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Abstract 

Background 

Social isolation is a risk factor for dementia, a devastating disease with a rapidly growing 

global prevalence. However, the link between social isolation and changes in brain structure 

and function is poorly understood, as studies are scarce in number, methodologically 

inconsistent and small in size. In this pre-registered analysis of a large population-based panel 

study, we aimed to determine the impact of social isolation on brain structures and cognitive 

functions central to age associated decline and dementia. 

Methods and findings 

We analysed data of 1992 cognitively healthy participants of the LIFE-Adult study at baseline 

(age range: 50-82 years) and of 1409 particpants at follow-up (average change in age: 5.89 

years). We measured social isolation using the 30-point Lubben Social Network Scale (LSNS) 

and derived measures of grey matter structure from anatomical 3T MRIs. We employed 

covariate adjusted linear mixed models to test the associations of baseline social isolation and 

change in social isolation with hippocampal volume, cognitive functions (executive functions, 

memory, processing speed) and cortical thickness.  
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We found stronger baseline social isolation to be significantly associated with smaller 

hippocampal volumes (β = −5.5 mm3/LSNS point(pt), FDR q = 0.004, BF = 14.6) and lower 

cognitive functions (all β < −0.014 SD/pt, FDR q < 0.003, BF > 49). Increases in social 

isolation over time were linked to hippocampal volume decline (β = −4.9 mm3/pt, FDR q = 

0.01, BF = 2.9) and worse memory performance (β = −0.013 SD/pt, FDR q = 0.04, BF = 1.1). 

Furthermore, we detected a significant interaction of baseline social isolation with change in 

age on hippocampal volume (β = −0.556 mm3/pt*a, q = 0.04, BF = 0.5), indicating 

accelerated brain aging in more isolated individuals. Moreover, social isolation cross-

sectionally and longitudinally correlated with lower cortical thickness in multiple clusters in 

the orbitofrontal cortex, precuneus and other areas (FDR q < 0.05).   

Conclusions  

Here, we provide evidence that social isolation contributes to hippocampal and cortical 

atrophy and subtle cognitive decline in non-demented mid- to late-life adults. Importantly, 

within-subject effects of social isolation were similar to between-subject effects, indicating an 

opportunity for targeting social isolation to reduce dementia risk.  
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Introduction 

Over 50 million humans suffer from dementia today. In just 20 years this number will likely 

double. Already now, dementia’s global annual costs exceed one trillion US$(1) and its 

detrimental effects on the lives of the afflicted makes it a major contributor to the world’s 

burden of disease(2). 

Research on pharmacological interventions targeting dementia pathogenesis have not yielded 

any result with a clear clinical benefit yet(3,4) and available drugs targeting cognitive 

symptoms offer at most a minor alleviation(5,6). Henceforth, prevention is of cardinal 

importance and potentially modifiable risk factors are our most promising target(7).  

Systematic reviews and meta-analyses have concluded that social isolation, the objective lack 

of social contact, is such a risk factor for dementia (8,9) and its main feature cognitive 

decline(10–12). Assuming causal relationships, Livingston et al. calculated population 

attributable fractions for risk factors for dementia and concluded that 3.5% of cases could be 

attributed to social isolation. This is almost as many as to obesity, hypertension and diabetes 

combined.  

Dementia is characterized by progressing cerebral alterations such as vascular degeneration, 

amyloid plaques, tau fibrillary tangles and neural degeneration and grey matter loss. 

Neuroimaging correlates of these brain changes have been observed multiple years prior to 

symptom onset in autosomal dominant dementia(13,14) and can already be detected in 

cognitively healthy persons using neuroimaging(15). Thus, brain magnetic resonance imaging 

(MRI) can be a potent dementia-risk indicator(16,17), might offer pivotal guidance to identify 

patients for intensive dementia prevention(18) and serve as secondary outcome for 

intervention trials(19,20). However, as the US National Academy of Sciences stresses, this 

application requires further study(21).  

Still, the link between brain structure and social connections, the umbrella term encompassing 

social isolation, social support and loneliness, has not received much attention(22). First 

cross-sectional studies have linked low social connection to an elevated “brain age” gap 

estimate(23), changes in microstructural(24–26) and volumetric measures in brain regions 

including the hippocampus and the prefrontal cortex(26–32). In a longitudinal study 

microstructural deteriorations and a larger total white matter hyperintensity volume were 

correlated with decreases in predominantly social activities. Furthermore, it suggested that 

white matter changes mediated the positive association between social activities and 
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perceptual speed in this sample of 70 participants (37 at follow-up) > 80 years old(33). 

Mortimer et al. conducted a small RCT with older adults and found increased total brain 

volumes and cognitive function in participants after a social interaction intervention compared 

to a non-intervention control group(34).  

