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Abstract:  

Introduction: AKI is a heterogeneous syndrome defined via serum creatinine and urine output 

criteria. However, these markers are insufficient to capture the biological complexity of AKI and 

not necessarily inform on future risk of kidney and clinical events.  

Methods: Data from ASSESS-AKI was obtained and analyzed to uncover different clinical and 

biological signatures within AKI. We utilized a set of unsupervised machine learning algorithms 

incorporating a comprehensive panel of systemic and organ-specific biomarkers of 

inflammation, injury, and repair/health integrated into electronic data. Furthermore, the 

association of these novel biomarker-enriched subphenotypes with kidney and cardiovascular 

events and death was determined. Clinical and biomarker concentration differences among 

subphenotypes were evaluated via classic statistics. Kaplan-Meier and cumulative incidence 

curves were obtained to evaluate longitudinal outcomes. 

Results: Among 1538 patients from ASSESS-AKI, we included 748 AKI patients in the analysis. 

The median follow-up time was 4.8 years. We discovered 4 subphenotypes via unsupervised 

learning. Patients with AKI subphenotype 1 (‘injury’ cluster) were older (mean age ± SD): 71.2 ± 

9.4 (p<0.001), with high ICU admission rates (93.9%, p<0.001) and highly prevalent 

cardiovascular disease (71.8%, p<0.001). They were characterized by the highest levels of KIM-

1, troponin T, and ST2 compared to other clusters (P<0.001). AKI subphenotype 2 (‘benign’ 

cluster) is comprised of relatively young individuals with the lowest prevalence of comorbidities 

and highest levels of systemic anti-inflammatory makers (IL-13). AKI Subphenotype 3 (‘chronic 

inflammation and low injury’) comprised patients with markedly high pro-BNP, TNFR1, and 

TNFR2 concentrations while presenting low concentrations of KIM-1 and NGAL. Patients with 

AKI subphenotype 4 (‘inflammation-injury’) were predominantly critically ill individuals with the 

highest prevalence of sepsis and stage 3 AKI. They had the highest systemic (IL-1B, CRP, IL-8) 

and kidney inflammatory biomarker activity (YKL-40, MCP-1) as well as high kidney injury levels 
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(NGAL, KIM-1). AKI subphenotype 3 and 4 were independently associated with a higher risk of 

death compared to subphenotype 2. Moreover, subphenotype 3 was independently associated 

with CKD outcomes and CVD events.   

Conclusion: We discovered four clinically meaningful AKI subphenotypes with statistical 

differences in biomarker composites that associate with longitudinal risks of adverse clinical 

events. Our approach is a novel look at the potential mechanisms underlying AKI and the 

putative role of biomarkers investigation.  

Keywords: biomarkers, prognosis, biological mechanisms, chronic kidney disease, profile 
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Introduction  

Acute kidney injury (AKI) is a heterogeneous syndrome that may occur in the context of diverse 

clinical scenarios including infection, acute organ failure, or hemodynamic changes, among 

others.1,2 Despite the broad definition, clinicians intuitively have classified AKI into ‘pre-renal’, 

‘renal’ (or intrinsic), and ‘post-renal’ causes.1,3 However, given the complexity of such disease 

processes, multiple insults may co-exist and induce different biological disturbances leading to 

AKI and adverse outcomes. Ascertainment of pathological pathways, duration of disease, and 

prediction of clinical events is difficult via traditional measures such as serum creatinine 

fluctuations, urine studies, and urine output changes.4 Furthermore, kidney function following 

AKI in the short to medium term can display several non-linear trajectories over time (including 

ongoing recovery) that may not associate with meaningful laboratory abnormalities, nor the 

etiology of AKI adjudicated during the acute hospitalization.1,4-6 This represents a major 

limitation to providing individualized care during the acute setting and in the post-AKI stage. 

 

Biomarkers reflective of key biological pathways such as kidney injury, inflammation, and health 

have emerged over the past 10 years showing their potential to anticipate the diagnosis of acute 

kidney injury (AKI) and forecast adverse outcomes in this population including disease duration, 

dialysis needs, and mortality.7,8 Furthermore, among CKD patients, some of these biomarkers 

have been demonstrated to strongly predict the advent of end-stage kidney disease (ESKD) in 

patients with and without diabetes mellitus.9-15 However, their ability to outperform to less 

expensive and routinely collected laboratory tests such as creatinine and urine albumin-to-

creatinine ratio (uACR) has been questioned.16 While efforts have been made to integrate 

individual biomarkers (or panels) into clinical prediction models, standard regression models 

may be limited to evaluate markedly heterogeneous and high-dimensional data, thereby 

compromising the researcher’s ability to find clinical significance from these. Importantly, the 
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importance of incorporating ‘big data’ to enrich our perspective on AKI has been recently 

acknowledged 15th Acute Dialysis Quality Initiative (ADQI).17  

 

Unsupervised learning plays an important role in data summarization and preliminary structure 

identification of complex and highly variable data.18,19 Considering the complex nature of AKI, 

contributing clinical factors, and implicated mechanisms, unsupervised clustering has the 

potential to serve as an informative analytical tool to identify AKI subphenotypes from high-

dimensional data.17,20,21 Previous studies suggested that AKI subphenotypes based upon tumor 

necrosis factor receptors (TNFR) and angiopoietin-2/angiopoietin-1 ratio could serve to identify 

patients’ responsiveness to vasopressors and short-term adverse outcomes in a critically ill 

population via latent class analyses.22 Furthermore, our group demonstrated that unsupervised 

learning (deep learning) integrating routine laboratory parameters and electronic health record 

(EHR) data could lead to subphenotypes associated with short-term kidney outcomes in a 

sepsis-AKI population.23 However, whether a comprehensive panel of kidney and systemic 

biomarkers reflective of different axes of health and disease could serve to identify agnostic 

clinical and biological signatures in a broader population of AKI and uncover potential 

associations with longitudinal clinical events if unknown.  

