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Abstract 

Introduction: Current estimates of pandemic spread using infectious disease models in 
Germany for SARS-CoV-2 often do not use age-specific infection parameters and are not 
always based on known contact matrices of the population. They also do not usually include 
setting-based information of reported cases and do not account for age-specific 
underdetection of reported cases. Here, we report likely pandemic spread using an age-
structured model to understand the age- and setting-specific contribution of contacts to 
transmission during all phases of the COVID-19 pandemic in Germany. 

Methods: We developed a deterministic SEIRS model using a pre-pandemic contact matrix. 
The model is optimized to fit reported age-specific SARS-CoV-2 incidences from the Robert 
Koch Institute, includes information on setting-specific reported cases in schools and 
integrates age and pandemic period-specific parameters for underdetection of reported 
cases deduced from a large population-based seroprevalence study.  

Results: We showed that taking underreporting into account, younger adults and teenagers 
are the main contributors to infections during the first three pandemic waves in Germany. 
Overall, the contribution of contacts in schools to the total cases in the population was below 
10% during the third wave.  

Discussion: Accounting for the pandemic phase and age-specific underreporting seems 
important to correctly identify those parts of the population where quarantine, testing, 
vaccination, and contact-reduction measures are likely to be most effective and efficient. In 
the future, we will aim to compare current model estimates with currently emerging during-
pandemic age-specific contact survey data. 
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Introduction 

Epidemiological models have been essential to predict the spread of SARS-CoV-2 and are 
frequently used to inform decision-makers on the effectiveness of interventions. Many 
estimations in projections and scenario modeling use compartment models that divide a 
population by health status and assume transition rates from one health status to another 
[2]. Simulations are based on assumptions or data about the probability of disease 
transmission, incubation period, recovery rates, and mortality rates. Based on deterministic 
differential equations, multiple studies have modeled the current spread of SARS-CoV-2 (e.g. 
[9, 21, 27]). Some models consider age groups [11, 21, 22, 27, 29, 31], are agent-based [24, 
37], or include mobility [30]. Others consider additional disease compartments [21] and 
vaccination [31]. However, current models in Germany are not sufficiently accounting for age-
specific estimates of disease severity and underdetection of reported cases, which leads to 
underestimation as well as overestimation of the contribution of contacts in different age and 
population groups to infection dynamics and deaths [39].  

The population’s age structure is known as one of the key determinants of acute respiratory 
diseases, especially when it comes to infection severity. For instance, children are considered 
to be responsible for a large part of the transmission of influenza [4] but the majority of 
hospitalizations and deaths occur among people of ages over 65 years [25, 34]. Similarly, 
COVID-19 mortality among people who have been tested positive for the SARS-CoV-2 is 
substantially higher in older age groups and near zero for young children [6, 36, 38]. 
Moreover, the infectiousness of an individual has been reported to vary with time after 
infection [12, 16], which is known to affect epidemic spread [17, 20]. As for all respiratory 
virus infections, contact patterns in the population are also relevant.  

Underdetection of actual infection activity by notified case reports to authorities is a well-
known limitation, but not often included in modeling efforts, even less using age-specific 
underreporting estimates [21, 30]. For Germany, population-based studies suggest that 
actual infection activity is heterogeneous across regions, time points, and age groups [13]. 
However, both age and underdetection of infections are highly relevant for predicting 
regional infection events, especially for different contact areas and for estimating the 
effectiveness of interventions [15] as well as for predicting hospitalizations and deaths 
correctly.  

In the work presented here, we incorporate age-specific underdetection ratios in a classical 
age-specific infection model and analyze the impact on transmission dynamics. The model 
has a circular structure, which allows for reinfections, long-term complications, and delayed 
deaths. Moreover, we consider the social contact patterns since it impacts the spread of 
disease. Our model allows us to assess the age-dependent contribution of contacts to the 
transmission of COVID-19 in Germany. We assess the sensitivity of infection transmission by 
applying underdetection ratios from large population-based seroprevalence studies of adults 
[13] and children [18, 35]. We then analyze and compare the transmission dynamics across 
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age groups during the first three infection waves in Germany, taking underdetection into 
account. We also estimate time-dependent transmission rates and the contribution of 
contacts within the school setting for periods where specific data on schools are available 
[44]. 