Taken together, the current evidence does not allow us to draw any firm conclusions due to 

various shortcomings. Researchers investigated a multitude of different outcome measures, 

but replication studies confirming previous results are still lacking despite their importance to 

neuroscience(35). Moreover, the evidential value is often limited as most of the existing 

studies on social connection and brain structure are cross-sectional with relatively small 

sample sizes. The few exceptions to this do not investigate social isolation but rather related 

but distinct concepts like social activities.  

Moreover, no solid evidence on the mechanistic underpinnings of this relationship exists. 

Several mutually non-exclusive, partly overlapping theories are used to explain the beneficial 

effects of social interaction. The main-effect theory postulates that social relationships foster 

beneficial health behaviours, affective states and neuroendocrine responses, ultimately 

protecting neuronal tissue(36). Others point out that socializing is cognitively demanding and 

requires engagement with complex environments. In the “use-it-or-lose-it” theory, this is 

crucial for the maintenance of cognitive function(37). The stress-buffering hypothesis puts 

forward the beneficial effects of social support in strenuous times on mental, cognitive, and 

immunological health(36). Lastly, reverse causality(38) or simultaneity(39) can underly the 

observed associations, too. This is sometimes referred to as health selection(9) in analogy to 

the homonymous economic concept(40). 

In sum, reliable evidence based on longitudinal studies is required to assess effect sizes and 

disentangle correlation from causation to better understand the impact of social isolation on 

brain and cognitive aging. Thus, in this pre-registered analysis, we aimed to determine the 

relationship between social isolation, brain structure and cognitive functions in a large well-

characterized longitudinal population-based sample of healthy mid- to late-life individuals. To 

this end, we investigated the connection of social isolation and hippocampal volume, a focal 

points of age-related atrophy and Alzheimer’s disease(41), cognitive functions and cortical 

thickness while adjusting for control variables including baseline age, change in age and 

gender. We hypothesized that both baseline and change in social isolation would be correlated 

with reduced hippocampal volume, cognitive functions (memory, processing speed, executive 

functions) and cortical thickness. Additionally, we hypothesized interaction effects of baseline 
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social isolation with change in age in the same direction. Moreover, we aimed to test a 

mediating role of chronic stress as well as hippocampal volume in these models. 

Methods 

Study Design and Preregistration 

We followed the Strengthening the Reporting of Observational Studies in Epidemiology 

(STROBE) (42) and Committee on Best Practices in Data Analysis and Sharing 

(COBIDAS)(43) on MRI guidelines in our reporting wherever appropriately applicable. 

The study’s preregistration can be found on https://osf.io/8h5v3/. Please refer to it for 

information on the authors’ previous knowledge of the data and a comprehensive overview of 

our pre-specified hypotheses and models.  

Study Population 

We used longitudinal data from the “Health Study of the Leipzig Research Centre for 

Civilization Diseases” (LIFE). The LIFE-Adult-Study is a population-based panel study of 

around 10,000 randomly selected participants from Leipzig, a major city with 550,000 

inhabitants in Germany. A sub-group of around 2600 participants underwent MRI testing at 

baseline. The baseline examination was conducted from August 2011 to November 2014. 

Follow-up assessments were performed around six to seven years after the respective first 

examinations(44). Around 1000 participants of the MRI-subsample returned for follow-up 

testing.  

As changes in hippocampal volumes, our key region of interest, show accelerated reductions 

starting at about 50 years of age(45), we included all participants over 50 with MRI data that 

did not fulfil any of the following exclusion criteria: 

- Anamnestic history of stroke  

- any medical condition (i.e., epilepsy, Multiple sclerosis, Parkinson’s disease) / chronic 

medication use that would compromise cognitive testing - (i.e., cancer treatment in the 

past twelve months or drugs affecting the central nervous system) 

- diagnosed dementia or Mini-Mental State Examination (MMSE)-score <24  

- a trained radiologist considered the MRI scans unusable due to brain tumors, or acute 

ischemic, hemorrhagic or traumatic lesions 
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If no MMSE data was available, the participants were excluded if their overall performance in 

cognitive tests negatively deviated from the wave’s mean by 2 standard deviations (SDs). The 

exclusion criteria were chosen to reduce the potential of reverse causality as correlations 

observed in this cognitively healthy sample should not stem from prodromal dementia.  

MRI Data Acquisition, Processing and Quality Control 

We obtained T1-weighted images on a 3 Tesla Siemens Verio MRI scanner (Siemens 

Healthcare, Erlangen, Germany) with a 3D MPRAGE protocol and the following parameters: 

inversion time, 900 ms; repetition time, 2,300 ms; echo time, 2.98 ms; flip angle, 9°; field of 

view, 256 × 240 × 176 mm3; voxel size, 1 × 1 × 1 mm3. We processed the scans with 

FreeSurfer (FreeSurfer, V5.3.0, RRID:SCR_001847) and the standard cross-sectional pipeline 

recon-all. FreeSurfer automatically measures hippocampal volume, vertex-wise cortical 

thickness and intracranial volume. To ensure high within-subject reliability, we employed 

FreeSurfer’s longitudinal pipeline on all scans, including those of participants without a 

follow-up scan(46). Moreover, we smoothed the cortical thickness surfaces with a 10mm 

kernel to improve reliability and power(47). Different Linux kernels and Ubuntu versions 

constituted the computational infrastructure during the data acquisition and processing.  