 

The Assessment, Serial Evaluation, and Subsequent Sequelae in Acute Kidney Injury 

(ASSESS-AKI was a prospective cohort of AKI survivors whose clinical and biomarker data was 

rigorously collected on admission and in a protocolized fashion after discharge.24 While data on 

an individual or small set of post-operative biomarkers and their associations with AKI and CKD 

are extensive in the literature,25-27 adequate integration of multiple systemic and kidney-related 

biomarkers of inflammation, injury, and fibrosis along with clinical data to investigate distinct AKI 
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profiles with clinical significance and potential associations with long-term outcomes is lacking. 

We sought to discover AKI subphenotypes through a series of unsupervised machine learning 

algorithms (hierarchical agglomerative clusters, and K-means clustering) and validation models 

(consensus clustering). We also aimed to identify whether these novel clusters could associate 

with longitudinal kidney, cardiovascular events, and death.  
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Methods 
 

Cohort description and covariates 

The ASSESS-AKI study was a multicenter, prospective, matched parallel cohort of 1538 

hospitalized adult participants who developed AKI and matched individuals who did not have 

AKI and who survived to complete an in-person visit at 3 months after discharge.24 Patients 

aged 18 and over were enrolled from the medical and surgical floors and intensive care units 

(ICUs) in 4 US-based medical centers with matching criteria at each institution for baseline 

covariates, estimated glomerular filtration rate (eGFR), urine albumin-to-creatinine (uACR) 

levels and AKI stage. Patients had pre-admission serum creatinine measurements obtained 

within 1 year of the index hospitalization as outpatients. The etiology of AKI was not adjudicated 

during the hospitalization. Exclusion criteria for ASSESS-AKI were broad and included the 

presence of acute glomerulonephritis, hepatorenal syndrome, multiple myeloma, malignancy, 

urinary obstruction, severe heart failure, kidney replacement therapy (dialysis, transplant) prior 

to hospitalization, pregnancy, or predicted survival ≤ 12 months. For the present study, the 

focus of our analyses were those patients who had AKI as defined by the ASSESS-AKI protocol 

during the hospitalization who survived 3-months after discharge (N=769).  

 

AKI was defined as a relative increase of ≥50% or absolute increase of ≥0.3 mg/dL in peak 

inpatient serum creatinine concentration above the baseline creatinine. AKI stage was classified 

following the Acute Kidney Injury Network (AKIN) guidelines. CKD status and eGFR calculation 

were obtained using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) 

equation. Participants had study visits at 3 and 12 months after discharge, and annually 

thereafter (interim phone contacts every 6 months) for assessment of biomarker data and 

adjudication of clinical events. Variables including demographic characteristics and 
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comorbidities were obtained from medical records. Serum creatinine was measured using an 

isotope dilution mass spectrometry-traceable enzymatic assay (Roche Di-agnostics, 

Indianapolis, IN), and a random spot urine protein-to-creatinine ratio using a turbidimetric 

method (Roche). Biomarker quartiles were defined within the AKI cohort via different diagnostic 

assays. 

 

Biomarker measurements  

Plasma and urine samples were collected within 96 hours of the diagnosis of AKI. Systemic 

biomarkers of inflammation included: IFN-γ, IL-4, IL-13, TNF-α, IL-1β, IL-2, IL-6, IL-8, IL-10, and 

IL-12. Kidney biomarkers of inflammation were: TNFR1, TNFR2, YLK-40, MCP-1, and IL-18, 

whereas biomarkers of kidney injury included: KIM-1, NGAL, uACR. UMOD was evaluated to 

inform on tubule health. Biomarkers of cardiac congestion, injury, and remodeling/fibrosis, 

respectively, included: pro-BNP, Troponin T, ST2 and Gal-3. Blood samples were collected in 

ethylenediamine tetra-acetic acid tubes and centrifuged to separate plasma. Sample underwent 

a single controlled thaw, were centrifuged at 5000xg for 10 minutes at 4*C, separated into 1 mL 

aliquots, and immediately stored at -80oC until biomarkers were measured. Urine biomarkers 

were obtained in a protocolized fashion and measured via multiplex assay or by using Meso 

Scale Diagnostics when appropriate. Details on biomarker collection and processing have been 

described previously.26  

 

Outcome definitions 

We evaluated three main outcomes: Composite kidney outcome (CKD incidence or 

progression), cardiovascular events, and death. Among patients without underlying CKD, CKD 

incidence was defined as >25% reduction in the eGFR from baseline; or reaching CKD 3 or 

worse during follow-up. Among patients with underlying CKD (eGFR <60 ml/min/1.73m2 during 
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hospitalization), CKD progression was ascertained as >50% reduction in the baseline eGFR; or 

progression to CKD 5 or development of ESKD on follow-up (hemodialysis or peritoneal dialysis 

requirement at least once/week for >12 weeks, receiving a kidney transplant and/or death while 

on dialysis). Cardiovascular events were a composite of myocardial infarction, heart failure, 

cerebrovascular accidents, peripheral artery disease or coronary or cardiovascular intervention. 

Death was ascertained from proxy reports, medical records, and death certificate data. 

 

Data preprocessing and subphenotype discovery  

Patients’ demographics, comorbidities and a comprehensive panel of systemic and organ-

specific biomarkers were included during data preparation. First, for numerical variables, outliers 

were adjusted using 95% winsorization. In our study, observations greater than 97.5% were set 

to 97.5%, and observations smaller than 2.5% were set to 2.5%. Second, variables showing left-

skewed distribution were log-transformed and examined whether the mode leans to the median 

than the first quartile. Third, variables were normalized using a robust scaler,28 to attenuate the 

influence of observations with extreme values. Finally, multivariate imputation by chained 

equations (MICE)29,30 was used with 5 multiple imputations and 50 iterations. Creating multiple 

imputations, as opposed to single imputations accounts for the statistical uncertainty in the 

imputations. In addition, the chained equations approach is very flexible and can handle a wide 

array of variables.  

