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1     Abstract: Epilepsy is a prevalent condition characterised by recurrent, unpredictable seizures. 

2      The diagnosis of epilepsy is by surface electroencephalography (EEG), a time-consuming and 

3      uncomfortable process for patients. The diagnosis of seizures using EEG over a brief monitoring 

4      period has variable success, dependent on patient tolerance and seizure frequency. Further, the 

5      availability of hospital resources, and hardware and software specifications inherently limit the 

6      capacity to perform long-term data collection whilst maintaining patient comfort. The application 

7      and maintenance of the standard number of electrodes restrict recording time to a maximum of 

8      approximately ten days. This limited monitoring period also results in limited data for machine 

9      learning models for seizure detection and classification. This work examines the literature on the 

10      impact of reduced electrodes on data accuracy and reliability in seizure detection. We present 

11      two electrode ranking models that demonstrate the decline in seizure detection performance 

12      associated with reducing electrodes. We assert the need for further research in electrode reduction 

13      to advance solutions toward portable, reliable devices that can simultaneously provide patient 

14      comfort, long-term monitoring and contribute to multimodal patient care solutions. 
 

15      Keywords: electrode; electroencephalogram; epilepsy; seizure; seizure detection; machine learn- 

16      ing; patient care 

 
 

 
 

 

 

 

17       1. Introduction 

18 Epilepsy is a severe neurological condition that affects millions of people world- 

19      wide. The main symptoms are recurrent seizures that can be a traumatic experience 

20      for the individual [1]. Epilepsy diagnosis requires attendance at a specialised epilepsy 

21      clinic or hospital. The lengthy process involves multiple tests, continuous electroen- 

22      cephalography (EEG) and video EEG (vEEG) monitoring, and if no seizures are recorded, 

23      may result in misdiagnosis. Currently, this process is conducted either in a hospital 

24      ward or via an ambulatory service by wearing the EEG device at home for several days. 

25      Additionally, a carer is usually required to be present for ward testing. 

26 EEG data analysis is a lengthy process, mainly if seizures are not immediately 

27      evident on the surface EEG or vEEG. There may be no or little surface EEG change during 

28      focal seizures without impaired awareness. The incidence of false-positive diagnosis 

29      reportedly ranges from 2%-71% [2].  EEG monitoring is costly in financial, mental, 

30      physical and time resources. In 2016, the global prevalence of active epilepsy was 45.9 

31      million individuals with 126, 055 epilepsy-related deaths, 13.5 million disability-adjusted- 

32       life-years, 5.9 million years of life lost (YLL), and 7.5 million years of life with a disability 
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33      (YLD) [3]. The risk of misdiagnosis must be weighed against that of a false positive 

34      diagnosis [2]. Therefore, improving EEG device portability and automated detection 

35      represents an essential advancement to facilitate effective diagnosis and treatment and 

36      enhance the patient journey. 

37 This work serves to explain the routine clinical seizure detection process and present 

38      two channel selection algorithms developed in our lab. Our channel selection algorithms 

39      were applied to publicly available datasets, highlighting the difficulty in achieving high 

40      seizure detection performance with a lower number of channels. We discuss previous 

41      work that attempted to reduce the number of electrodes used in automated seizure 

42      detection models, and suggest their applications for improving long term monitoring 

43      solutions. 
 

44       1.1. The need for electrode reduction 

45 Several factors support the focus on reducing the number of electrodes used in 

46      seizure detection. Technological advances have made automated seizure detection 

47      and device portability a near reality. Currently, the longest non-invasive surface EEG 

48      recording using wet or dry electrodes is around ten days. Applying abrasive gel to the 

49      scalp can irritate and damage the skin, yet it is compulsory for standard EEG electrodes. 

50      Mobile EEG systems must be comfortable and appealing to wear. Thus the portability 

51      of EEG systems represents a trade-off between electrode count and the quality of the 

52      signal.  Achieving this balance in a portable EEG system would enable home EEG 

53      monitoring, potentially greatly improving patient comfort during the diagnosis process. 

54      Fig. 1 depicts the patient journey through the healthcare system from the first seizure 

55      through to epilepsy diagnosis. 

56 Herta [4] and colleagues emphasised the value of fewer electrodes in circumstances 

57      where a 10-20 EEG system cannot be applied, such as in intensive care units (ICUs). 