Visual quality control was based on the recommendations of Klapwijk et al.(48). After the 

baseline data were acquired, our team visually controlled all results of the cross-sectional 

recon-all pipeline. Additionally, we controlled the outputs of the longitudinal stream of all 

participants with follow-up data and those whose cross-sectional runs required editing. If we 

detected errors in the processed scans, we manually edited them (N=283). We excluded 

participants from analyses using MRI measures if we deemed the processed scans to be 

unusable (n=68). 

Data Construction 

Social Isolation 

We used the standard Lubben Social Network Scale (LSNS) -6(49) to measure the 

participants’ social isolation. The questionnaire is a suitable tool to measure social 

isolation(50) and has a maximum score of 30. In order to make larger scores imply more 

isolation, we subtracted the actual score from the maximum score of 30. 

To quantify changes in social isolation, we subtracted the baseline from the follow-up score. 

For all baseline observation change in LSNS = 0. 
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Gray matter measures 

We used the hippocampal volume derived from FreeSurfer’s segmentation and averaged it 

over both hemispheres. Furthermore, we adjusted it for intracranial volume according to the 

following formula: 

HCVadjusted, i = HCVraw, i - β * (ICVraw, i - ICVmean) 

where β is the unstandardized regression coefficient of hippocampal volume (HCV) on 

intracranial volume (ICV) from a linear mixed-effects model (LME)(51). 

For whole brain analyses we used the FreeSurfer fsaverage template and cortical thickness as 

a vertex-wise outcome.  

Cognitive Functions 

The cognitive assessment consisted of the trail-making-test (TMT)(52) and the CERAD -plus 

test-battery (CERAD - Consortium to Establish a Registry for Alzheimer's Disease, 

RRID:SCR_003016). We z-transformed the results of the individual tests using the mean and 

SD derived from all measures.  

We calculated domain-specific summary scores and calculated them as follows(53,54)  :  

Executive functions consisted of phonemic and semantic fluency, combined with TMT B/A: 

executive functions = (z_phonemic fluency + z_semantic fluency + z((TMT B – TMT 

A)/TMT A))/3 

For the memory score, we defined learning as the sum of three consecutive learning trials of 

the CERAD word list (10 words), recall as the sum of correctly recalled words after a delay, 

in which participants performed a nonverbal task, and recognition as the number of correctly 

recognized words out of a list of 20 presented afterwards. memory = (z_learning + z_recall + 

z_recognition)/3 

Processing speed was defined as the negated z-scored TMT part A score. 

As mentioned above, we also calculated a summary score to exclude cognitively impaired 

participants: 

Sum-score = z_phonemic fluency + z_semantic fluency + z_sum_learning + z_recall + 

z_recognition + z((TMT B – TMT A )/TMT A) 
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Stress 

Trierer Inventar zum chronischen Stress (TICS) is a German questionnaire assessing 

perceived stress (57 items, 0-4 points per item)(55). Its sum score is our measure of 

participants’ stress. 

Control variables 

Month and year of birth of the participants and the date of the MRIs were recorded and used 

to calculate the age to one decimal point. Age = YOM.MOM – YOB.MOB (YOM/MOM = 

year/month of MRI, YOB/MOB = year/month of birth). If no MRI was available, we used the 

date of the LSNS. 

For follow-up observations, we calculated the change in age as baseline age subtracted from 

follow-up age. For all baseline observation change in age = 0. 

Data on the following variables was only available for the baseline. Henceforth, we used the 

baseline values of these control variables for both timepoints. 

We calculated the body-mass-index (BMI) according to the standard formula: BMI = weight 

[kg] / (height [m])2 

In order to control for hypertension and diabetes, we used dichotomized variables. 

Participants were categorised as hypertensive if they had a previous diagnosis of 

hypertension, took antihypertensive medication or had an average systolic blood pressure over 

160mmHg. The systolic blood pressure was measured three times. The first measurement was 

performed after 5 minutes of rest and 3 additional minutes of rest passed between each of the 

following measurements.  Participants were categorised as diabetic if they had a previous 

diagnosis of diabetes, took antidiabetic medication or HbA1C measured by turbidimetry was 

>= 6%. 