 

After numerical variables were cleaned and normalized, both categorical and numerical 

variables were transformed into lower-dimensional space using factor analysis of mixed data 

(FAMD) (ref). The use of a total of 53 variables can hurt clustering through two perspectives; 

spareness of variables, which is known as a curse of dimensionality, and multicollinearity. While 
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several methods exist for dimensionality reduction to address these challenges, such as matrix 

factorization31,32 and deep autoencoder,33,34 FAMD is a recently developed principal component 

analysis – family method that simultaneously explores multivariate dependencies between both 

categorical and numerical variables. 14 out of 53 principal components (eigenvalues >1) were 

selected based on the Kaiser-Guttman criterion.  

 

We conducted hierarchical agglomerative clustering in which each observation starts in its own 

cluster and pairs of clusters are merged as one moves up the hierarchy. We used ward linkage 

with Euclidean distance applied to 14 principal components. The number of subphenotypes was 

determined through the visual evaluation of the dendogram as well as results from 26 indexes 

available from the NbClust package in R.35 Furthermore, the robustness of our clustering 

algorithms was evaluated through alternative techniques including K-means and consensus 

clustering. After obtention of clusters, we described the clinical and biomarker distribution per 

cluster group. Final Shapley additive explanations (SHAP) diagrams were obtained to assess 

the importance of intervening features on each subphenotype by comparing the XGBoost 

models with and without the presence of such specific feature.  

 

Statistical analysis 

Descriptive statistics for continuous variables were reported as mean (standard deviation) or 

median (interquartile range) accordingly for each of the subphenotypes. Categorical variables 

were presented as frequencies and percentages. Clinical, demographic and biomarker 

concentration differences among subphenotypes were evaluated via the analysis of variance 

(ANOVA) or Chi-square test when appropriate. Cox proportional hazard models were used 

compare time to censored kidney events (CKD incidence or progression), CVD events and 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.21267738doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.14.21267738
http://creativecommons.org/licenses/by-nd/4.0/


death with death up to 6 years of follow-up. These models were fully adjusted for age, gender, 

diabetes mellitus (yes/no), BMI, baseline CKD (yes/no), and baseline UACR. Two-tailed P 

values of less than 0.05 were considered to indicate statistical significance. We performed all 

statistical analyses using R software version 4.0.3 (R Foundation for Statistical Computing, 

Vienna, Austria) and Python 3.9.3.   
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RESULTS 

Clinical features of AKI patients  

Among 1538 participants included in ASSESS-AKI, 748 AKI individuals had full biomarker and 

data of interest and were included in the analysis. The median follow-up time for clinical events 

was 4.8 years. Participants were predominantly men (68%), from Caucasian ethnicity (79%) 

with a mean (± SD) of 64 (13). The prevalence of baseline for key covariates such as CKD 

(eGFR<60 ml/min/1.73 m2), cardiovascular disease, congestive heart failure (CHF), 

hypertension and diabetes mellitus were: 39.7%, 48%, 26.3%, 78.6% and 50%, respectively. 

The overall mean (± SD) baseline eGFR was 66.8 (24.9) ml/min per 1.73m2 and the overall 

mean (± SD) uACR was 2.2 mg/g in this population. A large proportion of the cases of AKI were 

stage 1 (72.6%), while AKI stage 2 (15%) and 3 (12.4%) were less frequent. Full baseline and 

AKI clinical characteristics are reflected in Table 1. 

 

Unsupervised clustering analysis  

Using the 53 biomarker and clinical characteristics, the hierarchical clustering algorithm 

identified four clusters that best represented the data patterns of our AKI population. A 

diagrammatic representation (dendogram) used to ascertain the arrangement of the clusters 

produced by the corresponding analyses revealed four clusters (Figure 1). The Uniform 

Manifold Approximation and Projection (UMAP) was used for dimensionality reduction and 

cluster visualization revealing adequate independence (Figure 1). Additionally, the robustness 

of these four clusters was established by comparing with another unsupervised algorithm (K-

means clustering); visualized through the heatmap and UMAP in Figures 2 and Supplemental 

Figure 1., confirming the presence of 4 clusters. The presence and stability of four clusters was 

also reproduced through consensus clustering (Supplemental Figure 2).  
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Clinical and biological signatures among AKI subphenotypes  

The distributions of the 53 biomarker and clinical characteristics were statistically different 

between the four clusters (Table 2). Subphenotype 1 (N=181) was characterized by older 

individuals compared to subphenotype 2, 3 and 4, with age (mean ± SD): 71 ± 9 (p<0.001), with 

high ICU admission rates (94%, p<0.001), moderate rates of baseline CKD (38%, p<0.01) and 

the highest prevalence of baseline cardiovascular disease (72%, p<0.001) among all 

subphenotypes. Mean (SD) peak creatinine level at the time of diagnosis of AKI was 1.1 (0.3). 

Furthermore, individuals in subphenotype 1 had the highest rates of stage 1 AKI (91%). 