58      Ambulatory monitoring is a potential beneficiary of reduced electrodes through auto- 

59      mated seizure logging, which is currently achieved through either ward monitoring or 

60      self-report. However, the accuracy of self-report is highly dependent on seizure-type, 

61      and patient ability [34]. Inaccurate seizure reporting impacts patient treatment and 

62      conflates reporting on the efficacy of treatments such as medication. Under-reporting of 

63      seizures is a long-standing and significant clinical problem [34–42]. Sub scalp electrodes, 

64      if shown to be a reliable method for recording EEG, can replace the need for patients 

65      to regularly attend clinics to have electrodes re-applied. Moreover, subcutaneous elec- 

66      trode systems purport to have a high agreement with surface EEG recordings [5]. Yet 

67      the number of electrodes in subcutaneous systems remains restricted; more than four 

68      electrodes are not ideal. Hence, improving automated seizure detection performance 

69      using a reduced number of surface electrodes is the first step towards reliable, long-term 

70      EEG monitoring solutions that can improve the patient journey. 

71 Furthermore,  patient-specific electrode reduction would improve recording of 

72      their specific seizure semiology.   The number of required electrodes and electrode 

73      placement can be guided by a patient’s magnetic resonance imaging (MRI) scan and 

74      EEG. We recently examined the role of structural connectivity in seizure propagation 

75      in focal epilepsy patients [6]. Diffusion MRI can be a valuable aid for patient-specific 

76      determination of electrode placement. This paper is intended to extend our previous 

77      work by examining the best automated method for electrode based on EEG signals. 

78      Taken together, the individualised MRI data combined with the automated ranking 

79      of EEG signals can provide a patient-specific pipeline for seizure onset zone selection, 

80      which would indicate the optimal electrode placement and the number of electrodes to 

81      optimise automated seizure detection. Fig. 2 portrays a theoretical process for using both 

82      EEG and MRI to obtain the optimal electrode placement. Items (a) and (b) were explored 

83      in our previous work [6] whilst (c) and (d), circled in red, are examined in Section 4 of 

84      this paper. 
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Figure 1. Patient journey - two scenarios. This figure depicts the process and various settings 

where seizure detection and logging may take place. In the hospital setting (a, Journey A), a carer 

accompanies the patient. Patient comfort, mobility, and limited hospital resources restrict the 

length of time a patient can spend in the hospital. Conversely, the home setting (b, Journey B) 

facilitates patient comfort and mobility. Patients can continue their daily activities while being 

monitored for an extended duration. Unfortunately, improving patient comfort and mobility 

through home monitoring comes at the cost of diminished EEG recordings due to limitations 

imposed by the individual and their environment. For example, electrodes do not last long on 

the scalp, and the patient must inevitably return to the hospital or have a technician visit them to 

adjust or remove the electrodes. Avenues for improving this imperfect process lie in advancing 

the research in electrode reduction to enable long-term wearable solutions for the patient. 

 

85      2. Manual seizure detection 

86 Seizures are detected by monitoring the EEG signals. EEG is the gold standard used 

87      to detect interictal, ictal and subclinical epileptic activity. This includes critical condi- 

88      tions like status epilepticus [7,8]. Changes in EEG signals could represent spontaneous 

89      electrical brain activities that exhibit dynamic, stochastic, nonlinear, non-stationary, and 
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Figure 2. MRI and EEG for optimal electrode placement. The MRI scans (T1 and diffusion) (a) are 

processed through an imaging pipeline to obtain tractography and tract-weighted tensor metrics 

(b). The EEG signals (c) are read and seizures detected using machine learning (ML) (d) and the 

most important electrodes per patient are selected (e). Lastly, the output of both the tract-weighted 

tensor metrics and the EEG electrode selection can be used by the clinicians to select the optimal 

placement for a wearable or implantable electrode. 

 

90      complex behaviour with high temporal resolution. Typical EEG monitoring requires 

91      up to 19 head, and two reference electrodes, based on the international 10–20 electrode 

92      placement system [9]. This standard electrode placement is applied in a variety of set- 

93      tings, including for inpatients in the hospital. In the context of ambulatory monitoring in 

94      the home setting, a device with up to 19 electrodes may be used. For seizure monitoring 

95      in neonates in the ICU, four electrodes are considered sufficient. The routine practice of 

96      continuous EEG monitoring in ICUs affords a consensus on the reliability of a reduced 

97      number of electrodes [10]. 