The participants’ education was assessed using an extensive questionnaire and given a score 

ranging from 1 (no degree at all) to 7 (A-levels + master’s degree (or equivalent) or 

promotion) according to prior research(56). The effects of education and the significance of 

different degrees are likely to be culture specific. Fortunately, a recent study examined the 

effects of education in a population of elderly residents of the city of Leipzig. In this study 

education operationalised as having a tertiary degree or not was found to be a significant 

predictor of dementia incidence(57). This is approximated with a cut-off at a score < 3.6. 
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Participants had to choose their gender in a binary female/male question. Note that the 

German “Geschlecht” does not differentiate between sex and gender. The lack of a 

clarification and other options is lamented by the authors. 

We used the sum-score of the Center for Epidemiological Studies Depression Scale (CES-D) 

to measure depressive symptoms(58,59). 

For a sensitivity analysis we created a dichotomous variable coded as 1 if participants 

answered the LSNS questionnaire after March 22nd, 2020 (1st SARS-CoV-2 lockdown in 

Germany).  

Outliers and Imputation 

We excluded outliers for our core variables (LSNS-score, adjusted hippocampal volume, 

cognitive functions). Please see Fig. 1 (Flowchart) for the effect of outlier exclusion on the 

different models and the supplement for details on handling outliers.  

To avoid an excessive reduction in sample size due to missing data we performed some 

limited imputations for missing predictor variables. Please see Sup. 1 for information on our 

procedures.   
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Figure 1

 

Statistical Analyses 

All code can be found on https://github.com/LaurenzLammer/socialisolation. The 

preregistration offers a more extensive description of all our models.  

Statistical Modelling 

To investigate the link between social isolation and our outcomes of interest, we employed 

LMEs with individual as a random effect. We calculated two models for each hypothesis. In 

model one we included age and gender as control variables. Model two additionally included 

education, hypertension, diabetes, depressive symptoms and BMI. In model one the other risk 

factors are assumed to mediate the effect of social isolation. In model two they are assumed to 

be confounders (see Sup. 2 for a visualization). To measure the effect of aging, we controlled 

for baseline age and change in age. Analogously, we differentiated within and between 

subject effects(60) of social isolation. Furthermore, to test whether participants that are 

socially more isolated at baseline experienced more pronounced age-related changes, we 

investigated the interaction effect of baseline LSNS and change in age. Likewise, we 
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calculated the interaction effect of baseline LSNS and change in LSNS. With this 

methodology we regressed hippocampal volume, the three cognitive functions, and cortical 

thickness on baseline LSNS, change in LSNS, and the interaction terms. To measure the 

overall effect of our predictors of interest, we performed a full-null-model comparison(61). In 

addition to standard p-values, we calculated Bayes Factors (BFs) to evaluate the evidence in 

favour of the full-hypothesis compared to the null-hypothesis(62,63). The relative evidence 

was measured by dividing the BF for the full model by the BF of the null model(64). 

Furthermore, we ran mediation analyses to investigate whether the TICS-score mediated the 

relationship of LSNS and hippocampal volume and to test whether hippocampal volume 

mediated the association between LSNS and cognitive functions. Specifically, we investigated 

the indirect path resulting from the regressions of follow-up mediator on baseline LSNS and 

follow-up dependent variable on baseline mediator. As in the LMEs, we used models one and 

two with the different sets of control variables.  

In addition to these pre-registered analyses, we conducted four sensitivity analyses to test the 

robustness of our results on hippocampal volume and cognitive functions. For the first 

analysis we added whether participants were tested after the start of lockdown measures to all 

LMEs. In the second analysis we didn’t exclude participants due to the intake of centrally 

active or cancer medication and cognitive impairment. To probe the reliability of the 

coefficients for LSNS_change, we ran an analysis excluding all participants with only one 

timepoint and used standard mean and within score calculation. To test for potential 

differences in the effect of social isolation between women and men, we divided our dataset 

by gender and recalculated the frequentist LMEs with both resulting datasets. In order to 

further investigate the nature of the correlations, we calculated bivariate latent change score 

(BLCS) models(65). In these models we simultaneously tested for an effect of baseline social 

isolation on change in cognitive functions or hippocampal volume and vice versa (see Sup. 3 

for a visualization). 

We sided p-values based on the direction of the predictor/path of interest’s regression 

coefficient and the direction of our pre-defined hypotheses. To side the BFs we sampled 

10,000 times from the posterior distribution of our predictor of interest’s effect. Then we 

multiplied the BF by two and the percentage of sampled effects in the direction of our pre-

defined hypotheses.  
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Multiplicity control 

Our threshold for significance for all tests was p < 0.05. To control for multiple hypothesis 

testing we FDR-corrected families of tests and each individual whole brain analysis (see Sup. 

1 for definition of families).  

BFs of 3 to 10 and BFS of 10 to 30 are commonly considered to be moderate or strong 

evidence in favour of a hypothesis(66). To evaluate these thresholds in light of multiplicity, 

we conducted two simulation studies described in Sup.1 that revealed that using a BF 

threshold of 10.75 rather than 3 would keep α below 5% and that this would not substantially 

decrease power.  