Subphenotype 2 (N=250) characterized by young individuals with the lowest prevalence of 

comorbid conditions such as CKD (18%, p<0.001), baseline CVD (33%, p<0.001), and CHF 

(16.8%, p<0.001). Mean (SD) peak creatinine level at the time of diagnosis of AKI was 1 (0.3) at 

the time of diagnosis and it was predominantly stage 1 (82%). Individuals in subphenotype 3 

(N=159) had the highest prevalence of CKD (89.9%, p<0.001), diabetes mellitus (70.4%, 

p<0.001) and CHF (55.3%, p<0.001) compared to other subphenotypes. These patients 

presented the highest mean (SD) peak serum creatinine (1.9 ± 0.6) and albuminuria (5 ± 7.7) 

during the hospitalization. Also, the frequency of AKI stage 1, 2 and 3 were 74.8%, 9.4% and 

15.7% respectively within this subphenotype. Patients in subphenotype 4 had markedly high 

ICU admission rates (73%, p<001) and the highest incidence of sepsis (51%, p<0.001) among 

all clusters. Furthermore, these individuals had comparatively lower rates of CKD (25.9%, 

p<0.001) and baseline cardiovascular disease (29.1%, p<0.001) than subphenotype 3. Notably, 

approximately 1 in every 3 patients within this subphenotype had stage 3 AKI, with mean (SD) 

peak serum creatinine of 3.2 (1.8) and albuminuria levels at 3.473 g/mg (5.7). The 

characteristics within each AKI subphenotype are described in Table 2.  
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In terms of biomarker composites, individuals with AKI in subphenotype 1 were characterized by 

the highest mean troponin T levels recorded among all clusters. Additionally, biomarkers of 

cardiac congestion (pro-BNP) and remodeling (ST2) were also higher compared to 

subphenotype 2. Biomarkers of systemic (IL superfamily) and kidney inflammation such as 

TNFR1, TNFR2, were comparatively lower to subphenotypes 3 and 4. However, AKI patients in 

this subphenotype presented higher KIM-1 levels compared to subphenotype 2. AKI patients in 

subphenotype 2 were characterized by low levels of systemic and organ-specific biomarkers of 

inflammation and injury. Notably, these individuals had the highest levels of the anti-

inflammatory biomarker, IL-13. AKI patients in subphenotype 3 were characterized by a marked 

influence of biomarkers of congestion compared to biomarkers of cardiac injury. Also, patients 

with AKI had predominantly low concentrations of biomarkers of systemic inflammation, but 

higher concentrations of TNFR1 and TNFR2 than subphenotypes 1 and 2. Interestingly, 

biomarkers of kidney injury such as IL-18, KIM-1 and NGAL were low and comparable to those 

levels exhibited by patients in subphenotype 2. Patients with AKI subphenotype 4 were the 

youngest and characterized by high concentrations of systemic (IL-1, IL-8, TNF-gamma) and 

kidney-related (TNFR1, TNFR2, YKL-40, MCP-1) inflammatory biomarkers. Similarly, they 

expressed higher levels of KIM-1 and NGAL levels when compared to subphenotype 2 and 3. 

They also expressed the lowest levels of cardiac injury activity. Full descriptions of biomarker 

composites per cluster are reflected in Table 2 and visualization of selected clinical and 

biomarker signatures are seen in Figure 4. 

 

Association between AKI subphenotypes and clinical outcomes  

Over a median of 4.8 years of follow-up, there were 38 mortality events per 1000 person per 

year, 38.2 CKD events per 1000 person per year and 38.8 CVD events per 1000 person per 

year. Event rates (per 1000 person-year follow-up) per each subphenotype are shown in Table 
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3. AKI subphenotype 3 and 4 were independently associated with an aHR of death at 2.9 (95% 

CI: 1.8 – 4.6, p<0.001). In terms of CKD outcomes, subphenotype 3 was independently 

associated with an aHR of 2.6 (95% CI: 1.6 – 4.2, P<0.001) in fully adjusted models (Table 3). 

Furthermore, subphenotype 3 was independently associated with the risk of CVD events with an 

adjusted HR of 2.6 (95% CI: 1.6 – 4.1, P<0.002). Figure 5 shows the forest plot of the 

subphenotypes and HRs for each outcome. Supplemental figures 6-7 show different K-M 

curves for each outcome and subphenotype.  
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Discussion  

We uncovered four clinically and molecularly distinct AKI subphenotypes through a series of 

unsupervised machine learning algorithms. These clusters are characterized by unique 

biological signatures as evaluated by a comprehensive panel of systemic and organ-specific 

serum and urine biomarkers reflective of different axes of disease and health. Biomarker 

composites were statistically different from each other and informed on the complexity of AKI 

syndromes through an unbiased approach. Furthermore, AKI subphenotype 3 and 4 were 

independently associated with 1.6 – 2.9-fold risk of death when compared with AKI 

subphenotype 2 (benign/reference cluster). Furthermore, AKI subphenotype 3 was 

independently associated with longitudinal CKD outcomes and CVD events in fully adjusted 

models among those patients who survived to hospitalization. 

 

AKI has been defined on the basis of the KDIGO criteria using serum creatinine and urine 

output changes. While this tool has increased our capacity to identify AKI, there is vast evidence 

suggesting that molecular changes are present before meaningful serum creatinine and UOP 

changes are noticed clinically.8,36 Furthermore, detectable tubular-interstitial abnormalities have 

been demonstrated to associate with AKI duration, dialysis needs and protracted kidney 

outcomes in large prospective studies.37-41 Moreover, the fine balance repair and maladaptive 

processes has been postulated to mediate the progression towards CKD.42 However, 

conceptualizing the complex nature of AKI and the intervening biological processes leading to 

distinct clinical trajectories is challenging for the clinician. This is in part due to large amounts of 

patient data but also due to the linear regressions used to evaluate the associations between 

individual or small set of biomarkers and outcomes. We demonstrated that machine learning 

algorithms allow us to deal with such data heterogeneity in an unbiased manner and discover 

clusters with unique clinical and molecular characteristics.  
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AKI subphenotype 1 (injury-predominant cluster) is characterized by senior patients with 

comparatively high levels of troponin T and KIM-1. Furthermore, these individuals presented 

higher levels of MCP-1 and YKL-40, which are markers of kidney and heart inflammation, 

compared to subphenotype 2 and 3. Yet, the majority of these patients had stage 1 AKI and had 

as low peak serum creatinine levels as compared to subphenotype 2 (benign AKI). These 

findings highlight the importance of incorporating additional tools for estimating kidney function 

in patients susceptible to muscle mass remodeling but also, to identify individuals at risk for 

clinical events.43 There are several clinical scenarios that could be represented by these 

findings, including patients with myocardial infarction or pulmonary embolism who are 

susceptible to hemodynamic instability, or patients with active cardiovascular disease 

undergoing contrast-based studies.  