98 Electrode positioning and a typical ictal event are demonstrated in Fig. 3. Here, an 

99      interictal period precedes an ictal event (red highlighted section), shown on a montage 

100      of five channels out of the standard 21. In routine clinical practice, seizure onset and 

101      type are identified, labelled and classified. Human experts (“expert”) may be nurses, 

102      EEG technicians, neurophysiologists and neurologists, trained to detect seizures on the 

103      EEG. The expert then labels the EEG with the seizure time, length and location. Usually, 

104      EEG data recorded over an extended period yields reliable, interpretable EEG that can 

105      inform clinical decisions. 
 

106       3. Automated seizure detection 

107 Computer-automated techniques, such as ML algorithms, can detect and label 

108      seizures. EEG signal recordings and the amount of EEG recorded play a fundamental 

109      role in the outcome of the seizure detection model [11]. Channel selection involves 

110      reducing the number of electrodes to be analysed or utilising a range of feature selection 

111      and classification techniques, or a combination of both  [44,45,49,60].  The model is 

112      trained either on individual patients or across all patients and then tested on the dataset 

113      of interest [12,13]. 
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Figure 3. EEG signals are recorded from electrodes placed on the scalp in the 10-20 format (a). The 

signals are then displayed on readout software. An EEG technician or neurologist then visually 

identifies and labels the interictal, pre-ictal and ictal phases (b). 

 

114 Digital signal processing allows the extraction of common features of an EEG signal. 

115      Prior human studies examine engineered features such as relative average amplitude, 

116      relative scale energy, average cross-correlation function, relative power, bounded vari- 

117      ation [14], phase-amplitude coupling [15], root mean square [16], energy [17], median 

118      frequency [18], entropy [19,20], correlation dimension [21,22], maximal Lyapunov expo- 

119      nent [23], and skewness and kurtosis [24]. These features may be the sole focus of the 

120      model [20] or combined and applied to a selected EEG frequency band [25–27]. There 

121      are also options for direct extraction of features from raw EEG, or after a filter such as 

122      short-time Fourier transform (STFT) or wavelet transform is applied to the EEG. 

123 In conventional ML methods, such as convolutional neural networks (CNN), the 

124      aim is to classify EEG signals [27,28]. EEG features are fed into the model, and addi- 

125      tional threshold mechanisms are then applied to the output of the training model via 

126      a “classifier” technique [29]. Common classifier techniques include but are not limited 

127      to Bayesian, K-nearest neighbours (KNN), decision tree, random forest, and support 

128      vector machine (SVM) classifiers [11]. Biomarkers for seizure susceptibility may help 

129      improve automated seizure detection models, yet tools for such exploration are limited. 

130      Our recent work examined biomarkers for seizure susceptibility using a Bayesian CNN 

131      based tool [31]. We showed interictal slowing activity was a promising feature for the 

132      investigation of seizure susceptibility prediction. 

133 The reliance of automated seizure detection models on engineered features em- 

134      phasises the vulnerability of the model to changes in the electrode count, EEG artefacts 

135      and noise [30]. Individual human characteristics, such as hair and scalp thickness, and 

136      pathological state, also influence EEG recordings. Reducing electrodes whilst maintain- 

137      ing the fidelity of recordings demands the ML model and the electrode placement be 

138      patient-specific. Therefore electrode reduction is currently considered problematic and 

139      receives little enthusiasm in the clinical setting. The increased availability of sufficient 

140      and reliable EEG data is critical to the acceptance and translation of automated seizure 

141      detection into the clinical realm. The need for increased data can be met through a 

142      reduced electrode, long-term, implantable device. 
 

143      4. Methods 

144        4.1. Channel Selection Method 1 

145 Our group previously used this random forest classifier method on the Kaggle 

146      iEEG dataset to rank channels in order of their contribution to the detection of a given 

147      seizure [50]. Here we apply it to the EPILEPSIAE scalp EEG dataset to test its utility on a 
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Table 1: Seizure detection with reduced channels, channel selection models, and/or reduced electrodes. 

 

Reference Dataset No. E/C § Patient 

specific 

No. patients Age group £ Total no. 

seizures 

Sensitivity Specificity 

Birjandtalab CHB-MIT 18 E Y 23 P – 80.87%(avg) 47.45% 

et al.         