Model assumptions 

To ensure that our continuous predictors are normally distributed, we plotted their histograms. 

We had to log-transform the CES-D-score to obtain a normal distribution.  

To rule out major collinearity, we calculated Variance Inflation Factors (VIFs). For LMEs, we 

dropped the random effect and calculated a linear model to obtain the VIFs. The VIFs did not 

surpass the threshold of 10(67) in any model. 

 Furthermore, we tested the stability of our LMEs in R by comparing the estimates obtained 

from the model based on all data with those obtained from models with the levels of the 

random effects excluded one at a time(68). This revealed the models to be fairly stable. 

Moreover, we visually controlled the normality of the residuals of these models with both a 

histogram and a qq-plot. The qq-plots show a heavy-tailed distribution of the residuals in 

some models. This is only a minor deficit as the models are not intended to make accurate 

predictions(69).  

Fit indices providing further information on the quality of a model fit using structural 

equation modelling can be found in Sup. 4-5. As suggested by Schermelleh-Engel et al.,(70) 

we report χ 2 and its associated p value, χ 2 /df, RMSEA and its associated confidence 

interval, SRMR, NNFI, and CFI. Fit index thresholds were surpassed by multiple mediation 

models. As the BLCS models are saturated, fit indices are uninformative.  

Software 

We performed most analyses using R (R Project for Statistical Computing, V3.6.1, 

RRID:SCR_001905). For the whole brain analyses we used Matlab (MATLAB, V9.10 

(2021a) RRID:SCR_001622). 
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We used the package lme4 (R package: lme4, RRID:SCR_015654) to calculate LMEs in R. 

To obtain reliable p-values, we used the Satterthwaite option from the lmerTest package( R 

package: lmerTest, RRID:SCR_015656)(71). In the whole brain analyses we employed the 

Matlab-toolbox provided by FreeSurfer to calculate vertex-wise LMEs(72). For mediation 

analyses and BLCS models we used the sem function from the lavaan package(73). 

We calculated BFs for all LMEs in R using the BayesFactor package  and the functions 

posterior and generalTestBF with default priors(74).  

FDR-correction was performed using the qvalue function (R package: Qvalue, 

RRID:SCR_001073) in R and the sided two-stage adaptive FDR-correction in the FreeSurfer-

toolbox(75). 

VIFs were calculated using the package car(76). 

Results 

In quantitative studies, despite its importance in shaping the research process and conclusions, 

e.g. in functional MRI analysis(77), researchers’ influence is often disregarded. In Sup. 1 we 

offer a brief reflexivity section to make relevant influences on this study transparent and to 

shortly discuss the value of reflexivity for quantitative science.  

In total, we included baseline data from 1992 participants and follow-up data from 1409 

participants with a mean age of 67 and 68 years, respectively, thereof 46% and 47% women, 

respectively and a ~6 years mean change in age at follow-up. The sample displayed a 

prevalence of 60% hypertension, < 20% diabetes and 11-13% had no tertiary education. 

Descriptive statistics including age range, gender distribution, cardiovascular risk factor 

prevalence and examination under pandemic conditions of the study sample at baseline and 

follow-up are shown in Table 1. 
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Table 1 

 

 

Social isolation and hippocampal volume 

We found that both, stronger baseline social isolation (values for models 1/2: β =< −5.5/−5.7 

mm3/point on the LSNS (pt), FDR-corrected q-value(q) = 0. 0044/0.0095) and increases in 

social isolation (β = −4.9/−4.9 mm3/pt, q = 0. 0095/0.0174) significantly predict smaller 

hippocampal volumes (Table 2, Figs 2-4). Furthermore, the interaction of baseline social 

isolation and change in age indicated that stronger baseline social isolation led to smaller 

hippocampal volumes with increasing follow-up time (β = −0.56/−0.54 mm3/(pt*year), q = 

0.045/0.076).  
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Social Isolation and cognitive functions 

Overall, stronger baseline social isolation and to a lesser extent increases in social isolation, 

linked to worse cognitive performance (Table 3, Fig 2). Specifically, stronger social isolation 

at baseline significantly predicted lower executive functions (β = −0.026/−0.015 SD/pt, q = 

1.0e-07/0.0046) and lower processing speed (β = −0.018/−0.018 SD/pt, q= 1.0e-05/1.2e-04). 

The link to lower memory (β = −0.014/−0.008 SD/pt, q = 0.002/0. 0775) was strong in model 

1 but did not survive FDR-correction when controlling for additional covariates. Increases in 

social isolation over time significantly predicted lower memory in model 1 (β = 

−0.013/−0.009 SD/pt, q = 0.045/0.157) and lower processing speed in model 2 before FDR 

correction (β = −0.008/−0.012 SD/pt, q = 0.163/0.076) but not executive functions (β = 

0.003/0.006 SD/pt, q = 0.787/0.856). Figs. 3-4 allow comparisons of these effects with other 

predictors for the different dependent variables.  