Data and Methods 

Data 

We considered data on officially reported SARS-CoV-2 infections by the German health 
institute [43] (Robert Koch Institute; RKI). The age distribution of the German population is 
obtained from data for 2020 reported by the Federal Statistical Office [41]. We used weekly 
age-specific reported data of SARS-CoV-2 infections during the first three infection waves in 
Germany, i.e. calendar week 5 (starting on 27 January) 2020 to calendar week (starting on 23 
June) 20 of 2021. Weekly reported SARS-CoV-2 infections by age group are shown in 
Supplementary A – Figure 1.  

To investigate the contribution of school contacts, we use the weekly reported SARS-CoV-2 
infections among students and teachers from the Standing Conference of Ministers of 
Education and Cultural Affairs website (KMK) [44]. The data used are from calendar week 8 
to 20 of 2021 (Supplementary A – Figure 2). We assumed that the proportion of new 
infections in schools for different age groups is determined by the proportion of student and 
teacher numbers reported by the Federal Ministry of Education and Research [40] and the 
Federal Statistical Office [42].  

Based on pandemic phase- and age-specific underdetection ratios derived from population-
based studies among adults [13] and children [18, 19, 35], we estimated average age-specific 
underdetection ratios for different phases of the pandemic in Germany (see Table 1), which 
we implemented in our model. Gornyk et al [13] investigated seroprevalence estimates for 
SARS-CoV-2 that indicated an age-specific underreporting ratio (infected to reported) of 
COVID-19 transmission in a large (>25000 participants, seven large regions in Germany) 
population-based seroprevalence study and we used their estimates for age-specific 
underdetection ratios in adults. For children, we used seroprevalence studies available for 
the south of Germany during the first and second waves [18, 19, 35]. For the third wave, we 
assumed a significantly reduced level of underdetection in this age group, based on reported 
cases during the period of the introduction of large-scale testing in child care institutions, as 
no seroprevalence estimates for children were available. To apply underdetection in our 
model, we correlated the age-specific underdetection ratios of each stage to the reported 
number of infected individuals. 

Table 1. Underdetection ratios by age group for different SARS-CoV-2 waves of transmission (Source: [13, 18, 19, 35]) 

Group First Wave 
(March – June 2020) 

Second Wave 
(July 2020 – February 2021) 

Third Wave 
(March – May 2021) 

0 – 4 years 8 6 2 
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5 – 14 years 6 4 1.5 
15 – 34 years 6 4 2 
35 – 59 years 4 3 2 
60 – 79 years 4 4 3 

80+ years 2 1.5 1.5 

Since our age-structured model allows us to adjust the transmission rates among different 
age groups, we applied social contact patterns to the transmission rates. We used POLYMOD 
data for Germany, originally made available by Mossong et al [26], to construct a symmetric 
contact rate matrix by age group consistent with our model. The contact rate 𝑐!"  is related to 
the social contact matrix by  
 𝑐!" =

𝑚"!

𝑁!
,	 (1) 

where the element 𝑚!"  of the social contact matrix (see Supplementary A – Figure 3) 
represents the average number of contacts made by an individual in the age group 𝑖 with 
individuals in the age group 𝑗 during one day and 𝑁!  is the population size of age group 𝑖. 