 

Patients in AKI subphenotype 3 had the highest prevalence of baseline cardiovascular disease, 

CKD, and heart failure. These patients presented the highest, pro-BNP, TNFR1 and TNFR2 

levels and lowest baseline eGFR (38.9 ± 17 ml/min per 1.73 m2). Although these patients had 

the highest peak serum creatinine (3.4 ± 1.5) levels during hospitalization, they had low 

concentrations of urine IL-18, NGAL and KIM-1. A potential explanation relies in the time of 

collection of NGAL, which tends to have a short half-life compared to other biomarkers. 

Alternatively, we hypothesize that this scenario is plausible in the context of cardiorenal AKI, 

where creatinine fluctuations do not necessarily follow from acute injury marker elevations. AKI 

subphenotype 3 was independently associated with the worst outcomes such as death, CKD, 

and CVD events. TNFR1 and TNFR2 are relatively more stable markers of inflammation 

compared to other members of the TNF-alpha superfamily and elevated levels can be 

encountered in acute and chronic inflammation. Elevated TNFR levels has been found to be 

prognostic of cardiovascular disease, kidney disease progression and death among patients in 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.21267738doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.14.21267738
http://creativecommons.org/licenses/by-nd/4.0/


the pre- and post- AKI stage as well as in patients with stable CKD with and without diabetes 

mellitus. As demonstrated in our study, patients these levels could be elevated and produced in 

the heart and vasculature while not necessarily driving worse AKI pathophysiology. Yet, given 

their capability to orchestrate diverse pathological cellular changes in the heart, kidney, 

vasculature, they have postulated as a redundant pathway leading to death. Patients in this 

cluster could resemble those with advanced heart and kidney disease, who present with 

cardiorenal syndrome. Conversely to prior data, it is possible that patients with creatinine 

fluctuations in the context of ischemic or hemodynamic changes (i.e. cardiorenal syndrome) 

without significant tubular injury activity could still present increased morbidity and risk of clinical 

events, mediated by these TNFR1 and TNFR2.  

 

AKI subphenotype 4 characterized by patients with sepsis predominantly and AKI stage 3 

(including dialysis dependency). Patients did not have a high prevalence of baseline 

comorbidities, but they did present the highest concentrations of biomarkers of systemic 

inflammation (IL-1, TNF-alpha, CRP), and markedly elevated levels of biomarkers of kidney 

inflammation (MCP-1, YKL-40) and injury (KIM-1, NGAL). This phenotype resembles individuals 

with septic shock who are at increased risk of complications such as death as reflected in fully 

adjusted models. While the burden of pre-existing comorbidities was not apparent in this group, 

the severe physiological stress elicited during a case of sepsis and the pathological pathways 

activated likely inform on a different pathophysiology and phenotype of AKI that requires more 

attention prospectively. 

 

Our findings could potentially serve to gain insight on the diagnostic role and clinical relevance 

of biomarkers when incorporated into multi-dimensional models. Biomarker composites were 
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statistically different within each subphenotype and denotes those different degrees of biological 

disturbances could identify the nature of AKI and inform on future clinical events. In the advent 

of new therapies that could potentially modulate inflammatory-predominant type kidney disease 

(i.e. SGLT2 inhibitors) or fibrosis (i.e. mineralocorticoid receptor antagonists), identifying these 

pathologic domains could be build up in process of exploring therapeutic targets in AKI or in the 

post-AKI stage; understanding that all AKI are not created equal. Our analyses were robust and 

validated through different unsupervised algorithms and our data builds upon previous analyses 

showing that AKI and CKD subphenotypes with can eventually lead to different outcomes. While 

these studies do not inform on underlying biological pathophysiology, our study is novel by 

incorporating biomarkers of key domains involved in kidney disease progression. Future studies 

may attempt to explore whether individuals within the same AKI subphenotype could share 

similar proteins and transcripts responsible of the biomarker composites and clinical outcomes 

evidenced in our cohort (multi-omic level). Using this clustering approach could assist with the 

challenges of stratifying AKI in different scenarios such as sepsis, acute cardiac injury, 

community-acquired AKI, and advanced organ disease.  

 

By using a different approach (latent class analysis and K-means clustering), previous data has 

demonstrated the presence of two subphenotypes; one driven by congestive heart failure and 

benign biomarker profile and the other characterized by prevalent CKD and high concentrations 

of unfavorable biomarker profile when integrating 29 variables.44 The present study was 

characterized by more ample clinical and biomarker data integrating 53 variables, which could 

have resulted in different clustering representation. In detail, we applied several sophisticated 

methods to transform the raw data into different dimensionality, allowing us to use extensive 

mixed-type variables, and tackle two typical high dimensionality problems (sparseness and 

multiple chain imputations). These efforts turned into accessing granular subphenotypes where 
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each subphenotype was well separated from the other, as shown in Figure 1 (dendrogram). In 

this context, it is possible that our 4 AKI subphenotypes ‘bisect’ the aforementioned 2 

subphenotypes (congestion cluster with benign biomarker profile and CKD driven with 

unfavorable biomarker profile); thereby collapsing subphenotype 1 and 2 into one major 

cluster and subphenotype 3 and 4 into another single one. The angle of this study is unique 

and complementary to previous data, since we aimed to identify potentially useful ‘data 

patterns’ over statistically and numerally significant features that emulate real world data 

abundance. However, we acknowledge the potential trade with power reduction at the time 

of time to event analyses by deriving 4 subphenotypes instead of 2. The heterogeneity and 

clinical relevance found in the present study should be confirmed in additional studies with 

larger sample sizes.  