No further interaction model yielded any significant results. Sup. 6-8 provides a 

comprehensive summary for all LMEs and predictors.  
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Table 2 
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Table 3
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Figure 2 

Scatterplots with regression lines and 95% confidence intervals for model 1. 

 
Asterisks show frequentist levels of significance. The 1st and 2nd line show values before and after FDR, 

respectively. **** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05. 

Pie charts show bayesian relative evidences. The green and black arc lengths represent the evidence in favour of 

the alternative and the null hypothesis, repectively. 
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Figure 3 

 

Figure 4

 

LSNS_base, baseline Lubben Social Network Scale; age_base, baseline age; LSNS_change, change in Lubben 

Social Network Scale; age_change, change in age 

For the gender variable and for the education variable being female and having at least a tertiary degree were 

coded as 0, respectively. 

Betas were standardized by the standard deviations of the dependent and independent variable. 

 

Social isolation and cortical thickness 

In the whole brain analysis, we found a total of four clusters of decreased cortical thickness 

associated with stronger baseline social isolation in model 1 after FDR correction with an 

alpha level of 5% (Fig 5). The clusters were located in the left precuneus and right 

supramarginal gyrus, superior temporal gyrus and cuneus. Increases in social isolation were 

linked to decreased cortical thickness in 7 clusters in the right middle and superior frontal 
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gyri, orbitofrontal and lateral occipital cortex (Fig 6). When controlling for further covariates, 

three of these in the middle/superior frontal and lateral occipital gyrus remained significantly 

associated with the largest one splitting into two smaller clusters. Table 4 lists these clusters, 

their locations and sizes.  

Table 4
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Figure 5 

Whole brain analysis of the effect of baseline social isolation on cortical thickness 

 

Unstandardized betas are the vertex-wise effect sizes of baseline social isolation in mm/point on the 

Lubben Social Network Scale corrected for baseline age, change in age, change in social isolation and 

gender. The first row shows the left hemisphere. The right hemisphere is shown below. First and 

second column show the lateral and medial view, respectively. The box on the right shows two 

clusters of reduced cortical thickness associated with social isolation in the left precuneus that were 

significant after FDR-correction and the F-value of each significant vertex. On the right hemisphere 

we detected significant clusters after FDR-correction, too. They are located in the supramarginal gyrus 

and cuneus and are not highlighted in this figure.     

 

Figure 6  

Whole brain analysis of the effect of change in social isolation on cortical thickness 

    

Unstandardized betas are the vertex-wise effect sizes of change in social isolation in mm/point on the 

Lubben Social Network Scale corrected for baseline age, change in age, baseline social isolation and 

gender. The first row shows the left hemisphere. The right hemisphere is shown below. First and 

second column show the lateral and medial view, respectively. The box on the right shows clusters of 

reduced cortical thickness associated with social isolation in the right superior and middle frontal 

gyrus, and lateral and medial orbitofrontal cortex that were significant after FDR-correction and the F-

value of each significant vertex. Additionally, we detected another significant cluster after FDR-

correction in the lateral occipital cortex that is not highlighted in this figure.     
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Mediation analyses 

Neither the mediation analyses with chronic stress as a mediator for the effect of social 

isolation on hippocampal volume (n = 62 observations) nor the mediation analyses with 

hippocampal volume as a mediator for the effect of social isolation on cognitive functions (n 

= 313-331) yielded any significant results. Due to the requirements of the model design and 

over 50% missingness in the stress questionnaire the sample sizes of the mediation analyses 

were gravely diminished. Details on the mediation analyses are provided in Sup. 9.  

Sensitivity Analyses 

Analyses accounting for a) potential effects of measurements before compared to during the 

Covid-19 pandemic, b) reducing the exclusion criteria (i.e., not excluding cognitively 

impaired participants, participants taking centrally active medication and participants with 

recent cancer treatment) and c) only including participants with two timepoints and using 

mean and within scores, confirmed the regression coefficients of our models in terms of 

direction and size (Sups 10-15). Neuroscience has historically neglected sex and gender 

differences, predominantly resulting in increased misdiagnoses of and relatively worse 

treatments for women(78). Therefore, we recalculated analyses in gender-stratified samples (n 

female = 1125 observations, n male = 1105 observations) to test for differences in the effects 

of social isolation (Sup 16). No clear pattern of difference emerged between women and men. 

A minor observable difference was that the interaction of baseline social isolation with change 

in age on hippocampal volume was more pronounced in men. The bivariate latent change 

score models did not result in solid evidence for directionality. With a p-value of 0.019 and an 

effect size of −0.015 mm3 there is very weak evidence that lower baseline social isolation 

predicted a decrease in executive functions (Sup. 17). As in the mediation analyses, the design 

of the BLCS resulted in smaller sample sizes (n = 333-548). 