Model 

The developed model is an adaptation of a deterministic SEIRS (Susceptible-Exposed-
Infectious-Recovered-Susceptible) model to the specific properties of SARS-CoV-2 infections. 
It distinguishes healthy (susceptible) individuals, infected but not yet infectious (exposed) 
individuals, symptomatic and asymptomatic patients. Furthermore, we considered 
compartments for hospitalizations, patients in the intensive care units (ICUs), and long-COVID 
(i.e. suffering eventual symptoms after officially recovering from the infection). Last, patients 
will recover or die. We also assume that there is a reinfection process in the transmission. In 
our model, we split the recovery compartment into a compartment for those recovered from 
COVID and a long-COVID compartment, since we assumed that both have a different 
reinfection rate. Figure 1 illustrates the model structure. 
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Figure 1. Schematic illustration of the extended SEIRS model 

Table 2. Age groups in our model 

𝑖	 Group 
1 0 – 4 years 
2 5 – 14 years 
3 15 – 34 years 
4 35 – 59 years 
5 60 – 79 years 
6 80+ years 

The population is split into six age groups, as given in Table 2, in accordance with data provided 
by RKI. An individual in age group 𝑖 is classified either as susceptible (𝑆!), exposed (𝐸!), 
asymptomatically infectious (𝐼#!), symptomatically infectious (𝐼$!), hospitalized (𝐻!), in 
intensive care (𝑈!), suffering under long-COVID (𝐿!), fully recovered (𝑅%!), recovered from 
long-COVID (𝑅&!), or dead (𝐷!). The population size of age group 𝑖 is given by 𝑁!. The developed 
model is given by the following differential equation system, 

𝑑𝑆!(𝑡)
𝑑𝑡 = −6Λ!"(𝑡)

"

𝑆!(𝑡) + 𝑃'𝑅&!(𝑡) + 𝑃(𝑅%!(𝑡),	

𝑑𝐸!(𝑡)
𝑑𝑡 =6Λ!"(𝑡)

"

𝑆!(𝑡) − 𝑃)𝐸!(𝑡),	

𝑑𝐼$!(𝑡)
𝑑𝑡 = 𝜅!𝑃)𝐸!(𝑡) − 𝑃*𝐼$!(𝑡),	

𝑑𝐼#!(𝑡)
𝑑𝑡 = (1 − 𝜅!)𝑃)𝐸!(𝑡) − 𝑃+𝐼#!(𝑡),	

(2) 

 

𝜈𝑃! 
R
F 

RL 

S 

E 

IS 

IA 

H L U 

D 

𝛽"𝐼" +𝛽#𝐼$
𝑁  

(1 − 𝜅)𝑃% 

𝜅𝑃% 

𝛼𝑃& 

(1 − 𝛿)𝜑𝑃' 

𝛿𝑃' (1 − 𝜗)𝜎𝑃( 

𝜗𝑃( 

𝛾𝑃) (1− 𝜗)(1− 𝜎)𝑃( 

(1− 𝛿)(1 − 𝜑)𝑃' 

(1 − 𝛼)(1− 𝜌)𝑃& 

(1 − 𝜈)𝑃! 

(1 − 𝛼)𝜌𝑃& 

(1− 𝛾)(1− 𝜂)𝑃) 

𝑃* 
𝑃+ 

(1 − 𝛾)𝜂𝑃) 
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𝑑𝐻!(𝑡)
𝑑𝑡 = 𝛼!𝑃*𝐼$!(𝑡) − 𝑃,𝐻!(𝑡) + (1 − 𝛾!)𝜂!𝑃-𝐿!(𝑡),	

𝑑𝑈!(𝑡)
𝑑𝑡 = 𝛿!𝑃,𝐻!(𝑡) − 𝑃.𝑈!(𝑡),	

𝑑𝐿!(𝑡)
𝑑𝑡 = (1 − 𝛼!)𝜌!𝑃*𝐼$!(𝑡) + (1 − 𝛿!)𝜑!𝑃,𝐻!(𝑡) + (1 − 𝜗!)𝜎!𝑃.𝑈!(𝑡) − 𝑃-𝐿!(𝑡),	

𝑑𝑅%!(𝑡)
𝑑𝑡 = (1 − 𝜈!)𝑃+𝐼#!(𝑡) + (1 − 𝛼!)(1 − 𝜌!)𝑃*𝐼$!(𝑡)