 

In terms of limitations, due to the design of the ASSESS-AKI study, only patients who survived 

to the 3-month follow-up visit were included in the longitudinal data collection and analyses. 

Thus, there is some selection bias present. However, patients who die in-hospital or 

immediately following hospitalization are not in need of subphenotyping, and risk-stratifying for 

long-term outcomes. Our subphenotypes may not inform on those with the highest risk profile. 

Also, despite the heterogeneity of our AKI population (medical/surgical floors, ICU), a high 

proportion AKI cases were stage 1, which could carry a lower risk of CKD events compared to 

more severe stages. Most of our patients were white and we did not have a validation cohort, 

which limits the generalizability of our subphenotypes especially given the uniqueness of the 

biomarkers tested and the study design. Since this is data-driven approach, data pattern 

aggregation and cluster membership depend on the input of data. Therefore, if the input 

variables were to be modified, we could expect different AKI subphenotypes. Furthermore, 
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reproducing these 4 novel clusters within each participating center in ASSESS-AKI is 

challenging, and potentially explained by the participating population in each center. For 

example, it may be difficult to reproduce AKI subphenotype 1 (cardiac/kidney injury 

predominant) in the surgical floor or AKI subphenotype 4 (injury-inflammation predominantly in 

the context of sepsis) in a cardiac care unit. Also, while our clusters describe altered biological 

pathways, they do not inform on the pathophysiology of AKI and genomic/transcriptomic 

analyses are needed. Moreover, cluster analysis summarizes patients’ heterogeneity of large 

data sets into discrete categories, which may result in loss of information in exchange for better 

clinical interpretation. Finally, subphenotype discovery depend largely on data input and feature 

characteristics, resulting in different feature aggregation and clinical/biomarker composites. 

Therefore, these subphenotypes may not necessarily produce in other settings (e.g. COVID-19) 

and further studies are needed.  

 

We discovered 4 novel and clinically meaningful and statistically different AKI subphenotypes 

that inform on potential biological pathway abnormalities that associate with different risks for 

adverse clinical events and death. To the best of our knowledge, our data are novel as it 

comprehensively assessed the biological and statistical role of a comprehensive panel of 

biomarkers when obtained during the diagnostic phase of AKI. Biomarker composites within 

each cluster informed on the complexity of AKI syndromes through an unbiased approach. This 

study provides a novel look to the role of biomarkers in the diagnosis of AKI and their 

association to clinical events via multidimensional analyses. 
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Figure 1. Hierarchical clustering, dendogram (left). UMAP showing density-based clustering and dimensionality reduction 
(right). 
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Figure 2. Heat map, robustness of 4 clusters 
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Figure 3. SHAP diagram comprising all variables included in subphenotype discovery and modeling 
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Figure 4. Key clinical characteristics (left) and selected biomarker composites (right) showing statistically 

significant differences between each subphenotype. 
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Figure 5. Forest plot analysis showing the 95% confidence interval adjusted hazard ratios for all outcomes among all 

subphenotypes 

 

 

Foot note: models adjusted for age, gender, diabetes mellitus (yes/no), BMI, baseline CKD (yes/no), and baseline UACR. SP: 
subphenotype. SP2 was the refence group. 
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Table 1. Clinical characteristics among the four novel AKI subphenotypes 

  1 (N=181) 2 (N=250) 3 (N=159) 4 (N=158) p value 

Age     < 0.001 

   Mean (SD) 71.2 (9.4) 60.2 (12.8) 66.8 (11.6) 57.4 (12.4)   

   Range 32.7 - 87.3 18.8 - 82.7 35 - 88.9 22.2 - 87.8   

Gender     < 0.001 

   M 148 (81.8%) 162 (64.8%) 104 (65.4%) 94 (59.5%)   

   F 33 (18.2%) 88 (35.2%) 55 (34.6%) 64 (40.5%)   

Race     < 0.001 

   W 174 (96.1%) 180 (72.0%) 112 (70.4%) 128 (81.0%)   

   B 5 (2.8%) 57 (22.8%) 38 (23.9%) 11 (7.0%)   

   O 2 (1.1%) 13 (5.2%) 9 (5.7%) 19 (12.0%)   

ICU adm     < 0.001 

   N 11 (6.1%) 100 (40%) 64 (40.3%) 43 (27.2%)   

   Y 170 (93.9%) 150 (60%) 95 (59.7%) 115 (72.8%)   

HTN     < 0.001 

   N 42 (23.2%) 51 (20.4%) 19 (11.9%) 48 (30.4%)   

   Y 139 (76.8%) 199 (79.6%) 140 (88.1%) 110 (69.6%)   

DM     < 0.001 

   N 111 (61.3%) 131 (52.4%) 47 (29.6%) 84 (53.2%)   

   Y 70 (38.7%) 119 (47.6%) 112 (70.4%) 74 (46.8%)   

CVD     < 0.001 

   N 51 (28.2%) 167 (66.8%) 59 (37.1%) 112 (70.9%)   

   Y 130 (71.8%) 83 (33.2%) 100 (62.9%) 46 (29.1%)   

CHF     < 0.001 

   N 138 (76.2%) 208 (83.2%) 71 (44.7%) 134 (84.8%)   

   Y 43 (23.8%) 42 (16.8%) 88 (55.3%) 24 (15.2%)   
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Sepsis     < 0.001 

   N 175 (96.7%) 228 (91.2%) 153 (96.2%) 77 (48.7%)   

