frequency 274 

in IND (0.62) is highest. 275 

 276 

4.2 Immune response to SARS-CoV2 infection 277 

IFIH1 gene encodes a protein that recognizes the viral RNA and initiates immune and 278 

proinflammatory responses. rs1990760 [T], which is present in the IFIH1 coding region, is associated 279 

with autoimmune disorders and protects against viral infection [79]. T allele frequency in Indians is 280 

0.516, second only to Europeans (Table 2). Thus, this might be conferring increased protection to the 281 

Indian population against viral infections, including SARS-CoV2. 282 

The chemokines CCL5, CCL4, and CCL3 play an important role in inflammation where they recruit 283 

immune cells [80, 81]. They are expressed during respiratory viral infections, and their expression 284 

levels are associated with disease severity [82, 83, 84]. In severely affected COVID-19 patients, their 285 

expression levels are significantly high, leading to liver toxicity and kidney failure, which are the 286 

most common complications associated with COVID-19 infection [82, 83, 84, 85]. rs2526327 [A] in 287 

RDM1 gene, rs1994182 [G] in MMP28 gene, rs3826404 [G] in MMP28 gene, rs2107538 [T] and 288 

rs3817655 [T] in CCL5 genes are associated with decreased CCL5 expression in whole blood [71] 289 

while rs4239252 [A] in TAF15 gene is associated with increased expression of CCL5 in whole blood 290 

[71]. All of these alleles are minor alleles in the Indian population. rs3817655, which lies in the 291 

CCL5 coding gene, is also associated with SARS-COV susceptibility [42]. The frequency of 292 

rs3817655 [T] allele in the Indian population (0.127) is least as compared to other populations. 293 

 294 
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4.3 COVID-19 severity 295 

IGFBP2 is involved in the regulation of insulin-like growth factor receptor signaling pathways, and 296 

its expression level is used as a marker for many cancers. The intronic variant rs2270360 [A] in the 297 

IGFBP2 gene was found to be associated with increased COVID-19 severity [86]. The risk allele [A] 298 

frequency in the Indian population is 0.927 which is significantly higher than other populations, 299 

indicating the predisposition of the Indian population to the severity of the disease. 300 

Low calcium levels in the serum are associated with COVID-19 severity, and maintaining proper 301 

calcium is a prerequisite to managing COVID-19 in the initial infection stage. RYR3 is a part of the 302 

calcium channel complex and releases calcium for intracellular activities [87]. rs2229117 [G] in the 303 

RYR3 gene is shown to be associated with increased COVID-19 severity [86]. G allele frequency in 304 

the Indian population (0.913) is higher than American and European populations but lesser than 305 

African and East Asian populations (Table 3). Thus this variant might be conferring a moderate risk 306 

of COVID-19 severity in the Indian population. 307 

CCL2 and CCR1 play major roles in immune and inflammatory responses. CCL2 is a chemo-308 

attractant cytokine that modulates the recruitment of monocytes, T cells, B cells, natural killer cells, 309 

macrophages, and dendritic cells [88]. Increased CCL2 levels are observed in severe COVID-19 310 

patients as compared to less severe COVID-19 patients [89].  CCR1 is a chemokine receptor that is 311 

strongly expressed in monocytes and macrophages and promotes their infiltration into the lungs in 312 

severe COVID-19 cases [90]. rs1024611 [G] and rs1015164 [G] alleles are associated with increased 313 

CCL2 expression [91] and increased CCR1 expression in whole blood [63], respectively. rs1024611 314 

[G] frequency in Indians (0.316) is significantly greater than only the African population, while 315 

rs1015164 [G] frequency in Indians (0.753) is significantly greater than only the European 316 

population (Table 3). 317 

MX1 is known to be implicated in the generation of protective immune responses against influenza 318 

infection [92]. Increased MX1 expression in the nasopharynx of COVID-19 patients is observed to 319 

be proportional to SARS-CoV2 viral load. However, its expression seems to reduce with increased 320 

age, suggesting inadequate antiviral immune response in older adults causing severe COVID-19 [92]. 321 

These results suggest that increased expression of MX1 might be restricting the COVID-19 severity. 322 

Six polymorphisms (rs35477708 [G], rs468259 [G], rs363981 [G], rs1638369 [G], rs469288 [A], 323 

rs468699 [T], rs462698 [G]) associated with decreased MX1 expression [41, 47] might be increasing 324 

risk of COVID-19 severity. Effect allele frequencies of each of these variants are highest in EAS and 325 

lowest in the EUR population. This indicates that the EAS population might be vulnerable to 326 

increased risk of COVID-19 severity, while EUR and IND populations might be at reduced and 327 

moderate risk, respectively. 328 

TNF encodes a proinflammatory cytokine secreted by macrophages is a major player contributing to 329 

the development of cytokine storms. rs1800630 [A] in the TNF gene is associated with an increased 330 

risk of developing acute respiratory distress syndrome (ARDS) [93]. The frequency of risk allele [A] 331 

in the Indian population (0.283) is highest as compared to other populations, suggesting that the 332 

allele might be conferring increased risk of COVID-19 severity to the Indian population.  333 

AHSG levels are critical for regulating macrophage deactivation. Decreased AHSG leads to impaired 334 

macrophage deactivation thus causing excess pro-inflammatory cytokine release in SARS-COV 335 

infection. rs2248690 [T] is associated with increased AHSG levels and decreased SARS-COV 336 

infection severity [94]. T allele frequency in the Indian population is 0.17 which is the least as 337 
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compared to other populations, indicating that the Indian population might be at an increased risk of 338 

COVID-19 severity. 339 

rs10735079 in OAS gene cluster (OAS1, OAS2, OAS3) is associated with antiviral mechanisms by 340 

producing 2′,5′-oligoadenylate (2-5A), which is a mediator in the antiviral process. This mediator 341 

activates RNaseL which degrades double-stranded RNA of corona virus [95]. rs10735079 [A] allele 342 

is associated with an increased risk of severe COVID-19. rs10735079 [A] allele corresponds to lower 343 

OAS1 activity and higher odds of severe COVID-19 [95]. A allele frequency in the Indian population 344 