+ (1 − 𝛿!)(1 − 𝜑!)𝑃,𝐻!(𝑡) + (1 − 𝜗!)(1 − 𝜎!)𝑃.𝑈!(𝑡) − 𝑃(𝑅%!(𝑡),	

𝑑𝑅&!(𝑡)
𝑑𝑡 = (1 − 𝛾!)(1 − 𝜂!)𝑃-𝐿!(𝑡) − 𝑃'𝑅&!(𝑡),	

𝑑𝐷!(𝑡)
𝑑𝑡 = 𝜗!𝑃.𝑈!(𝑡) + 𝜈!𝑃+𝐼#!(𝑡) + 𝛾!𝑃-𝐻!(𝑡),	

𝑁! = 𝑆! + 𝐸! + 𝐼$! + 𝐼#! + 𝐻! + 𝑈! + 𝐿! + 𝑅%! + 𝑅&! + 𝐷! ,	

where 

 Λ!"(𝑡) = 𝑐!" E𝑏/!(𝑡)𝐼$"(𝑡) + 𝑏0!(𝑡)𝐼#"(𝑡)G,	 (3) 

Typically, 𝑏/!(𝑡) and 𝑏0!(𝑡) denote the time-dependent risk of infection per contact in age 
group 𝑖 for symptomatically and asymptomatically infectious individuals, respectively. In our 
model, we called them scaling parameters since we calibrated them to scale the contact 
matrix to account for the effects of interventions and behavioral change over time. 𝑃) − 𝑃( 
are health state transition rates. The Greek letters denote the transition probabilities. 
Supplementary B gives an overview of the model parameters. 

The basic reproduction number 𝑅1 is defined as the expected number of secondary infections 
produced by a single infected individual in a completely susceptible population [6], which is 
used to describe the transmissibility of infections [8]. 𝑅1 can be derived by employing the next 
generation matrix method [7]. The compartments with infected individuals are divided into 
two categories, which are the appearance of new infections in the compartment and the 
transfer of the infected into and out of the compartment. The Jacobian [7] of the transmission 
matrix 𝐹 and transition matrix 𝑉 describes the generation of new infections and the transfer 
across compartments. The elements 𝑚!"  of 𝑀 = 𝐹𝑉2) are related to the expected number 
of secondary infections in compartment 𝑖 caused by an infected individual of compartment 𝑗. 
During an epidemic, susceptible individuals gradually become infected. Therefore, the 
effective reproduction number is defined as a time-varying variable that quantifies the 
instantaneous transmissibility of infections. It also includes the effects of interventions and 
behavioral changes. The effective reproduction number 𝑅3 for the age-structured model is 
the dominant eigenvalue of the matrix 𝑀 given by 
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𝑀!"(𝑡) = 𝑆!(𝑡)𝑐!" K

𝑏/!(𝑡)𝜅"
𝑃+

+
𝑏0!(𝑡)L1 − 𝜅"M

𝑃*
N.	 (4) 

Here, 𝑅3 is estimated numerically for a set of parameters and a susceptible population. 

Parameter Estimation 

The model parameters are fit by ordinary least squares (OLS). The time-dependent scaling 
parameters (𝑏/!(𝑡) and 𝑏0!(𝑡)) are estimated by calibrating them weekly to age-specific 
reported new SARS-CoV-2 infections. Based on the fitting results, we observe the estimated 
force of infection corresponding to the age groups. The time-dependent marginal force of 
infection in age group 𝑖 with respect to contacts with age group 𝑗 are estimated by matrices 
obtained from equation (3). The force of infection by age group is the row sum of matrices 
(3) over age group 𝑗. We also estimated the effective reproduction number over time by 
calculating equation (4) using the estimated scaling parameters. 

Inserting the fitted parameters into the model, we predicted the number of new cases by age 
group. In addition, we used the same method to fit the fatality rate and predict the number 
of deaths. To evaluate the model, we used the weighted interval score (WIS) by Bracher et al 
[5], which is one of the evaluation parameters used in the European COVID-19 Forecast Hub 
[39]. 