Discussion 

In this pre-registered study, we investigated the associations of social isolation with brain 

structure and cognition in a large cognitively healthy mid- to late-life longitudinal sample. In 

line with our pre-specified hypotheses, we showed a significant link between stronger 

baseline social isolation and increases in social isolation over the course of ~ 6 years and 

smaller hippocampal volumes. Both predictors had an effect size per point on the LSNS 

comparable to a two and a half-month difference in baseline age in this age range. Simply put, 

assuming that if everything else remained stable, the difference between having one or 3-4 
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close and supportive friends is comparable to a one-year difference in hippocampal aging. 

Furthermore, we found significant associations of stronger baseline social isolation with lower 

executive functions, memory and processing speed. The link to executive functions was 

particularly strong with an effect size larger than a one-year difference in baseline age. For 

increases in social isolation, confidence intervals were wider but effect sizes, except for 

executive functions, were similar in magnitude to that of baseline social isolation. Moreover, 

there was an interaction effect of baseline social isolation with change in age on hippocampal 

volumes indicating accelerated brain aging in more isolated individuals. In multiple 

sensitivity analyses we showed the robustness of these findings. Neither applying less 

exclusion criteria, only including participants with two timepoints nor controlling for the 

impact of the ongoing pandemic changed our results substantially. Moreover, we found 

clusters of decreased cortical thickness in the cuneus, precuneus, lateral occipital cortex, 

supramarginal gyrus, orbitofrontal cortex and superior and middle frontal gyrus associated 

with social isolation cross-sectionally or longitudinally. Mediation analysis revealed no 

significant effects. 

Hippocampal volume 

Our findings indicate that social isolation contributes to grey matter loss in the hippocampus, 

a focal point of atrophy in mild cognitive impairment(79) and dementia(80).  

Notably, not only baseline social isolation (a between-subject effect) but also change in social 

isolation (a within-subject effect) significantly predicted hippocampal volume. Through the 

employment of statistical LMEs, we were able to distinguish and study effects at these 

different levels(60,81) and the design helped us to avoid fallacious inferences from single 

level data(82) to which simple linear regressions would have been susceptible. Specifically 

for the study of social isolation as a risk factor for dementia, it is crucial to disentangle 

between- and within-subject effects. Social isolation has both been described as a trait(83), 

implying it to be an invariant between-subject characteristic and as a potential target for 

interventions(84), implying it to be a modifiable within-subject effect. The finding of a 

significant within-subject effect of change in social isolation therefore offers hope for 

modifiability as it implies that the observed associations are not (exclusively) the effect of an 

invariant trait. Thus, our data point towards that reducing social isolation could help to 

maintain hippocampus integrity in aging. 

However, this assumes a causal effect of social isolation. As associations with social isolation 

could also have resulted from reverse causation through health selection, i.e. that participants 
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with accelerated brain aging are more likely to become socially isolated, this assumption 

needs careful consideration. On the one hand, our interaction models designed to test the 

temporality of the effect, provided evidence for an interaction of baseline social isolation and 

change in age on hippocampal volume, pointing towards a detrimental effect of social 

isolation. Bayesian statistics, on the other hand, imply the absence of an interaction effect for 

all other dependent variables and the bivariate latent change score models barely provide 

evidence in favour of causality in the hypothesized direction. This inconclusiveness might 

result from our reduced follow-up sample size, the still relatively narrow change in time 

compared to the adult lifespan and limited number of time points in the current study. For 

example, data from the English Longitudinal Study of Aging from > 6000 older adults 

measured at up to 6 two-year intervals supports the assumed causality of social isolation with 

regards to memory performance(85). Moreover, the presence of considerable effect sizes and 

the high statistical confidence in these estimates on multiple outcomes in this healthy sample 

without cognitive impairment speaks against the competing hypothesis of reverse causality 

through health selection and in favour of a causal role of social isolation. Furthermore, the 

lack of any strong increase in effect size when including health-impaired participants 

corroborates this interpretation. 

Cognitive functions 

Baseline social isolation, and to a lesser extent, change in isolation, were significantly 

associated with cognitive performance, i.e. executive functions, processing speed and 

memory, all of which undergo decline in (pathological) aging(86). Again, our results thus 

imply a detrimental role of social isolation on cognitive functions. We could however not 

observe that social isolation lowered memory performance through reductions in hippocampal 

volume, a hypothesis raised by considerations of the central role of the hippocampus in 

memory(87,88). Similarly, we could not find evidence that social isolation affected 

hippocampal volume through higher chronic stress measured with questionnaires, a 

hypothesis put forward by the stress buffering theory(36). However, these latter analyses 

suffered from small sample sizes and a limited number of timepoints.  