(0.698) is lower than African, American, and East Asian populations but greater than Europeans, 345 

suggesting that the Indian population might be at a reduced risk of COVID-19 severity. 346 

Decreased levels of E-selectin and IL-3Ra proteins and increased levels of B3GN2 and C1GLC 347 

proteins are associated with increased COVID-19 severity [96]. rs2519093 [T] is associated with 348 

decreased E-selectin and IL-3Ra protein levels and increased B3GN2 and C1GLC protein levels. 349 

Thus, rs2519093 [T] might be increasing COVID-19 severity through modulating these protein 350 

levels. T allele frequency in the Indian population (0.128) (Table 3), is greater than only the African 351 

population, suggesting that Indian population might be at a reduced risk of COVID-19 severity. 352 

Vitamin D deficiency is associated with COVID-19 positivity and severity [97, 98]. GC gene 353 

encodes a protein that binds to vitamin D and transports it to targeted tissues. rs1155563 [C] allele, 354 

that is present in the GC gene, is associated with decreased serum vitamin-D levels [99], and its 355 

frequency in the Indian population (0.29) is greater than that of African, American, and European 356 

populations (Table 3). This suggests that rs1155563 [C] might be increasing COVID-19 357 

susceptibility and severity in the Indian population through reduced vitamin-D levels. 358 

 359 

4.4 COVID-19 related mortality or fatal outcomes 360 

Kim YC and Jeong BH [71] found the frequencies of T allele of rs2074192 in the ACE2 gene, and G 361 

allele of rs2298659 in the TMPRSS2 gene to be positively correlated with case fatality rate. Indians 362 

have lowest frequency of rs2074192 [T] (0.222) compared to Africans (0.351), Americans (0.405), 363 

East Asians (0.43) and Europeans (0.432). But they have highest frequency of rs2298659 [G] (0.834) 364 

compared to Africans (0.825), Americans (0.782), Europeans (0.77) and East Asians (0.751). Indians 365 

have lesser frequency of G allele of rs6598045 in the IFITM3 gene (0.159), which is associated with 366 

decreased case fatality rate, compared to Africans (0.299) and Americans (0.222). 367 

DES/SPEG genes code for muscle-specific proteins and mutations in these genes are involved with 368 

cardiomyopathies [100, 101]. Acute damage to the heart is a common complication in COVID-19 369 

patients. A allele of rs71040457 that is located downstream of the DES and upstream of the SPEG 370 

genes was found to be associated with an increased risk of COVID-19 mortality in the white British 371 

ancestry population [102]. While East Asians have the lowest frequency of this allele (0.177), Indians 372 

have a lesser frequency (0.276) compared to European (0.376), American (0.385), and African 373 

(0.939) populations.  374 

SLC39A10 gene plays an important role in mediating immune cell homeostasis. It has been reported 375 

to facilitate anti-apoptotic signaling during early B-cell development, modulate B-cell receptor signal 376 

strength, and control macrophage survival. rs113892140 located in this gene is associated with an 377 

increased risk of COVID-19 mortality [102]. Risk allele [A] frequency in the Indian population is 378 
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0.078 (Table 4), which is significantly greater than only the European population (0.046). Its 379 

frequency is highest in the African population (0.256). 380 

 381 

4.5 COVID-19 related comorbidities   382 

Twelve polymorphisms associated with comorbidities of COVID-19 were also analyzed (Table 5). 383 

Hypertension, coronary artery disease, type 2 diabetes are among the major comorbidities of COVID-384 

19 severity. rs2074192 [T] is associated with an increased risk of developing hypertension [49]. T 385 

allele frequency in the Indian population (0.222) is least as compared to other populations. 386 

 387 

5 CONCLUSION 388 

The potential role of several polymorphisms in COVID-19 susceptibility and severity suggests that 389 

host genetics plays an important role in the pathology and progression of the infection. We found 390 

multiple genetic variants that might be affecting the COVID-19 susceptibility, immune response, 391 

severity, and mortality. Some of these variants were observed in genetic association studies, while 392 

others were found to be relevant based on gene regulation and signaling pathways.  393 

COVID-19 positivity rate in India is one of the least in the world despite India being the second most 394 

populated nation [154, 155]. Due to the high population density in India, the spread of an airborne 395 

pathogen can be limited only to a certain extent [103]. Hence, a low COVID-19 positivity rate in 396 

India might be due to the lower genetic predisposition of Indians to COVID-19 susceptibility. The 397 

fatality rate of COVID-19 in India was relatively high during the peak phases of the first and second 398 

waves. However, when the peaks subsided the fatality rate reduced significantly. Inadequate medical 399 

facilities seem to be one of the major reasons which caused preventable deaths during these periods. 400 

[104]. Thus, the role of genetics in COVID-19 severity risk in the Indian population remains unclear. 401 

More detailed studies are warranted to confirm the COVID-19 related relevance of the variants 402 

discussed in this article. The current study will act as a good source to shortlist variants/genes for 403 

conducting genetic association studies to assess COVID-19 susceptibility, its severity, and mortality. 404 

 405 
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Table 1: Genetic variants related to COVID-19 susceptibility.  853 
p 

Effect allele frequency in Indian population. 
q
 EAF (India) compared with EAF in other populations (IND – India, EUR – Europe, AMR – America, SAS – South 854 

Asia, AFR – Africa, EAS – East Asia. ‘=’ denotes no significant difference between EAF of Indian and the other population. (EA – effect allele, OA – other allele, 855 
Ref – references). 856 

rsid Gene EA OA IND
 p

 

(EAF) 

AFR 
(EAF) 

AMR 
(EAF) 

EAS 
(EAF) 

EUR 
(EAF) 

SAS 
(EAF) EAF comparison

 q
 Effect Ref 

rs4343 ACE A G 0.604 0.805 0.607 0.68 0.435 0.627 EUR < IND = AMR = SAS < EAS < AFR Increased susceptibility to COVID-19 53, 54 

rs2285666 ACE2 A G 0.459 0.207 0.326 0.536 0.239 0.487 AFR < EUR < AMR < IND = SAS < EAS 
Increased levels of ACE2 in serum; increased susceptibility to 
COVID-19 