2017 [43]         

Selvakumari CHB-MIT 12 E Y 23 P – 95.70% 96.55% 

et al.         

2019 [44]         

Pisano et al. EPILEPSIAE 11 C N 3 A 28 94% 95% 

2020 [45] (surface)        

Herta et al. General 6 E N 83 – – 84.99–93.39% 90.05–95.6% 

2017 [4] Hospital        

 Vienna †        

Bhattacharyya CHB-MIT 5 C N 23 P – 97.91% 99.57% 

et al. 2017         

[46]         

Moctezuma CHB-MIT 4-6 C Y 23 P – – – 

et al.         

2020 [47]         

Shah et al. TUH EEG 4-2 C N – – – – – 

2017 [48] Seizure        

 Corpus        

 (TUSZ)        

Kjaer et al. 

2017 [49] 

Rigshospitalet 

and 

Northzealand 

Hospital ‡ 

3 E N 6 P ∼8.75/pat. 98.40% 100% 

Maher et al. EPILEPSIAE 6 C Y 30 A – 92.25(AUC)  

2021 (current (surface)        

paper)         

 TUH 5 C Y 249 A – 2.04%  

£ A for adult; P for pediatric. 

§ E for electrodes; C for channels. 

‡ This dataset is from Rigshospitalet and Northzealand Hospital. 

† This group reported 9 electrodes had the highest sensitivity, but 6 electrodes performed best on their “RDA” model. 

 

 

148      different dataset. The descriptive statistics of the EPILEPSIAE dataset are shown in Fig. 

149      4. The channel selection was patient-specific, meaning the channels selected as the best 

150      channels differed from patient to patient. The pseudo-code for the automatic channel 

151      selection (ACS) algorithm is shown below. 

152 For the current paper, the ACS algorithm was used to select the 10 most important 

153      channels per patient on the EPILEPSIAE surface EEG dataset (on 30 patients). Next, the 

154      top 10 channels across the entire group of 30 patients were selected and fed into our 

155      seizure detection model. To test the performance of the 6 channels, we chose a subset 

156      of the top 6 channels from the top 10. The seizure detection model was then applied 

157      to the 6 channels. The average AUC score for 19, 10, and 6 channels was 98.03, 91.57, 

158       92.25, respectively. With just 6 channels, we observed an encouraging trend of improved 

159      performance on some patients; yet the number of false positives remained a challenge. 
 

160        4.2. Channel Selection Method 2 

161 For this method of channel selection, we performed seizure detection on a subset of 

162      the TUH dataset. Descriptive statistics for the TUH dataset are shown in Fig. 5. 

163 Channel selection for this method involves a combination of two approaches: 
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Figure 4. Descriptive statistics from the EPILEPSIAE dataset [51,52]. Gender is shown in (a), 

seizure type, and the number of seizures per patient is shown in (b). Age distribution (c) includes 

a shaded portion, which represents the number of years living with epilepsy. The seizure length 

and frequency of that seizure length is depicted in the heat-map in (c). Seizure frequency is shown 

in the colour bar, where darker colours represent a higher number of seizures and lighter colours 

represent a lower number of seizures. 

 

164 Approach 1. Information from a single electrode was fed into a simple and fast 

165      CNN structure (EEGNet, as seen in [53]), which has been widely used in the brain- 

166      computer interface domain. Channels were then selected by ranking valuation accuracy. 

167      The final channel selection decision was based on the ranking results of the two channels. 

168      A further experiment on the high-ranking channels was also conducted (Approach 2). 

169      The procedures are shown in Fig. 6. 

170 Approach 2. A fast single electrode training was conducted to rank the channels. 

171      The classifier was trained to feed one electrode one time and rank channels based on the 

172      valuation accuracy. To make this method less time-costly, we trained only one epoch for 

173      comparison as there were a total of 21 electrodes to test. Unlike previously mentioned 

174      methods which use frequency information in training, this approach trains the raw EEG 

175      directly. The final channel ranking heat-map is shown in Fig. 7. 