   Y 6 (3.3%) 22 (8.8%) 6 (3.8%) 81 (51.3%)   

CKD     < 0.001 

   N 113 (62.4%) 205 (82.0%) 16 (10.1%) 117 (74.1%)   

   Y 68 (37.6%) 45 (18.0%) 143 (89.9%) 41 (25.9%)   

Baseline Cr     < 0.001 

Mean (SD) 1.1 (0.3) 1 (0.3) 1.9 (0.6) 1.1 (0.4)   

Range 0.5 - 1.9 0.5 - 2.1 0.7 - 2.7 0.5 - 2.7   

Baseline eGFR     < 0.001 

Mean (SD) 68.1 (18.4) 77.9 (19.6) 38.9 (17) 75.784 (24.7)   

   Range 33.1 - 115.3 31.2 - 117.9 17.7 - 109.2 22.8 - 117.9   
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Table 1. Clinical characteristics among the four novel AKI subphenotypes (continued) 

 

AKI stage           

   1 165 (91.2%) 205 (82.0%) 119 (74.8%) 54 (34.2%)   

   2 13 (7.2%) 37 (14.8%) 15 (9.4%) 47 (29.7%)   

   3 3 (1.7%) 8 (3.2%) 25 (15.7%) 57 (36.1%)   

Peak Cr     < 0.001 

   Mean (SD) 1.7 (0.5) 1.7 (0.5) 3.4 (1.5) 3.2 (1.9)   

   Range 0.9 - 3.8 0.9 - 4.7 1.2 - 7.4 0.9 - 7.4   

Peak eGFR     < 0.001 

   Mean (SD) 41.2 (13.2) 44.1 (12.8) 21.082 (10.1) 26.108 (15.2)   

   Range 15.2 - 67.1 12.7 - 67.1 5 - 63.1 5 - 67.1   

uACR at AKI     < 0.001 

   Mean (SD) 0.8 (1.3) 0.6 (1.1) 5 (7.7) 3.5 (5.7)   

   Range 0 - 10.8 0 - 7.2 0 - 24.9 0.1 - 24.9   
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Table 2. Biomarker characteristics within each AKI subphenotypes (systemic inflammatory) 

Subphenotype 1 (N=181) 2 (N=250) 3 (N=159) 4 (N=158) p value 

INF-gamma     < 0.001 

Mean (SD) 2.9(6.9) 12.7 (34.3) 8.4 (19.5) 39.6 (67.6)  

Range 0.3 - 71.3 0.3 - 225.6 0.3 - 225.6 0.3 - 225.6  

IL1b     < 0.001 

Mean (SD) 0.3 (0.4) 0.3 (0.3) 0.3 (0.2) 0.5 (0.5)  

Range 0.1 - 1.9 0.1 - 1.9 0.1 - 1.9 0.1 - 1.9  

IL2     < 0.001 

Mean (SD) 0.5 (0.6) 0.4 (0.5) 0.5 (0.5) 0.9 (1.1)  

Range 0.2 - 4.1 0.2 - 4.1 0.2 - 4.1 0.2 - 4.0  

IL6     < 0.001 

Mean (SD) 50.8 (47.4) 13.9 (24.9) 13.1 (19.6) 48.5 (63.3)  

Range 0.5 - 210.8 0.5 - 210.8 0.5 - 185.9 0.5 - 210.8  

IL8     < 0.001 

Mean (SD) 15.6 (14.1) 15.1 (17.1) 15.1 (13.8) 22.6 (22.3)  

Range 2.9 - 89.9 2.9 - 89.9 2.9 - 89.9 2.9 - 89.9  

IL10     < 0.001 

Mean (SD) 1.9 (2.4) 1.217 (1.7) 0.9 (0.9) 2.9 (3.4)  

Range 0.2 - 11.5 0.2 - 11.5 0.180 - 5.3 0.180 - 11.5  

IL12     < 0.001 

Mean (SD) 0.3 (0.2) 0.253 (0.3) 0.267 (0.2) 0.474 (0.5)  

Range 0.057 - 1.681 0.057 - 1.681 0.057 - 1.681 0.057 - 1.681  

IL13     < 0.001 

Mean (SD) 0.5 (0.3) 0.6 (0.4) 0.6 (0.4) 0.7 (0.5)  

Range 0.1 - 1.8 0.1 - 1.8 0.1 - 1.8 0.1 - 1.8  

TNF-alpha     < 0.001 

Mean (SD) 4.403 (1.9) 4.817 (2.4) 7.227 (2.922) 8.9 (4.7)  
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Range 1.6 - 14.3 1.6 - 17.6 2.9 - 17.9 1.6 - 17.9  

 

 

 

Table 2. Biomarker characteristics within each AKI subphenotypes (cardiac injury, congestion, and repair/fibrosis) - 
continued 

Subphenotype 1 (N=181) 2 (N=250) 3 (N=159) 4 (N=158) p value 

Pro-BNP     < 0.001 

Mean (SD) 4185.8 (3520.6) 1349.8(1827.9) 5175.1 (4719.5) 3265.1 (3459.1) 

Range 114 - 15693.7 32.8 - 11820 63 - 15693.6 32.8 - 15693.6 

Troponin T     < 0.001 

Mean (SD) 564.1 (648.5) 195.3 (473.9) 352.9 (653.4) 74.7 (188.9) 

Range 13.3 - 2741.8 13.300 - 2741.750 13.300 - 2741.750 13.3 - 1683 

ST2     < 0.001 

Mean (SD) 354.7 (334.4) 120.6 (162.9) 144.6 (219.2) 413.2 (476.9) 

Range 28.1 - 1513.3 17.3 - 1005.6 17.3 - 1513.3 17.3 - 1513.3 

Gal3     < 0.001 

Mean (SD) 18.814 (8.1) 15.874 (6.7) 30.759 (11.8) 22.621 (10.6)  