48 

rs4240157 ACE2 T C 0.69 0.459 0.712 0.965 0.657 0.724 AFR < EUR < IND = AMR = SAS < EAS 
Increased expression of ACE2; increased susceptibility to 
COVID-19 

49, 41 

rs4646188 ACE2 G A 0.062 0.003 0.032 0 0.136 0.061 EAS < AFR < AMR = SAS = IND < EUR 
Increased expression of ACE2; increased susceptibility to 
COVID-19 

50, 51, 41 

rs2158083 ACE2 T C 0.76 0.828 0.755 0.995 0.664 0.812 EUR < AMR = IND < SAS < AFR < EAS 
Increased expression of PIR and ACE2; increased susceptibility 
to COVID-19 

41, 50 

rs1978124 ACE2 C T 0.724 0.902 0.71 0.995 0.544 0.792 EUR < AMR = IND < SAS < AFR < EAS 
Increased expression of PIR and ACE2; increased susceptibility 
to COVID-19 

41, 50 

rs233574 ACE2 T C 0.176 0.084 0.235 0.004 0.315 0.177 EAS < AFR < IND < SAS < AMR < EUR 
Increased expression of ACE2; increased susceptibility to 
COVID-19 

52 

rs55790676 ADAM17 G T 0.925 0.919 0.866 0.98 0.816 0.904 EUR < AMR < SAS = AFR = IND < EAS 
Decreased ADAM17 expression; increased susceptibility to 
COVID-19 

41, 50 

rs1524668 ADAM17 A C 0.597 0.297 0.569 0.906 0.338 0.573 AFR < EUR < AMR = SAS = IND < EAS 
Decreased ADAM17 expression; increased susceptibility to 
COVID-19 

50, 41 

rs2248690 AHSG T A 0.17 0.278 0.365 0.161 0.244 0.177 EAS = IND = SAS < EUR < AFR < AMR 
Decreased AHSG levels and increased SARS-COV 
susceptibility; increased susceptibility to COVID-19 

94 

 rs1532423 CA1 G A 0.494 0.862 0.565 0.468 0.629 0.459 SAS = EAS = IND < AMR < EUR < AFR Decreased zinc levels; increased susceptibility to COVID-19 99 

rs1996225 CA5BP1 T C 0.541 0.607 0.586 0.782 0.48 0.622 EUR < IND < AMR < AFR < SAS < EAS 
Increased expression of ACE2; increased susceptibility to 
COVID-19 

41, 105 

rs4060 CA5BP1 A C 0.645 0.692 0.69 0.931 0.544 0.702 EUR < IND = AMR < AFR < SAS < EAS 
Increased expression of ACE2; increased susceptibility to 
COVID-19 

41, 105 

rs7248637 CD209 C T 0.948 0.624 0.903 0.685 0.885 0.83 AFR < EAS < SAS < EUR < AMR < IND Increased susceptibility to COVID-19 106, 107 

rs3128509 CTSL A G 0.191 0.126 0.408 0.018 0.413 0.204 EAS < AFR < IND = SAS < AMR < EUR 
Increased CTSL expression in various tissues; increased 
susceptibility to COVID-19 

41, 108 

rs17823744 DMGDH A G 0.94 0.992 0.938 1 0.87 0.942 EUR < AMR = IND = SAS < AFR < EAS 
Decreased selenium levels; decreased immune response; 
increased susceptibility to COVID-19 

99 

rs13015258 DPP4 T G 0.315 0.318 0.602 0.621 0.4 0.327 IND = AFR = SAS < EUR < AMR < EAS 
Increased DPP4 (CD26) expression in lungs; increased COVID-
19 susceptibility 

109, 110, 
41 
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rs9340799 ESR1 G A 0.377 0.265 0.272 0.193 0.308 0.373 EAS < AFR < AMR < EUR < SAS = IND 
Potential alteration of expression of ESR-alpha, thereby affecting 
ACE2 expression 

64 

rs4702 FURIN A G 0.499 0.941 0.589 0.525 0.563 0.499 SAS = IND = EAS < EUR < AMR < AFR 
Increased FURIN expression; increased susceptibility to COVID-
19 

65 

rs4932178 FURIN T C 0.276 0.287 0.209 0.16 0.356 0.286 EAS < AMR < IND = SAS = AFR < EUR 
Increased FURIN expression; increased susceptibility to COVID-
19 

64, 41 

rs71076692 HNF1A CT C 0.313 0.592 0.48 0.487 0.456 0.369 IND < SAS < EUR < AMR < EAS < AFR 
Increased plasma ACE2 concentration in males; increased 
susceptibility to COVID-19 

111, 112 

rs9666637 IFITM3 T A 0.912 0.757 0.689 0.393 0.864 0.81 EAS < AMR < AFR < SAS < EUR < IND 
Increased expression of IFITM2 in cultured fibroblast cells; 
increased susceptibility to COVID-19 

114, 41, 
113 

rs11246066 
IFITM3 - 

LOC10537
6504 

A C 0.189 0.026 0.29 0.554 0.258 0.219 AFR < IND = SAS < EUR < AMR < EAS 
Increased IFITM3 expression in whole blood; increased 
susceptibility to COVID-19 

114, 41, 
113 

rs7931303 
IFITM3 - 

LOC10537
6504 

G A 0.398 0.077 0.526 0.558 0.676 0.422 AFR < IND = SAS < AMR < EAS < EUR 
Increased IFITM1 and IFITM2 expression in whole blood; 
increased susceptibility to COVID-19 

114, 41 

rs2093932 KCNT2 C T 0.933 0.998 0.991 0.998 0.969 0.944 IND = SAS < EUR < AMR < AFR < EAS Increased susceptibility to COVID-19 115 

rs35477708 MX1 GA G 0.35 0.556 0.602 0.191 0.633 0.521 EAS < IND < SAS < AFR < AMR < EUR 
Increased TMPRSS2 expression; increased susceptibility to 
COVID-19 

41, 47 

rs468259 MX1 C G 0.485 0.36 0.334 0.249 0.54 0.485 EAS < AMR < AFR < SAS = IND < EUR 
Increased TMPRSS2 expression, increased susceptibility to 
COVID-19 