176 We combined the results of the two electrode ranking methods based on (1) The 

177      importance value from approach one, which reflects how often it is used during training 

178      in the random forest classifier; (2) The valuation accuracy from approach two, which 

179      reflects the first epoch results when we put a signal electrode into a fast structure training. 
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Algorithm 1 Automatic channel selection 

Require: X: FFT of 1-s EEG windows, size of (nsamples, nfeatures, nchannels); y: label, ictal 

or interictal 
1:  Xr = Reshape(X, (nsamples, nfeatures nchannels)) 
2:  Maintain order so that Reshape function is reversible 

3: Train a Random Forest classifier to fit (Xr, y) 

4: Store the frequencies of being used by the RF classifier for each feature in an array I 

with a shape of (nfeatures nchannels) 
†. 

5: Ir = Reshape(I, (features, nchannels) 

6: Is = Sum(Ir, along nchannels axis) 

7:  Is has a shape of (nchannels) 

8: Sort Is in descending order. 

9: Indices of top values are indices of the most important EEG channels 

† This can be achieved via method feature_importances_() if using scikit-learn (tested 

with version 0.24.0). The method returns an array with a shape of (nfeatures × nchannels). 

 

 

 

 

 

 

 

 
 

 

 

Figure 5. Descriptive statistics from the TUH dataset. Gender distribution is shown in (a), and 

total number of seizures per patient is shown in (b). The seizure length and frequency of a specific 

seizure length is depicted in the heat-map in (c). Seizure frequency is shown in the colour bar, 

where darker colours represent higher number of seizures and lighter colours represent a lower 

number of seizures. 

 

180      5. Results 

181 As seen in Fig. 7, the five electrodes F3, F7, P3, O1, and O2 ranked the highest. The 

182      electrodes were paired in the format F3-F7 and P3-O1 as these were two pairs of nearby 

183      electrodes, to give the two-channel format that was fed into the model. The purpose 

184      of the two approaches for channel selection was to make the selection more reliable. 

185      Interestingly, literature shows that left temporal lobe epilepsy is a common epilepsy 

186      type, with focal seizures in the left temporal lobe being the most common seizure type. 

187      Our model achieved a sensitivity score of 2.04, which reaches 0.17 FA/24 hrs using only 

188      two channels. The modest results highlight the challenges in EEG seizure detection 

189      with a minimal number of electrodes. 
 

190      6. Discussion 

191 Given the challenges in automated seizure detection and logging, a portable, re- 

192      duced electrode device would be invaluable for patients. Such a device could materialise 

193      as a sub scalp implant with as little as three electrodes tailored to patient-specific seizure 

194      detection. A sub scalp implant would address the long-term monitoring needs of indi- 
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195      viduals with intractable epilepsy who are unsuitable for surgery. The device could act as 

196      a monitor to guard against sudden unexpected death in epilepsy (SUDEP), prevalent 

197      in low resource countries [54,55]. However, the reduced electrode device must record 

198      EEG signals and detect and log seizures reliably to be clinically useful. Unfortunately, 

199      research into incumbent devices has yielded mixed results [56]. A summary of prior 

200      research is in Table 1. 

201 A foundational study by Shih et al. used a greedy backward elimination algorithm 

202      to select a subset of seven features that produce the lowest false positive rate from 

203      each channel [61]. The reduced number of channels was between 18 and 4.6, achieving 

204      improvement in false-positive rate (FPR), from 0.35/hr to 0.19/hr, yet sensitivity and 

205      detection delay worsened, from 99% to 97% and 7.8 s to 11.2 s, respectively.  More 

206      recently, Moctezuma and Molinas compared the popular backward greedy elimination 

207      algorithm with two versions of the nondominated sorting genetic algorithm (NSGA), 

208      NSGA-II and NSGA-III [47]. They achieved an accuracy ranging between 0.98 and 1 

209      using one to two channels, comparable to their detection result with the full electrode 

210      count (accuracy ranged from 1 to 0.97). 

211 The role of variance contributed by individual channels has been widely explored. 

212      Duun-Henriksen et al. reduced channels by selecting the largest variance in channels, 

213      achieving a detection performance on three channels near equivalent to a clinical neuro- 

214      physiologist’s review on the same dataset EEG [62]. Birjandtalab et al. used a random 

215      forest algorithm to determine which channels contributed the most variation to dis- 

216      crimination of seizure versus non-seizure events [43]. However, their minimal channel 

217      reduction, from 23 to 18 channels, provides little difference in clinical application where 

218      the patients still wear 18 electrodes. Bhattacharya and colleagues pre-selected 5 out of 

219      23 channels to perform a multivariate analysis of EEG signals [46]. The one channel 

220      that displayed the least standard deviation informed the selection of the remaining four 

221      channels based on their inter-dependency level and similarity to the first channel. The 

222      model’s performance ranged from 0.95 to 0.99, making it comparable to other channel 

223      selection methods. 