Range 6.9 - 52.9 6.8 - 42.7 6.8 - 52.9 6.8 - 52.9  
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Table 2. Biomarker characteristics within each AKI subphenotypes (kidney inflammation, injury and health) - continued 

Subphenotype 1 (N=181) 2 (N=250) 3 (N=159) 4 (N=158) p value 

TNFR1     < 0.001 

   Mean (SD) 5657.6 (2630.7) 3863.6 (1759.7) 9087.1 (4376.7) 8377.4 (4400.3) 

   Range 1960 - 19682.8 1566.8 - 12611 3393 - 19682.8 1566.8- 19682.8 

TNFR2     < 0.001 

   Mean (SD) 10697.9 (4487.9) 9097.5 (5065.3) 17534.2 (7852.5) 19377.3 (10739.1) 

   Range 3255.4 - 30631 3255.4 - 40119 4476 - 41167.5 3255.4 - 41167.5 

Urine IL18     < 0.001 

   Mean (SD) 85.4 (74.6) 43.7 (55.8) 46.485 (67.6) 138.4 (120.8) 

   Range 2.9 - 407.5 2.876 - 407.5 2.9 - 383.1 2.9 - 407.5   

KIM-1     < 0.001 

   Mean (SD) 9724.6 (8412.5) 2655.8 (2889.7) 2615.1 (3431.8) 6159.9 (6249) 

   Range 654 - 29077.2 70.4 - 20292 70.4 - 29077.2 236 - 29077.2 

MCP-1     < 0.001 

   Mean (SD) 1049.4 (1136.9) 582.6 (835.5) 677.8 (1229.3) 1886.9 (2044.6) 

   Range 59.4 - 7333.764 25.8 - 7333.8 25.8 - 7333.8 67.5 - 7333.8 

YLK 40     < 0.001 

   Mean (SD) 11895.3 (25154.8) 1212 (1799.3) 9757.9 (26760.5) 26643.3 (51209.5) 

   Range 33.8 - 164096.8 15 - 12468.8 15.001 - 164096.8 15 - 164096.9 

NGAL     < 0.001 

   Mean (SD) 148.524 (213.3) 56.472 (70) 170.488 (284.4) 478.661 (475.6) 

   Range 3.2 - 1455.6 3.2 - 479.5 3.2 - 1455.6 8.3 - 1455.6 

UMOD     < 0.001 

   Mean (SD) 3300 (2638.9) 3716.9 (2978.9) 2494.4 (2465.7) 3324.9(3310.2) 

   Range 447.7 - 13611.9 250.3 - 13611.9 250.3 - 13611.9 250.3 - 13611.9 
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Table 3. Hazard ratios (95% CI) for each subphenotype and the risks of longitudinal clinical events. 

 

Foot note: models adjusted for age, gender, diabetes mellitus (yes/no), BMI, baseline CKD (yes/no), and baseline UACR  

 

  

 
 

Subphenotype 

 
Event rate 
per 1000 

PY 

Mortality   
Event rate 
per 1000  

PY 

CKD outcomes  
Event rate 
per 1000 

PY 

CVD events 

Adjusted models  Adjusted models Adjusted models  

HR CI (95%) p value  HR CI (95%) p value  HR CI (95%) p value  

SP2 (ref) 26.3 1     30.8 1    29.9 1    

SP1 39 1.4 0.8 - 2.2 0.16 33.3 1 0.7 - 1.5 0.9 41.9 1.2 0.8 - 1.9 0.3 

SP3 73 2.9 1.8 - 4.6 <0.001 61.5 2.6 1.6 - 4.2 <0.001 66.7 2.6 1.6 - 4.1 <0.002 

SP4 29.4 1.6 1.01 - 2.6 0.04 37.5 0.8 0.5 - 1.2 0.3 28.4 0.9 0.6 - 1.6 0.9 
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Supplemental Materials 

 

Supplemental Figure 1. Hierarchical clustering (left) vs. K-means clustering (right) to demonstrate robustness of four 
subphenotypes  

                             

   Subphenotypes derived from hierarchical clustering   Subphenotypes derived from K-means clustering 
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Supplemental Figure 2. Consensus clustering demonstrating 2-6 subphenotypes. 
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Supplemental Table 1. Contingency table, consensus clustering (Y axis) versus hierarchical clustering (X axis) 

 

  

Single 1 2 3 4 

1 136 45 0 0 

2 8 241 1 0 

3 0 28 131 0 

4 6 6 5 141 

     

Foot note: 45/181 (24.8%) patients in subphenotype 1 belong in subphenotype 2, from consensus clustering analyses. 28/159 
(17.6%) patients in subphenotype 3 belong in subphenotype 2 via this approach. Individuals in AKI are clearly separated from 
other subphenotypes. Column: consensus clustering, Raw: hierarchical clustering  
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Supplemental Figure 3. Cluster description based on categorical features. 
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Supplemental Figure 4. Cluster description based on numeric features with robust scaler transformation 
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Supplemental Figure 5. K-M and cumulative incidence curves for mortality per each subphenotype in adjusted models  

   

 
 

 

Foot note: models adjusted for age, gender, diabetes mellitus (yes/no), BMI, baseline CKD (yes/no), and baseline UACR  
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Supplemental Figure 6. K-M and cumulative incidence curves for CKD outcomes per subphenotype in adjusted models  

 

              

 

Foot note: models adjusted for age, gender, diabetes mellitus (yes/no), BMI, baseline CKD (yes/no), and baseline UACR 
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Supplemental Figure 7. K-M and cumulative incidence curves for CVD events per each subphenotype in adjusted models  

 

   

Foot note: models adjusted for age, gender, diabetes mellitus (yes/no), BMI, baseline CKD (yes/no), and baseline UACR  
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