41, 47 

rs363981 MX1 T G 0.261 0.104 0.29 0.01 0.484 0.249 EAS < AFR < SAS = IND = AMR < EUR 
Increased TMPRSS2 expression, increased susceptibility to 
COVID-19 

41, 47 

rs1638369 MX1 T G 0.341 0.382 0.448 0.106 0.573 0.364 EAS < IND = SAS = AFR < AMR < EUR 
Increased TMPRSS2 expression, increased susceptibility to 
COVID-19 

41, 47 

rs469288 MX1 G A 0.551 0.443 0.468 0.348 0.588 0.547 EAS < AFR < AMR < SAS = IND = EUR 
Increased TMPRSS2 expression, increased susceptibility to 
COVID-19 

41, 47 

rs468699 MX1 C T 0.347 0.468 0.336 0.101 0.539 0.366 EAS < AMR = IND = SAS < AFR < EUR 
Increased TMPRSS2 expression, increased susceptibility to 
COVID-19 

41, 47 

rs462698 MX1 A G 0.341 0.382 0.448 0.106 0.574 0.364 EAS < IND = SAS = AFR < AMR < EUR 
Increased TMPRSS2 expression, increased susceptibility to 
COVID-19 

41, 47 

rs4826508 NBDY C T 0.273 0.372 0.408 0.364 0.272 0.294 EUR = IND = SAS < EAS < AFR < AMR Decreased zinc levels, increased susceptibility to COVID-19 116, 99 

rs1042838 PGR A C 0.078 0.006 0.137 0.01 0.179 0.066 AFR < EAS < SAS = IND < AMR < EUR 
Affects PGR protein function, increased susceptibility to COVID-
19 

53, 74 

rs2120019 PPCDC C T 0.62 0.486 0.246 0.611 0.208 0.595 EUR < AMR < AFR < SAS = EAS = IND 
Decreased serum zinc levels, increased susceptibility to COVID-
19 

99 

rs1893217 PTPN2 G A 0.183 0.036 0.061 0.192 0.141 0.178 AFR < AMR < EUR < SAS = IND = EAS 
Increased ACE2 expression, increased susceptibility to COVID-
19 

117, 41 
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rs35746115 SDK2 C A 0.926 0.916 0.865 0.973 0.764 0.926 EUR < AMR < AFR = IND = SAS < EAS Increased risk of COVID-19 susceptibility 115 

rs12950851 SDK2 C T 0.947 0.991 0.873 0.971 0.769 0.914 EUR < AMR < SAS < IND < EAS < AFR Increased risk of COVID-19 susceptibility 115 

rs461194 TMPRSS2 G C 0.916 0.995 0.772 0.653 0.969 0.887 EAS < AMR < SAS < IND < EUR < AFR 
Predicted to alter the splicing silencer motif of TMPRSS2 which 
is likely to affect TMPRSS2 structure and function 

118 

rs456016 TMPRSS2 T C 0.056 0.02 0.231 0.349 0.019 0.075 EUR < AFR < IND = SAS < AMR < EAS 
Predicted to modify and/or create splice enhancer site, donor site 
and silencer site thereby affecting TMPRSS2 splicing 

118 

rs467375 TMPRSS2 A G 0.372 0.093 0.239 0.006 0.441 0.384 EAS < AFR < AMR < IND = SAS < EUR 
Increased TMPRSS2 expression in lungs, increased 
susceptibility to COVID-19 

41, 47 

rs2094881 TMPRSS2 C T 0.681 0.476 0.509 0.256 0.748 0.676 EAS < AFR < AMR < SAS = IND < EUR 
Predicted to modify the splice enhancer site in TMPRSS2 gene, 
potentially affecting TMPRSS2 expression 

118 

rs4818239 TMPRSS2 C T 0.425 0.25 0.336 0.008 0.502 0.446 EAS < AFR < AMR < IND = SAS < EUR 
Increased TMPRSS2 expression in lungs, increased 
susceptibility to COVID-19 

41, 47 

rs35899679 TMPRSS2 A C 0.374 0.107 0.288 0.007 0.463 0.384 EAS < AFR < AMR < IND = SAS < EUR 
Increased TMPRSS2 expression in lungs, increased 
susceptibility to COVID-19 

41, 47 

rs12627374 TMPRSS2 C T 0.884 0.995 0.996 0.85 0.998 0.863 EAS = SAS = IND < AFR < AMR < EUR 
Binding site for hsa-miR-345 created, might be altering 
TMPRSS2 expression 

108 

rs8134378 TMPRSS2 G A 0.949 0.821 0.951 0.999 0.885 0.922 AFR < EUR < SAS < IND = AMR < EAS 
Increased TMPRSS2 expression, increased susceptibility to 
COVID-19 

77, 64, 41 

rs140092351 
LOC10192

8923 

GTT
TCT
CTA
GTT
TGG

A 

G 0.143 0.597 0.334 0.228 0.223 0.148 IND = SAS < EUR < EAS < AMR < AFR Increased susceptibility to COVID-19 115 

rs80066318 

LOC10537
0282 - 

LOC10537
0283 

G A 0.214 0.382 0.03 0.168 0.032 0.303 AMR < EUR < EAS < IND < SAS < AFR Increased susceptibility to COVID-19 115 

rs56248709 

LOC10537
4172 - 

LOC10041
9750 

C T 0.071 0.263 0.094 0.031 0.153 0.073 EAS < IND = SAS = AMR < EUR < AFR Increased susceptibility to COVID-19 115 

rs62436931 
LOC10537

8093 
C T 0.16 0.122 0.174 0 0.278 0.142 EAS < AFR < SAS = IND = AMR < EUR Increased susceptibility to COVID-19 115 

 857 
 858 
 859 
 860 
 861 
 862 
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Table 2: Genetic variants related to host immune response to SARS-CoV2 infection. 864 
p 

Effect allele frequency in Indian population. 
q
 EAF (India) compared with EAF in other populations (IND – India, EUR – Europe, AMR – America, SAS – South 865 

Asia, AFR – Africa, EAS – East Asia. ‘=’ denotes no significant difference between EAF of Indian and the other population. (EA – effect allele, OA – other allele, 866 
Ref – references). 867 

rsid Gene EA OA IND 
p
 

(EAF) 

AFR 
(EAF) 

AMR 
(EAF) 