224 A unique approach by Shah et al. focused on domain knowledge to inform the 

225      channel selection [48]. They exploited insights on brain hemisphere function, the prox- 

226      imity of a given electrode to other electrodes, electrode position on the scalp, and the 

227      region the electrode covered in terms of signal capture. Their eight electrode montage 

228      produced the most favourable results, yet the authors affirmed the scarcity of superior 

229      techniques that permit electrode reduction whilst maintaining model sensitivity. A rare 

230      prospective study by Kjaer et al. investigated automated seizure detection in a paediatric 

231      population of six patients aged 7–12 years [49]. Using three electrodes, with respective 

232      references, they achieved a mean sensitivity of 98.4%, a specificity of 100% and a mean 

233      false detection rate of 5.5 per 24/hr. Their study lacked comparisons to a full set of 

234      electrodes, but the prospective study design and facilitation of at home device usage 

235      made this an exemplar study. Further efforts in the vein of the discussed fundamental 

236      works would be invaluable for the seizure detection community. 
 

237        6.1. Limitations of reduced channels 

238 Technological challenges prevail in data collection and hardware design. Stevenson 

239      et al. [57] found electrode reduction negatively impacted visual interpretation by human 

240      experts. They misjudged seizure burden, and seizure annotation was significantly higher 

241      when they used 19 rather than eight electrodes. Rubin et al. [59] had two epileptolo- 

242      gists label cases as seizure or no seizure. When compared to ground truth data, the 

243      epileptologists achieved a combined 70% sensitivity and 96% specificity for seizure 

244      detection. The reduced arrays were believed to contribute to the inferior sensitivity 

245      score. Herta and colleagues compared human expert seizure annotations in ICU EEG 

246      recordings with an automated electrode reduction model [4]. They reduced electrodes in 

247      a step-wise fashion, calculating sensitivity and specificity for each eliminated electrode. 
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248      They deemed a minimum of nine electrodes requisite to detect the ictal patterns that the 

249      human experts detected. 

250 Channel selection studies highlight the wealth of possibilities in channel selection 

251      model combinations. However model combinations, and the interchangeably used 

252      terms “electrode” and “channel,” make delineation, comparison and reproducibility of 

253      best-in-class models challenging. The impositions described in the literature illustrate 

254      the need for further research. 

255 Since EEG is an established and reliable method for capturing and identifying 

256      seizure activity, its utility would be amplified if it were evolved beyond the current 

257      non-mobile state. A portable device with only a few electrodes would enable long-term 

258      recordings, providing rich neurophysiological data for patient-specific data process- 

259      ing. Greater access to data could increase researchers’ proclivity to upgrade existing 

260      EEG solutions. Transforming the existing solutions from a diagnosis-only state to a 

261      seizure logging and management aid for clinicians and patients will enhance the patient 

262      journey. Neurobehavioural and psychiatric comorbidities of epilepsy might be better 

263      understood [63,64]. The diagnosis and treatment pathways for epilepsy comorbidities 

264      could be optimised [65,66]. Automated seizure detection models could be refined and 

265      enhanced by the addition of selective biomarkers. Although the two electrode selection 

266      models proposed by our group were encouraging, they signify the difficulty in achieving 

267      optimal performance. Despite the first model producing improved results for some, 

268      most patients’ performance declined as electrodes were reduced from 19 to 6. The results 

269      from the second model were concurrent with the literature, yet the model’s average false 

270      alarm score would be unacceptable in a clinical setting. Further prospective studies that 

271      elucidate dependable methods for reducing electrodes can pave the way for improving 

272      patient care. 
 

273      7. Conclusion 

274 The impact of electrode reduction on both human and computer seizure detection 

275      performance is problematic. Deterioration in performance is often attributed to the 

276      reduced availability and accuracy of the EEG data.  We propose that a resurgence of 

277      research into electrode reduction in the clinical setting will support the development of 

278      portable, reliable devices, thereby enabling long-term monitoring and enhancing patient 

279      quality of life. 
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