Estimation of the age-dependent contribution 

By applying social contact patterns and the time-dependent scaling parameters among the 
different age groups into our model, we estimated the number of new cases in the age group 
𝑖 generated by each contact in the age group 𝑗 over time through matrices obtained by 
multiplying equation (3) with the number of susceptibles by age group, 

 Λ!"(𝑡)L𝑆!(𝑡) ⋅ 𝟏"M, (5) 

where 𝟏"  denotes a row vector of ones. This allows us to investigate among whom COVID-19 
spreads over time. The results show the contribution of contacts to transmission in the overall 
population. We divided the observation time into three phases representing each wave of 
infection in Germany. Therefore, we were able to analyze the influence of age-specific 
contacts in the infection dynamics of individuals of different age groups at the national level 
from a temporal perspective. 

Implementation of the school setting 

For the implementation of the school setting, we split the population into nine age groups, as 
given in Table 3.  

Table 3. Age groups in model of school setting 

𝑖	 Group 
1 0 – 4 years 
2 5 – 9 years 
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3 10 – 14 years 
4 15 – 19 years 
5 20 – 24 years 
6 25 – 29 years 
7 30 – 59 years 
8 60 – 79 years 
9 80+ years 

We assumed that the age groups 2 – 8 have direct relevance in the school context (as student 
and teaching staff). Those are divided into the subgroups “non-school” or “school”. Using OLS, 
we calibrated our model with the weekly reported COVID-19 cases among students and 
teachers in schools. The estimated forces of infection in schools are calculated via equation 
(5) using the school contact matrix by POLYMOD and the number of infections in the school.  

Implementation of underdetection of infections by reported cases 

We estimated the true new infections by multiplying the weekly age-specific reported cases 
of COVID-19 with the age-specific underdetection ratios from Table 1, 

 𝑇𝐼! = 𝑅𝐼! 	× 𝑟! , (6) 

where 𝑟!  is the underdetection ratio of age group 𝑖, 𝑇𝐼!  and 𝑅𝐼!  denote the estimation of truly 
new and reported infected of age group 𝑖, respectively. Then, we used the same method for 
fitting data to estimate the time-dependent transmission parameters among different age 
groups. We investigated the contribution of contacts to transmission, accounting for the 
underdetection in the overall population. Thus, we can analyze the sensitivity of infection 
transmission by applying underdetection ratios for Germany.  
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Results 

Age-dependent contribution of contacts to cases 

 

Figure 2 shows the time-dependent scaling parameters by age group derived from our model 
over calendar week 5 of 2020 to calendar week 20 of 2021 in Germany. During the first wave, 
the scaling parameters were highest for all age groups when the spread of infection began. In 
the second and third waves, the scaling parameters remained stationary for each age group, 
except for the elderly age group of 80 years and above. The scaling parameter for the elderly 
increased in the second wave and then decreased in the third wave. Figure 3a shows the 
effective reproduction number 𝑅3, calculated by fitting parameters according to the age 
groups. The value of 𝑅3 was estimated to be around 6.9 in calendar week 9 of 2020 when the 
spread of infection began in the first wave. At the beginning of calendar week 12 of 2020, 𝑅3 
decreased below 2. The 𝑅3 was estimated to be in the range of 0.7 – 2 in the second wave 
and between 0.6 – 1.4 in the third wave.  

 
Figure 2. Estimated weekly scaling parameters per contact by age group 
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(a) case without underdetection 

  
(b) case with underdetection  

Figure 3. The effective reproduction number is calculated by fitting parameters for case (a) without and (b) with 
underdetection 
In the first few weeks of the first wave, there were artifacts due to a low number of cases, increased testing, etc. Therefore, 
the results of weekly calibration are unrealizable during the first few weeks. 