EAS 
(EAF) 

EUR 
(EAF) 

SAS 
(EAF) EAF comparison

 q
 Literature data Ref 

rs1719152 CCL4 A T 0.121 0.049 0.118 0.276 0.249 0.228 AFR < AMR = IND < SAS < EUR < EAS 
Increased CCL4 and CCL3 expression in lungs, might be 
causing impaired immune response 

41, 119 

rs3817655 CCL5 A T 0.873 0.546 0.78 0.679 0.841 0.823 AFR < EAS < AMR < SAS < EUR = IND 
Increased CCL5 expression in whole blood, might be causing 
impaired immune response 

41, 83, 
42 

rs2107538 CCL5 T C 0.281 0.451 0.225 0.322 0.161 0.309 EUR < AMR < IND = SAS = EAS < AFR 
Decreased CCL5 levels in whole blood, might be causing 
impaired immune response 

41, 105 

rs1015164 
CCRL2 - 

LINC02009 
G A 0.753 0.953 0.777 0.813 0.683 0.717 EUR < SAS = IND = AMR < EAS < AFR 

Increased CCR1 expression in whole blood, might be causing 
impaired immune response 

41, 90 

rs2306630 HEATR9 A G 0.099 0.191 0.199 0.308 0.111 0.108 IND = SAS = EUR < AFR < AMR < EAS 
Decreased HEATR9 and CCL5 expression in whole blood, might 
be causing impaired immune response 

41, 120 

rs4611572 
ICAM3 - 

TYK2 
G C 0.575 0.38 0.486 0.658 0.579 0.547 AFR < AMR < SAS = IND = EUR < EAS 

Decreased ICAM3 expression, might be causing impaired 
immune response 

121, 41, 
42, 122 

rs1990760 IFIH1 T C 0.516 0.126 0.39 0.187 0.605 0.564 AFR < EAS < AMR < IND < SAS < EUR Protects against viral infection 79, 123 

rs2430561 IFNG A T 0.364 0.167 0.254 0.159 0.462 0.39 EAS < AFR < AMR < IND = SAS < EUR Increased SARS susceptibility 124 

rs1024611 
LINC01989 

- CCL2 
G A 0.316 0.228 0.486 0.547 0.316 0.321 AFR < EUR = IND = SAS < AMR < EAS 

Increased CCL2 expression, might be causing impaired immune 
response 

91 

rs1994182 MMP28 G C 0.341 0.651 0.295 0.572 0.167 0.38 EUR < AMR = IND = SAS < EAS < AFR 
Decreased CCL5 levels in whole blood, might be causing 
impaired immune response 

41, 42, 
89 

rs3826404 MMP28 G T 0.272 0.362 0.213 0.315 0.165 0.31 EUR < AMR < IND = SAS = EAS < AFR 
Decreased CCL5 expression in whole blood, might be causing 
impaired immune response 

41, 42, 
89 

rs1801133 MTHFR A G 0.165 0.09 0.474 0.296 0.365 0.119 AFR < SAS < IND < EAS < EUR < AMR 
Decreased serum folate levels, might be causing impaired 
immune response 

125, 126, 
99 

rs13303010 NOC2L G A 0.142 0.837 0.303 0.292 0.098 0.125 EUR < SAS = IND < EAS < AMR < AFR 
Increased PLEKHN1 expression in CD4 T-cells (T cell, CD4, 
TFH) 

127 

rs2526327 RDM1 A G 0.273 0.444 0.202 0.21 0.145 0.293 EUR < AMR < EAS < IND = SAS < AFR 
Decreased CCL5 expression in whole blood, might be causing 
impaired immune response 

41, 42 

rs2769264 SELENBP1 T G 0.792 0.703 0.588 0.714 0.839 0.785 AMR < AFR < EAS < SAS = IND < EUR 
Decreased levels of copper in serum, might be causing impaired 
immune response 

116 

rs1175550 SMIM1 A G 0.842 0.399 0.846 0.998 0.781 0.857 AFR < EUR < IND = AMR = SAS < EAS 
Decreased levels of copper in serum, might be causing impaired 
immune response 

99, 41 
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rs4239252 TAF15 A G 0.32 0.607 0.288 0.456 0.162 0.366 EUR < AMR = IND = SAS < EAS < AFR Increased expression of CCL5 in whole blood 41, 42 

rs1061622 TNFRSF1B G T 0.249 0.187 0.127 0.15 0.218 0.276 AMR < EAS < AFR < EUR = IND = SAS Increased TNFRSF1B expression in whole blood 41, 119 

 868 
 869 
Table 3: Genetic variants related to COVID-19 severity. 870 
p 

Effect allele frequency in Indian population. 
q
 EAF (India) compared with EAF in other populations (IND – India, EUR – Europe, AMR – America, SAS – South 871 

Asia, AFR – Africa, EAS – East Asia. ‘=’ denotes no significant difference between EAF of Indian and the other population. (EA – effect allele, OA – other allele, 872 
Ref – references). 873 

rsid Gene EA OA IND
 p

 

(EAF) 

AFR 
(EAF) 

AMR 
(EAF) 

EAS 
(EAF) 

EUR 
(EAF) 

SAS 
(EAF) EAF comparison

 q
 Effect Ref 

rs2519093 ABO T C 0.128 0.087 0.121 0.19 0.185 0.134 AFR < AMR = IND = SAS < EUR < EAS Increased risk of COVID-19 severity 
96, 128, 

129 

rs2074192 ACE2 T C 0.222 0.351 0.405 0.43 0.432 0.227 IND < SAS < AFR < AMR < EAS < EUR Increased risk of COVID-19 severity 130 

rs4240157 ACE2 T C 0.69 0.459 0.712 0.965 0.657 0.724 AFR < EUR < IND = AMR = SAS < EAS 
Increased hospitalization due to COVID-19, increased risk of 
COVID-19 severity 

131 

rs13282163 ADAM9 A C 0.94 0.995 0.944 0.915 0.912 0.839 SAS < EUR < EAS < IND = AMR < AFR Increased risk of COVID-19 severity 86 

rs12692386 ADAM17 G A 0.509 0.983 0.484 0.219 0.669 0.531 EAS < AMR = IND = SAS < EUR < AFR 
Increased ADAM17 expression in severe sepsis, increased risk 
of COVID-19 severity 