Cortical thickness 

Overall, comparing our brain morphometric results with those of existing cross-sectional 

studies on social isolation, detected brain regions coincide. A rather small-sampled study did 

not find a link between social isolation and grey matter volumes(89) but James et al. (occipital 
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lobe)(27) and Blumen and Verghese (hippocampus, precuneus, superior frontal gyrus,  medial 

frontal gyrus)(29) found decreased volumes in regions we detected, too.  

Several of the cortical regions identified in our study (precuneus, orbitofrontal cortex) belong 

to the pattern of exacerbated regional atrophy found in Alzheimer’s disease. Furthermore, we 

detected regions known for increased cortical thinning in the healthy process of aging 

(cuneus, lateral occipital cortex, inferior frontal gyrus) and both in healthy and pathological 

aging (supramarginal gyrus, medial frontal gyrus)(90,91). This indicates an aggravating role 

of social isolation in cortical thinning that may contribute to normal and accelerated brain 

aging processes. However, the findings of reduced cortical thickness must be interpreted 

cautiously due to the limited consistency between cross-sectional and longitudinal effects and 

the exploratory approach of whole brain analyses.  

Methodological considerations 

Contrasting our frequentist and Bayesian measures of significance, a noticeable discrepancy 

between small BFs (indicating no evidence in favour of the alternative hypothesis) and p-

values < 0.05 (indicating evidence to reject the null hypothesis) is observable for some 

models of change in social isolation. While BFs are generally more conservative than p-

values(92), this mismatch might additionally result from the software’s standardization 

procedure that standardizes raw effect sizes by both the dependent and independent variable’s 

SDs(74). While the effect size per point on the LSNS are mostly very similar, the smaller SD 

of change in LSNS score makes the standardized effect sizes much smaller than those of 

baseline LSNS. Thus, the lower BFs for change in social isolation are in part due to these 

limitations, which urges us to interpret them more carefully. This can also be seen in the 

results of our power simulation shown in Sups. 18-19.  

Limitations 

A limitation of this study is its uncertain generalizability to the general population because the 

sample was probably affected by selection and attrition bias common to longitudinal 

studies(93). Along these lines, our population study represents a WEIRD sample (i.e., 

western, educated, industrialised, rich, democratic)(94) which might skew our understanding 

of how social isolation affects brain health(95). Additionally, attrition might have caused 

some degree of conflation of different effect levels so that within-subject effects of 

participants with only one timepoint are treated as between-subject effects. A further 

limitation are ceiling effects in the memory and processing speed scores in healthy adults, 
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potentially limiting the sensitivity to detect subtle differences. Moreover, covariance of social 

isolation with other variables such as hypertension or diabetes could have influenced the 

results. However, note that all VIFs were acceptable. Lastly, we must stress that we 

investigated cognitive functions and brain morphometry and not diagnosed dementia. 

Henceforth, all inferences from our results on dementia must be made with caution. 

Conclusion & Outlook 

This pre-registered large-scale population neuroimaging analysis adds robust support to the 

view that social isolation is associated with accelerated brain aging and cognitive decline in 

non-demented adults in mid- to late-life. Our findings further imply that social contact 

protects from detrimental processes and thereby preserves brain structure and function. 

Henceforth, targeting social isolation through tailored strategies might contribute to 

maintaining brain health into old age. 

While we see evidence converging on social isolation as a causal risk factor for dementia and 

cognitive decline, future neuroimaging studies should pay particular attention to questions of 

temporality in their design to clear up remaining uncertainties. Intervention studies will be the 

gold standard to provide evidence with regards to the causal role and effect size of social 

isolation. Yet, multidomain interventions for dementia prevention justifiably become the 

norm(96–98), so that effects of reduced social isolation must be investigated as a likely 

contribution to an aggregate effect. Illuminating the mechanistic underpinnings of the 

association should be another focus for future research. Promising approaches to answer this 

research question could be interventions specifically targeting one of the hypothesized 

detrimental processes in isolated individuals and mediation analyses of multi-wave studies 

with larger sample sizes. Studies should also prioritise obtaining reliable proxies for the 

hypothesized mediators. As elevated cortisol levels, in line with the stress-buffering 

hypothesis, may exert detrimental effects on cognition and contribute to AD pathology(99), 

using hair cortisol, a reliable measure of chronic stress(100,101), could be a promising choice 

to further investigate this proposed mechanism.       

In light of the relevance of social isolation for cognitive and general health and 

wellbeing(102), its pervasiveness in the elderly population of the global north (7,103,104) is 

alarming. Physical distancing measures have caused an unprecedented rise in the attention to 

the impact of social isolation(105) but social isolation has been a grave problem before 

Covid-19 and it will remain a central public health concern thereafter. Existing and future 

research on the role of social isolation in health and disease should provide guidance for the 
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urgently needed development and evaluation of tailored strategies against social isolation and 

its detrimental effects. These should address social isolation both through intervention 

strategies on the individual but also societal level, leveraging values like solidarity and 

communality.    
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