Here, we described the estimated marginal force of infection, which is the individual 
contribution of contacts to the age-specific transmission rate. More detailed results are 
shown in heat maps in Supplementary C. The element of a matrix represents an estimator for 
the force that an individual in the age group on the vertical axis will become infected from 
individuals in the age group on the horizontal axis. We also showed the estimated 
contributions of contacts to the transmission over time in heat maps in Supplementary D. 
Some contributions of contacts for the transmission at a fixed time for all waves are shown in 
Figure 4. The element of a matrix represents an estimated number of infected in the age 
group on the vertical axis due to contact with individuals in the age group on the horizontal 
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axis. For instance, in Figure 4b, we estimated that there were about 18800 new infections 
aged 35 – 59 years due to contacts with individuals aged 15 – 35 years in week 51 of 2020. 

 
(a) week 13 of 2020 (first wave) 

 
(b) week 51 of 2020 (second wave) 

 
(c) week 15 of 2021 (third wave) 

Figure 4. Estimated absolute contribution of contacts to the transmission 

First wave 
The individual contribution of contacts to the overall transmission rates was predominantly 
from contacts in young adults, adults, and the elderly (see Supplementary C – Figure 4) in the 
first wave, i.e. weeks 5 until 21 of 2020. The absolute contribution of contacts to the 
transmission was predominantly in the adult group (Supplementary D – Figure 7). 

Second wave 
In the second wave, the reported number of cases was very high. The age-specific forces of 
infection by age group are shown in Supplementary C – Figure 5. The individual contribution 
of contacts to the transmission rates for the second wave occurred predominantly in young 
adults until elderly groups. In weeks 50 of 2020 until 2 of 2021, the contribution to the 
transmission was highest in the elderly that had contact with the other age groups above 14 
years. In Supplementary D – Figure 8, we show that the absolute contribution of contacts to 
the transmission was mainly in the young adult and adult groups. 

Third wave 
The age-specific forces of infection by age group for the third wave (i.e. weeks 7 until 20 of 
2021) are shown in heat maps in Supplementary C – Figure 6. Different from the first and 
second waves, the individual contribution of contacts to the transmission rates occurred 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.12.13.21267716doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.13.21267716


predominantly in children and young adults. The absolute contribution of contacts to the 
transmission in the third wave shows rather similar trends as in the second wave (see 
Supplementary D – Figure 9). 

Figure 5a shows the estimated force of infection by age group. In the first wave, the trends of 
the adult age groups appear to be homogeneous. The peak of transmission in elderly groups 
in the first wave appeared with a delay in comparison to the other age groups. However, they 
differed across adult age groups in the third wave. The trends of the children's group in the 
third wave are higher than in the previous wave. In contrast, the trends of the elderly groups 
are lower in the third wave than in the previous wave. 

 
(a) case without underdetection 

 
(b) case with underdetection  

Figure 5. Estimated force of infection by age group for case (a) without and (b) with underdetection 
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Contribution of age-dependent contacts to cases accounting for underdetection  

The effective reproduction number in the case of underdetection is shown in Figure 3b. The 
trend of 𝑅3 for underdetection appears to be similar to the case without underreporting. 
Almost every time, the value of 𝑅3 for underdetection is smaller, except at certain times. At 
the beginning of the first wave, the value of 𝑅3 for underdetection is higher. In calendar week 
9 of 2020, the estimation of 𝑅3, when accounting for underreporting, is 1.9 times higher. The 
value of 𝑅3 is also higher at calendar week 28 of the second wave. At the other times, the 
estimation of 𝑅3 ranges between 0.7 – 2.9 in the second wave and between 0.35 – 1.4 in the 
third wave. 