50, 41 

rs2765013 AGO1 C T 0.881 0.477 0.61 0.364 0.913 0.864 EAS < AFR < AMR < SAS < IND = EUR Increased risk of COVID-19 severity 86 

rs1892429 
ANKRD30

A 
A G 0.907 0.992 0.759 0.917 0.757 0.912 EUR < AMR < IND = SAS = EAS < AFR Increased risk of COVID-19 severity 86 

rs10039856 
ARHGAP2

6 
C T 0.813 0.555 0.847 0.324 0.915 0.794 EAS < AFR < SAS = IND = AMR < EUR Increased risk of COVID-19 severity 86 

rs7787942 C1GALT1 T A 0.297 0.828 0.46 0.699 0.466 0.293 SAS = IND < AMR < EUR < EAS < AFR 
Increased C1GALT1C1 protein levels in blood serum, and 
associated with COVID-19 severity 

132, 96 

rs1205 CRP C T 0.692 0.83 0.625 0.434 0.69 0.667 EAS < AMR < SAS = EUR = IND < AFR 
Increased serum CRP levels, one of the major hallmarks of 
severe COVID-19, associated with susceptibility and severity of 
community acquired pneumonia 

133, 134, 
135, 136 

rs3774882 EVC C G 0.848 0.687 0.937 0.9 0.93 0.781 AFR < SAS < IND < EAS < EUR < AMR Increased risk of COVID-19 severity 86 

rs3774881 EVC T C 0.786 0.193 0.64 0.751 0.857 0.745 AFR < AMR < SAS = EAS = IND < EUR Increased risk of COVID-19 severity 86 

rs17514846 FURIN A C 0.371 0.883 0.295 0.159 0.461 0.39 EAS < AMR < IND = SAS < EUR < AFR 
Increased FURIN expression in vascular endothelial cells, 
increased risk of COVID-19 severity 

62, 64 

rs1155563 GC C T 0.296 0.057 0.186 0.336 0.244 0.316 AFR < AMR < EUR < IND = SAS = EAS 
Decreased serum vitamin-D levels, increased risk of COVID-19 
severity 

99 
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rs3895472 
GLIS3 - 
RNU6-
694P 

C T 0.896 0.796 0.915 0.992 0.936 0.889 AFR < SAS = IND = AMR < EUR < EAS Increased risk of COVID-19 severity 86 

rs1799945 HFE C G 0.912 0.989 0.885 0.971 0.828 0.929 EUR < AMR = IND = SAS < EAS < AFR 
Decreased iron bioavailability, increased risk of COVID-19 
severity 

99 

rs10755709 HIVEP1 A G 0.176 0.634 0.69 0.591 0.7 0.572 IND < SAS < EAS < AFR < AMR < EUR Increased risk of COVID-19 severity 86 

rs9380142 HLA-G A G 0.84 0.809 0.719 0.651 0.656 0.85 EAS < EUR < AMR < AFR < IND = SAS Increased risk of COVID-19 severity 95 

rs2304237 ICAM3 C T 0.261 0.141 0.174 0.113 0.234 0.248 EAS < AFR < AMR < EUR = SAS = IND Increased risk of COVID-19 severity 137 

rs2236757 IFNAR2 A G 0.425 0.193 0.428 0.565 0.294 0.468 AFR < EUR < IND = AMR = SAS < EAS Increased risk of COVID-19 severity 95 

rs13050728 IFNAR2 T C 0.487 0.194 0.451 0.576 0.333 0.519 AFR < EUR < AMR = IND = SAS < EAS Increased risk of COVID-19 severity 95 

rs2270360 IGFBP2 A C 0.927 0.976 0.659 0.585 0.695 0.776 EAS < AMR < EUR < SAS < IND < AFR Increased risk of COVID-19 severity 86 

rs1800872 IL10 T G 0.435 0.436 0.333 0.676 0.24 0.458 EUR < AMR < IND = AFR = SAS < EAS Increased risk of COVID-19 severity 
136, 105, 

41 

rs315952 IL1RN T C 0.887 0.534 0.785 0.444 0.72 0.851 EAS < AFR < EUR < AMR < SAS < IND 
Increased risk of developing acute respiratory distress syndrome 
(ARDS) 

138 

rs1800797 IL6 A G 0.17 0.017 0.184 0.001 0.408 0.134 EAS < AFR < SAS = IND = AMR < EUR 
Increased risk of severe community acquired pneumonia and 
increased IL6 expression in cultured fibroblast cells, might be 
associated with increased COVID-19 severity 

139, 136, 
41 

rs10766439 
KCNQ1DN 
- CDKN1C 

A G 0.351 0.241 0.199 0.008 0.365 0.374 EAS < AMR < AFR < IND = EUR = SAS Increased risk of COVID-19 severity 86 

rs1870377 
KDR - 

VEGFR2 
A T 0.173 0.09 0.131 0.465 0.235 0.149 AFR < AMR = SAS = IND < EUR < EAS 

Decreased stability of VEGFR2, contributing to COVID-19 
progression or pathogenesis 

119 

rs4240376 
LINC01170 
- ZNF608 

G T 0.69 0.887 0.713 0.578 0.789 0.704 EAS < IND = SAS = AMR < EUR < AFR Increased risk of COVID-19 severity 86 

rs1800630 LTA - TNF A C 0.283 0.1 0.134 0.164 0.145 0.241 AFR < AMR < EUR < EAS < SAS = IND 
Increased risk of developing acute respiratory distress syndrome 
(ARDS), increased risk of COVID-19 severity 

93 

rs10490770 LZTFL1 C T 0.251 0.004 0.043 0.005 0.081 0.296 AFR < EAS < AMR < EUR < IND = SAS 
Increased risk of COVID-19 severity, COVID-19 related severe 
respiratory failure, COVID-19 related Venous thromboembolism 
and COVID-19 related hepatic injury 

140 

rs113791144 MGAT1 T C 0.194 0.043 0.143 0.036 0.083 0.168 EAS < AFR < EUR < AMR < SAS = IND Increased risk of COVID-19 severity 86 

rs35619543 MUC5B T G 0.085 0.362 0.245 0.033 0.26 0.195 EAS < IND < SAS < AMR < EUR < AFR 
Increased risk of pulmonary fibrosis, increased risk of COVID-19 
severity 

141, 142, 
113 

rs35477708 MX1 G GA 0.65 0.444 0.398 0.809 0.367 0.479 EUR < AMR < AFR < SAS < IND < EAS 
Decreased MX1 expression, increased risk of COVID-19 
severity 

41, 47 
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rs468259 MX1 G C 0.515 0.64 0.666 0.751 0.46 0.515 EUR < IND = SAS < AFR < AMR < EAS 
Decreased MX1 expression, increased risk of COVID-19 
severity 

41, 47 

rs363981 MX1 G T 0.739 0.896 0.71 0.99 0.516 0.751 EUR < AMR = IND = SAS < AFR < EAS 
Decreased MX1 expression, increased risk of COVID-19 
severity 

41, 47 

rs1638369 MX1 G T 0.659 0.618 0.552 0.894 0.427 0.636 EUR < AMR < AFR = SAS = IND < EAS 
Decreased MX1 expression, increased risk of COVID-19 
severity 

41, 47 

rs469288 MX1 A G 0.449 0.557 0.532 0.652 0.412 0.453 EUR = IND = SAS < AMR < AFR < EAS 
Decreased MX1 expression, increased risk of COVID-19 
severity 

41, 47 

rs468699 MX1 T C 0.653 0.532 0.664 0.899 0.461 0.634 EUR < AFR < SAS = IND = AMR < EAS 
Decreased MX1 expression, increased risk of COVID-19 
severity 

41, 47 

rs462698 MX1 G A 0.659 0.618 0.552 0.894 0.426 0.636 EUR < AMR < AFR = SAS = IND < EAS 
Decreased MX1 expression, increased risk of COVID-19 
severity 

41 

rs10735079 
OAS1-
OAS3 

A G 0.698 0.812 0.756 0.748 0.636 0.717 EUR < IND = SAS < EAS < AMR < AFR Increased risk of COVID-19 severity 95 

rs10808999 PLEKHA2 G A 0.861 0.977 0.925 0.921 0.859 0.883 EUR = IND = SAS < EAS < AMR < AFR Increased risk of COVID-19 severity 86 

rs6065904 PLTP A G 0.325 0.212 0.38 0.337 0.244 0.35 AFR < EUR < IND = EAS = SAS < AMR Increased risk of COVID-19 severity 96, 132 

rs2010843 
RDH10-

AS1 
C T 0.539 0.066 0.659 0.628 0.556 0.538 AFR < SAS = IND = EUR < EAS < AMR Increased risk of COVID-19 severity 86 

rs2238187 RGS6 G A 0.308 0.185 0.29 0.624 0.389 0.3 AFR < AMR = SAS = IND < EUR < EAS Increased risk of COVID-19 severity 86 

rs12083278 

RPL21P22 
- 

LOC10798
4935 

C G 0.941 0.83 0.637 0.721 0.642 0.843 AMR < EUR < EAS < AFR < SAS < IND Increased risk of COVID-19 severity 86 

rs2229117 RYR3 G C 0.913 0.969 0.824 0.963 0.867 0.918 AMR < EUR < IND = SAS < EAS < AFR Increased risk of COVID-19 severity 86 

rs12593288 RYR3 C T 0.805 0.976 0.738 0.486 0.811 0.71 EAS < SAS < AMR < IND = EUR < AFR Increased risk of COVID-19 severity 86 

rs34761447 STX8 C T 0.851 0.992 0.951 0.815 0.905 0.788 SAS < EAS = IND < EUR < AMR < AFR Increased risk of COVID-19 severity 86 

rs2220543 

SUMO2P6 
- 

LOC10537

7740 

T A 0.548 0.585 0.633 0.491 0.704 0.512 EAS < SAS = IND = AFR < AMR < EUR Increased risk of COVID-19 severity 86 

rs2274122 TEKT2 A G 0.662 0.191 0.519 0.27 0.82 0.613 AFR < EAS < AMR < SAS < IND < EUR Increased risk of COVID-19 severity 86 

rs12329760 TMPRSS2 T C 0.243 0.287 0.154 0.362 0.236 0.226 AMR < SAS = EUR = IND < AFR < EAS Increased risk of COVID-19 severity 143 

rs2094881 TMPRSS2 C T 0.681 0.476 0.509 0.256 0.748 0.676 EAS < AFR < AMR < SAS = IND < EUR Increased risk of COVID-19 severity 118, 143 

rs60744406 ZNF155 G A 0.505 0.18 0.376 0.257 0.571 0.492 AFR < EAS < AMR < SAS < IND < EUR Increased risk of COVID-19 severity 86 
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rs71481792 

LINC02676 
- 

LOC10192
8272 

A T 0.615 0.762 0.51 0.65 0.35 0.626 EUR < AMR < IND = SAS = EAS < AFR Increased risk of COVID-19 severity 86 

rs1984162 

LOC10537
0111 - 

LOC10537
0112 

G A 0.173 0.222 0.187 0.083 0.269 0.176 EAS < IND = SAS = AMR < AFR < EUR Increased risk of COVID-19 severity 86 

rs9386484 
LOC10537

7923 
T A 0.789 0.616 0.548 0.637 0.72 0.615 AMR < SAS < AFR < EAS < EUR < IND Increased risk of COVID-19 severity 86 

rs7027911 

LOC10798
7083 - 

MTCO1P5
0 

A G 0.535 0.887 0.569 0.662 0.417 0.517 EUR < SAS = IND = AMR < EAS < AFR Increased risk of COVID-19 severity 86 

rs12133284 
LOC11226

8258 
T A 0.148 0.34 0.14 0.013 0.233 0.148 EAS < AMR = IND = SAS < EUR < AFR Increased risk of COVID-19 severity 115 

 874 
 875 
Table 4: Genetic variants related to COVID-19 related fatal outcomes or mortality. 876 
p 

Effect allele frequency in Indian population. 
q
 EAF (India) compared with EAF in other populations (IND – India, EUR – Europe, AMR – America, SAS – South 877 