The individual forces of infection by age group are shown in heat maps in Supplementary E. 
The estimated absolute contributions of contacts to the transmission over time in heat maps 
are shown in Supplementary F. Accounting for the underdetection, Figure 6 shows some 
absolute contributions of contacts to the transmission at a fixed time for all waves. The figure 
has the same interpretation as Figure 4, however, with different scales. We can observe that 
the dominant contribution of contacts to the transmission is shifted to the younger age group 
(young adult group), which is due to underdetection. In Figure 5b, we show the estimated 
force of infection for the underreported cases. The forces of infection by age group differ 
significantly from the case without underreporting. Here, the estimated force of infection is 
much higher in the young adult group than in the other age groups in the second and third 
waves. In addition, the estimated force of infection in the elderly is lower in the second wave 
than in the case without underreporting. The delay of an increasing force of infection in older 
age groups is more pronounced in Figure 5b. 

 
(a) week 13 of 2020 (first wave) 

 
(b) week 51 of 2020 (second wave) 
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(c) week 15 of 2021 (third wave) 

Figure 6. Estimated absolute contribution of contacts to the transmission accounting for underdetection 

Contribution of school setting-dependent contacts to cases  

Here, we investigated the contribution of schools to the transmission of COVID-19 during the 
third wave in the German population. Using reported data in schools and a school contact 
matrix, we obtained the estimated forces of infection in schools by age group in Figure 7a. 
There is a clear trough in calendar weeks 13 – 14 of 2021 due to the Easter holiday. Otherwise, 
trends appear to be very heterogeneous across age groups. We show the estimated 
proportion of infection due to contacts with infected people in schools in Figure 8a. The 
proportion of the contribution of contacts in schools to the overall cases in the population 
during the third wave is less than 10%. Accounting for underdetection ratios in the third wave, 
the estimated forces of infection in schools by age group are illustrated in Figure 7b. The force 
of infection, accounting for the underdetection in the age group 5 – 9 years, was lower than  
for the case without underdetection. Meanwhile, the forces of infection accounting for 
underdetection in the age groups 25 – 29 years and 30 – 59 years were higher for than the 
case without underdetection. Figure 8b shows the proportion of the contribution of contacts 
in schools with underdetection ratios to the overall cases in the population. 

 
(a) case without underdetection 
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(b) case with underdetection  

Figure 7. Estimated force of infection in schools by age group in the third wave for case (a) without and (b) with 
underdetection 

 
(a) case without underdetection  

 
(b) case with underdetection  
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Figure 8. Estimated proportion of infection (CI: 95%) due to contact with infected people in schools in the third wave for 
case (a) without and (b) with underdetection 

Discussion 

We presented estimations on the course of the pandemic based on an age-specific 
compartmental model  that accounts for differential underreporting and assesses the 
contribution of age- and school setting-specific contacts to overall transmission throughout 
the pandemic in Germany. 

The value of the effective reproduction number in the first wave period may appear rather 
high compared to the other periods. An obvious reason for the high reproduction number in 
the first wave could have been caused by one or several super-spreading incidents, such as a 
carnival event [14]. In addition, there were artifacts due to increased testing as the first wave 
progressed and low case numbers. The decrease in the effective reproduction number during 
the first three infection waves may indicate a reduction in contacts in the population, for 
example, due to the success of the non-pharmaceutical interventions. In the third wave, the 
force of infection in elderly groups to the transmission was much lower due to the impact of 
vaccination and potentially higher natural infection acquisition. 

The contribution of contacts to the overall transmission across all phases of the pandemic 
varied but occurred predominantly in the adult group if not accounting for underdetection. 
Accounting for underreporting, however, we identified a substantial part of infections after 
contacts in the young adult and teenage groups and – compared to estimates not accounting 
for underreporting – a higher proportion of infections in the overall population was due to 
contacts in children and teens.  

The difference between model estimations using underreporting and not using 
underreporting is decreasing towards the third wave with higher use of testing strategies 
targeted towards younger populations such as working age and school-age populations in 
Germany [1]. 

To understand pandemic spread in Germany, estimations assessing detailed regional spread 
have been provided for both the first and second waves. Lippold et al have used county-level 
data to provide predictions for future spread [23]. Doblhammer et al showed that during the 
second wave, political affiliations and socioeconomic indicators were associated with higher 
incidences of SARS-CoV-2 [10]. A recent estimation of spreading dynamics of SARS-CoV-2 in 
Germany assessed regional heterogeneity in the effectiveness of measures on infection 
dynamics and identified three distinct regional clusters of spreading patterns [32].  

We believe that the large differences in model estimations integrating age-specific 
underreporting and those not from our assessments indicate that integrating age-specific 
underreporting of cases would benefit such efforts, in particular, if the effectiveness of 
interventions or predictions are based on these. In particular, for assessments of the current 
epidemiological situation, these estimates should be integrated to be able to capture recent 
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epidemiological situations. Accounting for underreporting needs to be done in an age-specific 
manner. Modeling without accounting for demographics likely underestimates infection 
activity in younger adults and relatively young populations significantly. The underestimation 
of the contribution from the young adult group may provide a larger explanation for the 
overshoot of epidemic activity in Germany in the older age groups in both the second and 
fourth waves. In both waves, Germany saw relatively higher than expected epidemic activity 
overall starting with high epidemic activity in the younger age groups in summer. If this 
epidemic activity was relevantly underdetected (more than in the other age groups) this 
would explain the quicker than expected increase in cases and deaths in autumn as an 
additional explanation to the known seasonality of SARS-CoV-2. This would indicate that 
screening, testing, and contact tracing in this younger age group (young adults and teens) is 
of particular importance.  

Including cases that are known to have been detected in schools, we estimated the 
contribution of contacts in schools to be quite volatile, yet below 10% during calendar weeks 
10 to 22 in 2021. Interestingly in contrast to what we found for age groups, this estimate was 
not highly affected by including underdetection estimates. This is possibly due to the mixing 
of age groups in this setting, lowering the underdetection effect. Also, the lack of an effect of 
underreporting estimates is probably caused by us not being able to include information for 
the third wave which in Germany had overall low underdetection and not as high age-specific 
underdetection differences due to testing strategies both at the workplace and in schools. 
Information on cases in schools is not available for previous calendar weeks. To our 
knowledge, no other estimations of the contribution of contacts to cases in the population 
from the existing data in Germany have been performed. Estimates of reduction of 
transmission by school closures [3, 33] for the first and second waves would indicate a larger 
contribution of school contacts to transmission, however, a part of this contribution is likely 
due not to cases in schools but surrounding environments and relatives. It is also likely that 
the contribution of contacts in school to overall population transmission decreased in the 
third wave compared to previous months in Germany, as hygiene and testing measures were 
established within schools during that time. 

The estimations made here are limited by the model used attempting to capture social 
dynamics through an epidemic compartmental model. In particular, we scaled the contact 
matrix in a certain way that likely has an impact on the contribution of the age groups. The 
model is also limited by not including the vaccinated compartment. The predictive ability of 
the model, however, has been analyzed by contributing to a  forecast to the European COVID-
19 Forecast Hub [39], which, in comparison to other models in Germany, shows above- 
average performance (calendar week 14 to 38 of 2021, our model had a relative WIS 0.61 and 
0.52 for weekly forecasts of cases and death). Another limitation is that, particularly for the 
third wave, we had to make assumptions regarding the underdetection in children, that are 
not – contrary to the other underreporting estimates – based on seroprevalence but rather 
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on comparisons of reported cases during times with and times without large scale testing in 
schools. 

Despite these limitations, we believed that the estimation presented here adds to the 
understanding of how the actual contribution of different age groups during the pandemic 
unfolded in Germany and could enhance both scenario and predictive modeling efforts.  

Conclusions 

We showed that taking underreporting into account, younger adults and teenagers are main 
contributors to infections during the first three pandemic waves in Germany. Overall, the 
contribution of contacts in schools to the total cases in the population was below 10% during 
the third wave. Accounting for age-specific underreporting seems important to correctly 
identify those parts of the population where quarantine, testing, vaccination and contact-
reduction measures are likely to be most effective and efficient.  
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