Asia, AFR – Africa, EAS – East Asia. ‘=’ denotes no significant difference between EAF of Indian and the other population. (EA – effect allele, OA – other allele, 878 
Ref – references). 879 

rsid Gene EA OA IND
 p

 

(EAF) 

AFR 
(EAF) 

AMR 
(EAF) 

EAS 
(EAF) 

EUR 
(EAF) 

SAS 
(EAF) EAF comparison

 q
 Effect Ref 

rs2074192 ACE2 T C 0.222 0.351 0.405 0.43 0.432 0.227 IND < SAS < AFR < AMR < EAS < EUR Increased risk of COVID-19 related mortality 71 

rs2874140 CPQ T A 0.336 0.419 0.287 0.627 0.21 0.328 EUR < AMR = SAS = IND < AFR < EAS Increased risk of COVID-19 related mortality 102 

rs71040457 
DES - 
SPEG 

A AG 0.276 0.939 0.385 0.177 0.376 0.293 EAS < IND = SAS < EUR < AMR < AFR Increased risk of COVID-19 related mortality 102 

rs6598045 IFITM3 A G 0.841 0.701 0.778 0.859 0.894 0.723 AFR < SAS < AMR < IND < EAS < EUR Increased risk of COVID-19 related mortality 71 

rs73060484 
LOC105376

755 
C A 0.065 0.115 0.236 0.235 0.077 0.134 IND = EUR < AFR < SAS < EAS < AMR Increased risk of COVID-19 related mortality 144 

rs10490770 LZTFL1 C T 0.251 0.004 0.043 0.005 0.081 0.296 AFR < EAS < AMR < EUR < IND = SAS Increased risk of COVID-19 related mortality 140 

rs55986907 
RPS26P32 
- TOMM7 

T C 0.373 0.123 0.337 0.159 0.284 0.374 AFR < EAS < EUR < AMR = IND = SAS Increased risk of COVID-19 related mortality 102 

rs113892140 SLC39A10 A G 0.078 0.256 0.238 0.202 0.046 0.077 EUR < SAS = IND < EAS < AMR < AFR Increased risk of COVID-19 related mortality 102 

rs2298659 TMPRSS2 G A 0.834 0.825 0.782 0.751 0.77 0.811 EAS < EUR < AMR < SAS = AFR = IND Increased risk of COVID-19 related mortality 71 

 880 
 881 
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Table 5: Genetic variants related to comorbidities that are risk factors of COVID-19 susceptibility/severity. 882 
p 

Effect allele frequency in Indian population. 
q
 EAF (India) compared with EAF in other populations (IND – India, EUR – Europe, AMR – America, SAS – South 883 

Asia, AFR – Africa, EAS – East Asia. ‘=’ denotes no significant difference between EAF of Indian and the other population. (EA – effect allele, OA – other allele, 884 
Ref – references). 885 

rsid Gene EA OA IND
 p

 

(EAF) 

AFR 
(EAF) 

AMR 
(EAF) 

EAS 
(EAF) 

EUR 
(EAF) 

SAS 
(EAF) EAF comparison

 q
 Effect Ref 

rs2285666 ACE2 A G 0.459 0.207 0.326 0.536 0.239 0.487 AFR < EUR < AMR < IND = SAS < EAS 
Increased risk of developing hypertension, which might increase 
the risk for COVID-19 severity 

145 

rs4240157 ACE2 C T 0.31 0.541 0.288 0.035 0.343 0.276 EAS < SAS = AMR = IND < EUR < AFR 
Increased risk of developing hypertension and Type 2 diabetes, 
which might increase the risk for COVID-19 severity 

50, 49 

rs4646188 ACE2 A G 0.938 0.997 0.968 1 0.864 0.939 EUR < IND = SAS = AMR < AFR < EAS 
Increased risk of developing hypertension, which might alter 
COVID-19 severity Increased risk of developing atrial fibrillation 
and cardioembolic stroke in diabetic patients 

50, 146 

rs2158083 ACE2 C T 0.24 0.172 0.245 0.005 0.336 0.188 EAS < AFR < SAS < IND = AMR < EUR 
Associated with changes in blood pressure, potentially affecting 
COVID-19 susceptibility and severity 

50 

rs1978124 ACE2 T C 0.276 0.098 0.29 0.005 0.456 0.208 EAS < AFR < SAS < IND = AMR < EUR 
Increased risk of developing hypertension, which might increase 
the risk for COVID-19 severity 

50, 130 

rs2074192 ACE2 T C 0.222 0.351 0.405 0.43 0.432 0.227 IND < SAS < AFR < AMR < EAS < EUR 
Increased risk of developing hypertension, potentially affecting 
COVID-19 susceptibility and severity 

49 

rs4646155 ACE2 T C 0.069 0.136 0.019 0.032 0.002 0.085 EUR < AMR < EAS < IND = SAS < AFR 
Increased risk of developing essential hypertension, thereby 
modulating COVID-19 susceptibility and severity, 

147 

rs2106809 ACE2 T C 0.545 0.913 0.687 0.477 0.751 0.509 EAS < SAS = IND < AMR < EUR < AFR 
Increased risk of developing essential hypertension, thereby 
modulating COVID-19 susceptibility and severity, 

148 

rs55790676 ADAM17 T G 0.075 0.081 0.134 0.02 0.184 0.096 EAS < IND = AFR = SAS < AMR < EUR 
Decreased total cholesterol levels and increased HDL levels, 
potentially affecting COVID-19 severity 

50 

rs2107538 CCL5 T C 0.281 0.451 0.225 0.322 0.161 0.309 EUR < AMR < IND = SAS = EAS < AFR 
Associated with type 2 diabetes and tuberculosis, which might 
affect COVID-19 susceptibility and severity 

149, 150 

rs1800796 IL6 C G 0.348 0.103 0.295 0.791 0.048 0.395 EUR < AFR < AMR = IND = SAS < EAS 
Increased risk of coronary artery disease, which might affect 
COVID-19 severity 

151 

rs3745264 RAVER1 A C 0.201 0.057 0.297 0.178 0.157 0.213 AFR < EUR < EAS = IND = SAS < AMR Increased risk of developing familial hypercholesterolemia 152, 42 

 886 
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